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Preface

Quantum annealing employs quantum fluctuations in frustrated systems or
networks to anneal the system down to its ground state or to its minimum
cost state, tuning the quantum fluctuation down to zero eventually. Often this
can be more effective in multivariable optimization problems, over classical
annealing performed utilizing tunable thermal fluctuations. The effectiveness
comes from the fact that unlike in classical annealing, where the system scales
the individual barrier heights by utilizing thermal fluctuations, in quantum
annealing, fluctuations can help tunneling through these (even infinite but
narrow) barriers. Apart from the recent theoretical demonstrations, this has
been demonstrated experimentally.

In this book, we discuss the problems and the recent achievements in de-
tail. This book grew out of an international workshop on quantum annealing,
held in March 2004 in Kolkata under the auspices of the Centre for Applied
Mathematics and Computational Science, Saha Institute of Nuclear Physics,
India. With contributions from all the leading scientists/groups involved in
its development so far, this first ever book on quantum annealing is expected
to become an invaluable primer and also a guidebook for all researchers in
this important field.

The book is divided into three parts. In the first part, tutorial materials are
introduced. B.K. Chakrabarti and A. Das introduce the transverse Ising model
and quantum Monte Carlo techniques, following which most of the theoretical
studies on quantum annealing have been made so far. The decomposition
of exponential operators used for the Suzuki–Trotter classical mapping in
quantum Monte Carlo techniques is discussed in detail by N. Hatano and M.
Suzuki. Latest quantum Monte Carlo and other numerical investigations and
developments in quantum spin glasses are reviewed by H. Rieger. The question
of ergodicity and consequent replica symmetry restoration in quantum spin
glasses and ferroelectric glasses, experimental indications included, is reviewed
by J.-J. Kim. A. Fisher reviewes the theory of quantum systems coupled
to noisy condensed-phase environments and describes how to tailor response
functions so as to optimize the coherent evolution of the system.
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In the next part, quantum annealing techniques are developed and em-
ployed. G. Aeppli and T.F. Rosenbaum describe the experimental realization
where the ground state of a glassy sample can be reached faster by tun-
ing the external field (inducing changes in the tunneling field) rather than
by tuning the temperature. D. Battaglia, L. Stella, O. Zagordi, G. Santoro,
and E. Tosatti discuss the effectiveness of quantum annealing algorithms in
solving hard computational problems such as the traveling salesman problem
or a satisfiability problem and also in solving some very simple illustrative
problems for a basic comparative study with thermal annealing. S. Suzuki
and M. Okada investigate the prospect of adiabatic quantum annealing us-
ing real-time quantum evolution. A. Das and B.K. Chakrabarti discuss the
application of quantum annealing in a kinetically constrained system and in
an infinite range quantum spin glass. J.-I. Inoue reviewes the applicability
of quantum annealing techniques in restoring informations and images after
transportation through corrupted channels.

In the last part some of the classical optimization studies are reviewed
and discussed. H. Rieger reviewes the classical algorithms for solving various
combinatorial optimization problems. P. Sen and P.K. Das discuss classical
annealing in the context of the ANNNI model and make a comparative study
with quantum annealing in the same system. V. Martin-Mayor reviewes the
problem of annealing and relaxation in the context of classical glasses and
supercooled liquids.

With these firsthand and detailed reviews by the poineers in this field, this
book on an analog version of quantum computation, we hope, will immediately
inspire further research and development.

We are extremely grateful to all the contributors for excellent support
and cooperation. We are also grateful to J. Zittartz for his encouragement
regarding the publication of this lecture note volume.

Kolkata Arnab Das
May, 2005 Bikas K. Chakrabarti
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Tutorial: Introductory Material





Transverse Ising Model, Glass
and Quantum Annealing

Bikas K. Chakrabarti and Arnab Das

Theoretical Condensed Matter Physics Division and Center for Applied
Mathematics and Computational Sciences, Saha Institute of Nuclear Physics,
1/AF, Bidhannagar, Kolkata, India
bikask.chakrabarti@saha.ac.in

arnab.das@saha.ac.in

1 Introduction

In many physical systems, cooperative interactions between spin-like (two-
state) degrees of freedom tend to establish some kind of order in the system,
while the presence of some noise effect (due to temperature, external trans-
verse field etc.) tends to destroy it. Tranverse Ising model can quite succeess-
fully be employed to study the order-disorder transitions in many of such
systems.

An example of the above is the study of ferro-electric ordering in Potta-
sium Dihydrogen Phosphate (KDP) type systems (see, e.g., [1]). To under-
stand such ordering, the basic structure can be viewed as a lattice, where in
each lattice point there is a double-well potential created by an oxyzen atom
and the hydrogen or proton resides within it in any of the two wells. In the
corrosponding Ising (or pseudo-spin) picture the state of a double-well with
a proton at the left-well and that with one at the right-well are represented
by, say, | ↑〉 and | ↓〉 respectively (see, for a portion of the lattice, Fig. 1).
The protons at neighbouring sites have mutual dipolar repulsions. Hence had
proton been a classical particle, the zero-temperature configuration of the
system would be one with either all the protons residing at their respective
left-well or all residing at the right-well (corrosponding to the all-up or all-
down configuration of the spin system in presence of cooperative interaction
alone, at zero-temperature). Considering no fluctuation at zero temperature,
the Hamiltonian for the system in the corrosponding pseudo-spin picture will
just be identical to the classical Ising Hamiltonian (without any transverse
term). However, proton being a quantum particle, there is always a finite
probability for it to tunnel through the finite barrier between two wells even
at zero-temperature due to quantum fluctuations. To formulate the term for
the tunnelling in the corrosponding spin-picture, we notice that σx is the right
operater. This is because

B.K. Chakrabarti and A. Das: Transverse Ising Model, Glass and Quantum Annealing, Lect.
Notes Phys. 679, 3–36 (2005)
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Jij

σi
z=+1 σi

z=-1 σj
z=+1 σ j

z=-1

Γσi
x Γσj

x

Fig. 1. The double wells at each site (e.g., provided by oxygen in KDP) provide
two (low-lying) states of the proton (shown by each double well) indicated by the
Ising states | ↑〉 and | ↓〉 at each site. The tunnelling between the states are induced
by the transverse field term (Γσx). The dipole-dipole interaction Jij here for the
(asymmetric) choice of one or the other well at each site induces the ‘exchange’
interaction as shown

σx| ↑〉 = | ↓〉 and σx| ↓〉 = | ↑〉 , (1)

where | ↑〉 represents the state where the proton is in the left well, while | ↓〉
represents that with the proton in the right well. Hence the tunelling term
will exactly be represented by the tranvere field term in the transverse Ising
Hamiltonian. Here the transverse field coefficient Γ will represent the tun-
nelling integral, which depends on the width and height of the barrier, mass
of the particle, etc.

2 Transverse Ising Model (TIM)

Such a system as discussed above, can be represented by a quantum Ising
system, having Hamiltonian

H = −
∑

〈i,j〉
Jijσ

z
i σz

j − Γ
∑

i

σx
i . (2)

Here, Jij is the coupling between the spins at sites i and j, where σα’s (α =
x, y, z) are the Pauli spins satisfying the commutation relations

[σα
i , σβ

j ] = 2iδijεαβγσγ
i (3)

Here, δij is the Krönecker’s δ, and εαβγ is the Levi-Civita symbol, and 〈i, j〉
in (1) represents neighbouring pairs.
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The Pauli spin martices being representatives of spin-1/2, σz has got two
eigenvalues (±1) corrosponding to spins aligned either along z-direction or
along the opposite direction respectively. The eigenstate corrosponding to
eigenvalue (+1) is symolically denoted by | ↑〉, while that corrosponding to
(−1) is denoted by | ↓〉 .

If we represent

| ↑〉 ⇔
(

1
0

)

and

| ↓〉 ⇔
(

0
1

)
, (4)

then taking these two eigen-vectors as basis, Pauli spins have following matrix
representations

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (5)

With these, one can see that relations in (3) are easily satisfied and the
tunnelling required in (1) can be easily accommodated. The order parame-
ter for such a system is generally taken to be the expeectation value of z-
component of the spin, i.e. 〈σz〉. Needless to say that in such a system ab-
solute ordering (complete alinement along z-direction ) is not possible even
at zero-temperature, i.e., 〈σz〉T=0 �= 1, when Γ �= 0. In general, therefore,
the order (〈σz〉 �= 0) to disorder 〈σz〉 = 0 transition can be brought about
by tuning either of, or both of the tunnelling field Γ and the temperature T
(see Fig. 2).

3 Mean Field Theory (MFT)

(a) For T = 0

Let,
σz

i = |σ| cos θ, and σx
i = |σ| sin θ , (6)

where θ is the angle between σ and z-axis. This renders the two mutually non-
commuting part of the Hamiltonian (2) commuting, since both are expressed
in terms of |σ| operator only. If σ is the eigen-value of |σ| (σ = 1 for Pauli
spin), then the energy per site of the semi-classical system is given by [2]

E = −σΓ sin θ − σ2J(0) cos2 θ , (7)

J(0) = Ji(0) =
∑

〈i,j〉 Jij , where j indicates the j-th nearest neighbour of the
i-th site. And the average of the spin-components are given by
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Γ/
J(

0)

T/Tc

1

1

<σz> = 0

<σz> = 0

Fig. 2. Schematic phase diagram of the model represented by Hamiltonian (2)

〈σz〉 = cos θ

〈σx〉 = sin θ .

The energy (7) is minimized for

sin θ = Γ/J(0) or, cos θ = 0 . (8)

Thus we see that if Γ = 0, 〈σx〉 = 0 and the order parameter 〈σz〉 = 1,
indicating perfect order.

On the other hand, if Γ < J(0), then the ground state is partially polar-
ized, since none of 〈σz〉 or 〈σx〉 is zero. However, if Γ ≥ J(0), then we must
have cos θ = 0 for the ground state energy, which means 〈σz〉 = 0, i.e., the
state is a completely disordered one. Thus, as Γ increases from 0 to J(0), the
system undergoes a transition from ordered (ferro)- phase with order parame-
ter 〈σz〉 = 1 to disordered (para)-phase with order parameter 〈σz〉 = 0 (see
Fig. 2).

(b) For T �= 0

The mean field method can also be extended to[3, 4] obtain the behaviour
of this model at non-zero temperature. In this case we define a mean field
hi at each site i, which is, in some sense, a resultant of the average coopera-
tive enforcement in z-direction and the applied transverse field in x-direction.
Precisely, we take, for general random case,

hi = Γ x̂ +



1
2

∑

j

Jij〈σz
j 〉



 ẑ , (9)

and the spin-vector at the i-th site follows hi. The spin-vector at i-th site is
given by

σi = σx
i x̂ + σz

i ẑ ,

and Hamiltonian thus reads
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H = −
∑

i

hi.σi . (10)

For non-random case, all the sites have identical ambience, hence hi is
replaced by h = Γ x̂ + 〈σz〉J(0). And the resulting Hamiltonian takes the
form

H = −h.
∑

i

σi .

The spontaneous magnetization can readily be written down as

σ = tanh(β|h|). h

|h|

|h| =
√

Γ 2 + (J(0)〈σz〉)2 . (11)

Now if h makes an angle θ with z-axis, then cos θ = J(0)〈σz〉/|h| and sin θ =
Γ |h|, and hence we have

〈σz〉 = |h| cos θ = [tanh(β|h|)]
(

J(0)〈σz〉
|h|

)
,

and
〈σx〉 = [tanh(β|h|)] Γ

|h| . (12)

Here, β = (1/kBT ). Equation (12) is the self-consistency equation which can
be solved or graphically or otherwise, to obtain the order parameter 〈σz〉
at any temperature T and transverse field Γxs. Clearly, the order-disorder
transition is tuned both by Γ and T (see Fig. 2).

Γ = 0 (Transition driven by T ):

Here,

〈σz〉 = tanh
(

J(0)〈σz〉
kBT

)

and
〈σx〉 = 0

One can easily see graphically, that the above equations has a nontrivial so-
lution only if kBT < J(0), i.e.,

〈σz〉 �= 0 for kBT < J(0)

〈σz〉 = 0 for kBT > J(0) .

This shows that there is a critical temperature Tc = J(0) above which, there
is no order.



8 B.K. Chakrabarti and A. Das

For kBT → 0 (Transition driven by Γ ):

Here,

〈σz〉 =
J(0)〈σz〉√

(Γ )2 + (J(0)〈σz〉)2
(
since, tanhx

∣∣∣
x→∞

= 1
)

.

From this equation we easily see that in the limit Γ/J(0) → 1, the only real
nontrivial solution is

〈σz〉 → 0

and
〈σx〉 =

Γ√
(Γ )2 + (J(0)〈σz〉)2

→ 1, as
Γ

J(0)
→ 1 .

Thus we see that their is a critical transverse field Γc = J(0) such that
for any Γ > Γc there is no order even at zero temperature. In general one
sees that at any temperature T < Tc, there exist some transverse field Γc at
which the transition from the ordered state (〈σz〉 �= 0) to the disordered state
(〈σz〉 = 0) occurs. The equation for the phase boundary in the (Γ − T ) –
plane is obtained by putting 〈σz〉 → 0 in equation (12). The equation gives
the relation between Γc and Tc as follows

tanh
(

Γc

kBT

)
=

Γc

J(0)
. (13)

One may note that for ordered phase, since 〈σz〉 �= 0,

1
|h| tanh(β|h|) =

1
J(0)

= Constant .

Hence, 〈σx〉 = (Γ/|h|) tanh(β|h|) = Γ/J(0); independent of temperature in
the ordered phase. While for the disordered phase, since 〈σz〉 = 0,

〈σx〉 = tanh(βΓ ) .

Using magnetic mapping, mean field theory of this type was indeed applied
to (the BCS theory of) superconductivity [5], as shown in appendix A.

4 Dynamic Mode-Softening Picture

The elementary excitations in such a system as described above are known as
spin waves, and they can be studied using Heisenberg equation of motion for
σz using the Hamiltonian. The equation of motion is then given by

σ̇z
i = (ih̄)−1[σz

i ,H] (14)

or,
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σ̇z
i = 2Γσy

i (with h̄ = 1)

Hence,
σ̈z

i = 2Γ σ̇y
i = 4Γ

∑

j

Jijσ
z
i σx

i − 4Γ 2σz
i . (15)

With Fourier transforms and random phase approximation (σx
i σz

j = σx
i 〈σz

j 〉+
〈σx

i 〉σz
j , with 〈σz〉 = 0 in para phase), we get

ω2
q = 4Γ (Γ − J(q)〈σx〉) , (16)

for the elementary excitations (where J(q) is the Fourier transform of Jij).
The mode corrosponding to (q = 0) softens, i.e., ω0 vanishes at the same
phase boundary given by equation (13).

5 Suzuki-Trotter Formalism

Exact analysis for the quantum fluctuation can indeed be tackled by using
renormalization group theory; see appendix B for real space quantum RG
theory for one dimensional chain (cf [6]). However, such formalisms have seri-
ous limitations in applicability and the Suzuki-Trotter formalism to map the
quantum problem to a classical one has been of enormous practical importance
(e.g. in simulations).

Suzuki-Trotter formalism [7] is essentially a method to transform a d-
dimensional quantum Hamiltonian into a (d+1)-dimensional effective classical
Hamiltonian giving the same canonical partition function. Let us illustrate
this by applying it to transverse Ising system. We start with Transverse Ising
Hamiltonian

H = −Γ

N∑

i=1

σx
i −

∑

(i,j)

Jijσ
z
i σz

j

= H0 + V (17)

The canonical partition function of H reads

Z = Tre−β(H0+V) .

Now we apply the Trotter formula

exp (A1 + A2) = lim
M→∞

[exp A1/M exp A2/M ]M ,

even when [A1, A2] �= 0. On application of this, Z reads

Z =
∑

i

lim
M→∞

〈si| [exp (−βH0/M) exp (−βV/M)]M |si〉 . (18)
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Here si represent the i-th spin configuration of the whole system, and the
above summation runs over all such possible configurations denoted by i.
Now we introduce M number of identity operators

I =
2N∑

i

|si,k〉〈si,k|, k = 1, 2, · · ·M .

in between the product of M exponentials in Z, and have

Z = lim
M→∞

Tr

M∏

k=1

〈
σ1,k · · ·σN,k| exp

(−βH0

M

)
exp

(−βV
M

)
|σ1,k+1 · · ·σN,k+1

〉
,

and periodic boundary condition would imply σN+1,p = σ1,p. Now,

M∏

k=1

〈
σ1,k · · ·σN,k| exp



 β

M

∑

i,j

σz
i σz

j



|σ1,k+1 · · ·σN,k+1

〉

= exp




N∑

i,j=1

M∑

k=1

βJij

M
σi,kσj,k



 , (19)

where σi,k = ±1 are the eigenvalues of σz operator. Also,

M∏

k=1

〈
σ1,k · · ·σN,k| exp

[
βΓ

M

∑

i

σx
i

]
|σ1,k+1 · · ·σN,k+1

〉

=
(

1
2

sinh
[
2βΓ

M

])NM
2

exp

[
1
2

ln coth
(

βΓ

M

) N∑

i=1

M∑

k=1

σi,kσi,k+1

]
. (20)

The last step follows because

eaσx

= e−i(iaσx) = cos (iaσx) − i sin (iaσx) = cosh (a) + σx sinh (a) ,

and therefore

〈σ|eaσx |σ′〉 =
[
1
2

sinh (2a)
]1/2

exp [(σσ′/2) ln coth (a)] ,

since

〈↑ |eaσx | ↑〉 = 〈↓ |eaσx | ↓〉 = cosh (a) =
[
1
2

sinh (2a). coth (a)
]1/2

and

〈↑ |eaσx | ↓〉 = 〈↓ |eaσx | ↑〉 = sinh (a) =
[
1
2

sinh (2a)/ coth (a)
]1/2

.
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Thus the partition function reads

Z = C
NM

2 Trσ(−βHeff [σ]) C =
1
2

sinh
2βΓ

M

where the effective classical Hamiltonian is

Heff (σ) =
N∑

(i,j)

M∑

k=1

[
−Jij

M
σikσjk − δij

2β
ln coth

(
βΓ

M

)
σikσik+1

]
. (21)

The Hamiltonian Heff is a classical one, since the variables σi,k’s involved
are merely the eigen-values of σz, and hence there is no non-commuting part
in Heff . It may be noted from (21) that M should be at the order of h̄β
(we have taken h̄ = 1 in the calculation) for a meaningful comparison of
the interaction in the Trotter direction with that in the original Hamiltonian
(see Fig. 3). For T → 0, M → ∞, and the Hamiltonian represents a system
of spins in a (d+1)-dimensional lattice, which is one dimension higher than
the original d-dimensional Hamiltonian, as is evident from the appearence
of one extra label k for each spin variable (see Fig. 3). Thus corrosponding
to each single quantum spin varible σi in the original Hamiltonian we have
an array of M number of classical replica spins σik. This new (time-like)
dimension along which these classical spins are spaced is known as Trotter
dimension. From the explicit form of Heff , we see that in addition to the
previous interaction (J) term (−

∑N
i,j Jijσiσj), there is an additional near-

est neighbour interaction (J ′) between the Trotter replicas corrosponding

σ1 σ2 σi σi+1 σN

J

T
ro

tte
r 

D
ire

ct
io

n

σ1,1 σ2,1 σi,1 σi+1,1 σN,1

σ1,2

σ2,2

σi,2 σi+1,2 σN,2

σ1,j σ2,j σi,j σi+1,j σN,j

σ1,j+1 σ2,j+1 σi,j+1 σi+1,j+1 σN,j+1

σ1,M σ2,M σi,M σi+1,M σN,M

J

J'

(j-th-
Trotter-
Slice)

Fig. 3. The Suzuki-Trotter equivalence of quantum one dimensional chain and a
(1+1) dimensional classical system. J ′ indicates the additional interaction in the
Trotter direction
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to the same original spin, along the Trotter direction, given by the term
(
∑N

i,j

∑M
k=1 −(δij/2β) ln coth (βΓ/M)σikσiK+1) (as shown in Fig. 3). For fi-

nite temperature, the optimal width of the lattice in the Trotter direction is
finite and the critical behaviour remains d-dimensional.

The calculations, and consequently the effective Hamiltonian (21), is valid
for any general interaction Jij ; of course, Γ has been taken to be nonrandom.
Figure 4 describes a situation where Jij were nonrandom (we had Jij = J).
For random Jij , where Jij were nonrandom (we had Jij = J). For random
Jij , remain identical (J ′) wheras the spatial randomness in interactions for
various Trotter slices get correlated as indicated in Fig. 4. Such equivalence of
d-dimensional quantum system with a (d+1)-dimensional classical model can
also be seen from the renormalization group study of the quantum models (say,
one-dimensional transverse Ising model and its equivalent critical behaviour
of two-dimensional classical Ising system) as shown in Appendix B.

J1 J1J2 J2J3 J3J4 J4

J1 J2 J3 J4

J, J,
J, J,

J,

T
ro

tt
er

 D
ir

ec
ti

on

J, J, J,J,
J,

σ1,1 σ3,1 σ4,1 σσ5,1

σ3,2σ2,2σ1,2

σ2,1σ1 σ5σ2 σ3 σ4

σ5,2σ4,2

Fig. 4. At the left is a portion of a one dimensional quantum Ising chain with random
exchange interactions and at the right is a part of its Suzuki-Trotter equivalent
classical lattice with randomness correlated in Trotter direction

6 Classical Spin Glasses: A Summary

Spin glasses are magnetic systems with randomly competing (frustrated) in-
teractions [8]. Frustration is a situation where all of the spins present in the
system cannot energetically satisfy every bond associated to them. Here the
frustration arises due to competing (ferromagnetic and anti- ferromagnetic)
quenched random interactions between the spins. As a result there arise huge
barriers (O(N), N = system size) in the free-energy landscape of the system.
In thermodynamic limit, height of such barriers occassionally go to infinity.
These barrieres strongly separate different configurations of the system, so
that once the system gets stuck in a deep valley in between two barriers, it
practically gets trapped around that configuration for a macroscopically large
time. Because of frustration, the ground state is largely degenerate; degeneracy
being of the order of exp (N). As discussed above, these different ground state
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configurations are often separated by O(N) barriers, so that once the system
settles down in one of them, it cannot visit the others equally often in course
of time, as predicted by the Boltzmann probability factor. The system thus
becomes ‘nonergodic’ and may be described by a nontrivial order parameter
distribution [8] in the thermodynamic limit (unlike the unfrustrated coopera-
tive systems, where the the distribution becomes trivially delta function-like).
The spins in such a system thus get frozen in random orientations below a cer-
tain transition temperature. Although there is no long range magnetic order,
i.e., the space average of spin moments vanishes, the time average of any spin
is nonzero below the transition (spin-glass) temperature. This time average is
treated as a measure of spin freezing or spin glass order parameter.

Several spin glass models have been studied extensively using both analytic
and computer simulation techniques. The Hamiltonian for such models can
be written as

H = −
∑

i<j

Jijσ
z
i σz

j (22)

where Sz
i = ±1, 2, . . . , N, denote the Ising spins, interacting with random

quenched interactions Jij , which differs in various models. We will specifically
consider three extensively studied models.

(a) In Sherrington-Kirkpatrick (S-K) model Jij are long-ranged and are dis-
tributed with a Gaussian probability (centered around zero), as given by

P (Jij) =
(

N

2πJ2

)1/2

exp

(
−NJ2

ij

2J2

)
(23)

(b) In Edward-Anderson (EA) model, the Jij ’s are short-ranged (say, between
the nearest neighbours only), but similarly distributed with Gaussian proba-
bility (23)

(c) In another kind of model, the Jij ’s are again short-ranged, but having a
binary (±J) distribution with probability p:

P (Jij) = pδ(Jij − J) + (1 − p)δ(Jij − J) . (24)

The disorder in the spin system being quenched, one has to perform
configurational averaging (denoted by overhead bar) over lnZ, where Z(=
Tr exp−βH) is the partitation function of the system. To evaluate 〈ln Z〉, one
usually employs replica trick based on the representation lnZ = limn→0[(Zn−
1)/n]. Now for classical Hamiltonian (with all commuting spin components),
Zn =

∏n
α=1 Zα = Z(

∑n
α=1 Hα), where Hα is the α-th replica of the Hamil-

tonian H in equation (22) and Zα is the corrosponding partition function.
The spin freezing can then be measured in terms of replica overlaps, and
Edward-Anderson order parameter takes the form
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q =
1
N

N∑

i=1

〈Sz
i (t)Sz

i (0)〉|t→∞ 
 1
N

N∑

i=1

〈Sz
iαSz

iβ〉 ,

where α and β corrosponds to different replicas.
Extensive Monte Carlo studies, together with the analytical solutions for

the mean field of S-K and EA models, have revealed the nature of spin glass
transition. It appears that the lower critical dimension dc

l for EA model, below
which transition ceases to occur (with transition temperature Tc becoming
zero), is between 2 and 3: 2 < dc

l < 3. Thu upper critical dimension dc
u, at and

above which mean field results (e.g., those of S-K model) apply, appears to be
6: dc

u = 6. Within these dimensions (dc
l < d < dc

u ), the spin glass transitions
occur (for Hamiltonians with short-ranged interactions) and the transition
behaviour can be characterized by various exponents. Although the linear
susceptibility shows a cusp at the transition point, the nonlinear susceptibility
χSG = (1/N)

∑
r g(r), where g(r) = (1/N)

∑
i (〈Sz

i Sz
i+r〉)2, diverges at the

spin glass transition point :

χSG ∼ (T − Tc)−γc , g(r) ∼ r−(d−2+ηc)f

(
r

ξ

)
; ξ ∼ |T − Tc|−νc (25)

Here ξ denotes the correlation length which determines the length scaling in
the spin correlation function g(r) (f in g(r) denotes the scaling function).
Numerical simulation gives νc = 1.3± 0.1, 0.80± 0.15, 1/2 and γc = 2.9± 0.5,
1.8± 0.4, 1 for d = 2, 3 and 6 respectively for the values of exponents. One
can define the characteristic relaxation time τ through the time dependence
of spin auto-correlation

q(t) = 〈Sz
i (t)Sz

i (0)〉 ∼ t−xq̃

(
t

τ

)
; τ ∼ ξz ∼ |T − Tc|−νc/zc (26)

where x = (d− 2 + ηc)/2zc, and zc denotes the classical dynamical exponent.
Numerical simulations give zc = 6.1 ± 0.3 and 4.8 ± 0.4 in d = 3 and 4
dimensions respectively. Of course, such large values of zc (particularly in lower
dimensions) also indicates the possibility of the failure of power law variation
(26) of τ with T − Tc and rather suggests a Vogel-Fulcher like variation:
τ ∼ exp [A/(T − Tc)]. In the ±J spin glasses (type (c) above), some exact
results are known along the ‘Nishimori Line’ [8], and the nature of the phase
transition there is precisely known.

7 Quantum Spin Glasses

Quantum spin glasses [9, 10, 11, 12, 13] have the interesting feature that the
transition in randomly frustrated (competing) cooperatively interactimg sys-
tems can be driven both by thermal fluctuations or by quantum fluctuations.
Quantum spin glasses can be of two types: vector spin glasses introduced by
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Bray and Moore (see [4]), where of course quantum fluctuation cannot be
tuned, or a classical spin glass perturbed by some tunable quantum fluctua-
tions e.g., as induced by a non commutative transverse field [4, 9]. The amount
of quantum fluctuation being tunable, this Transverse Ising Spin Glass (TISG)
model is perhaps the simplest model in which the quantum effects in a ran-
dom system can be and has been studied extensively and systematically [4, 13].
Precise realization of TISG in LiHoxY1−xF4, with magnetic Holonium ion con-
centration around x = 0.167 [12], has led to several important developments.

The interesting in such quantum spin glass models is about the possibility
of tunnelling through the (infinitely high) barriers of the free energy land-
scape in the classical spin glass models (e.g., S-K model) due to the quantum
fluctuations induced by the transverse field. In classcal system, the overrid-
ing of an infinitely high barrier is infinitely hard for thermal fluctuations at
any finite temperature. But quantum fluctuation can make a system tunnel
through such a barrier, if its width is infinitessimally small. The barrier widths
are actually seen to decrease with system size indicating to an ergodic (replica
symmetric) picture for the free-energy landscape.

7.1 Models

Sherrington-Kirkpatrick Model in a Transverse Field

The sherrington-Kirkpatrick (S-K) model in presence of a non-commutating
tunnelling field, given by the Hamiltonian

H = −
∑

ij

Jijσ
z
i σz

j − Γ
∑

i

σx
i , (27)

where the follows the Gaussian distribution

P (Jij) =
(

N

2π∆2

)1/2

exp

(
−NJ2

ij

a∆2

)
(28)

was first studied by Ishi and Yamamoto [9].

Phase Diagram

Several analytical studies have been made to obtain the phase diagram of the
transverse Ising S-K model (giving in particular the zero-temperature critical
field). The problem of S-K glass in transverse field becomes a nontrivial one
due to the presence of noncommuting spin operators in the Hamiltonian. This
leads to a dynamical frequency dependent (spin) self-interaction.
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(i) Mean Field Estimates

One can study an effective spin Hamiltonian for the above quantum many
body system within the mean field framework. A systematic mean field the-
ory for the above model was first carried out by Kopec (see e.g., [4]), using
the thermofield dynamical approach and the short time approximation for
the dynamical spin self-interaction. Before going into the discussion of this
approach, we shall briefly review the replica-symmetric solution of the classi-
cal S-K model (Γ = 0) in a longitudinal field given by the Hamiltonian

H = −
∑

〈ij〉
Jijσ

z
i σz

j − h
∑

σz
i (29)

where Jij follows the Gaussian distribution given by (56). Using the replica
trick, one obtains for configuration averaged n-replicated partition function
Z̄n, given by

Z̄n =
∑

(σiα=±1)

∫ ∞

−∞
P (Jij)dJij exp

[
β
∑

Jij

∑
σz

iασz
jα + βh

∑
σz

iα.
]

Performing the Gaussian integral, using Hubbard-Stratonovich transforma-
tion and finally using the method of steepest descent to evaluate integrals for
thermodynamically large system, one obtains free energy per site f , given by

−βf = lim
n→0



β∆2

4



1 − 1
n

∑

α,β

q2
α,β +

1
n

ln Tr(exp L)







 ,

where L = (βJ)2
∑

α,β qαβσz
ασz

β +β
∑n

α=1 σz
α and qαβ is self-consistently given

by the saddle point condition (∂f/∂qαβ) = 0. Cosidering the replica symmet-
ric case (qαβ = q), one finds

−βf =
(β∆)2

2
(1 − q) +

1√
2π

∫ ∞

−∞
dr e−

r2
2 ln [2 cosh {βh(r)}]

where r is the excess static noise arising from the random interaction Jij and
the spin glass order parameter q is self-consistently given by

q =
1√
2π

∫ ∞

−∞
dr e−

r2
2 tanh2 {βh(r)}

and h(r) = ∆
√

qr +h can be interpreted as a local molecular field acting on a
site. Different sites have different fields because of disorder, and the effective
distribution of h(r) is Gaussian with mean 0 and varience ∆2q.

At this point we can introduce quantum effect through transverse field
term −Γ

∑
i σx

i (with longitudinal field h = 0). The effective single particle
Hamiltonian in the transverse Ising quantum glass can be written as
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Hs = −hz(r)σz − Γσx ,

where hz(r), as mentioned earlier, is the effective field acting along the z
direction arising due to nonzero value of the the spin glass order parameter.
Treating hz(r) and σ as classical vectors in pseudo-spin space, one can write
the net effective field acting on each spin as

h0(r) = hz(r)ẑ − Γ x̂; |h0(r)| =
√

hz(r)2 + Γ 2 .

One can now arrive at the mean field equation for the local magnetisation,
given by

m(r) = p(r) tanh [βh0(r)]; p(r) =
|hz(r)|
|h0(r)|

,

and consequently, the spin glass order parameter can be written as

q =
1√
2π

∫ ∞

−∞
dr e−r2/2 tanh2 {βh0(r)}p2(r) .

The phase boundary can be found from the above expression by putting q →
0(hz(r) = J

√
qr and h0 = Γ ), when it gives

Γ

∆
= tanh

(
Γ

kBT

)
. (30)

From above we get Γc = J . Ishi and Yamamoto used the ‘reaction field’
technique to construct ‘TAP’ like equation for free energy of the Hamiltonian
(27) and perturbatively expanded the free energy in powers of Γ upto the
order Γ 2 to obtain

kBTc = ∆[1 − 0.23(Γ/∆)2] .

(ii) Monte Carlo Studies

Several Monte Carlo studies have been performed [9, 13] for S-K spin glass in
transverse field. Applying Suzuki-Trotter formulation (as discusseed earlier) of
effective partition function, one can obtain the effective classical Hamiltonian
in Mth Trotter approximation as

Heff = − 1
M

N∑

i,j=1

M∑

k=1

Jijσikσjk − 1
2β

ln coth
(

βΓ

M

) N∑

i=1

M∑

k=1

σikσik+1

−NM

2
ln

[
1
2

sinh
2βΓ

M

]
, (31)

where σik denotes the Ising spin defined on the lattice (i, k), i being the
position in the in the original S-K model and k denoting the position in the
additional Trotter dimension.

Ray et al. [10] took Γ 
 J and their results indeed indicate a sharp
lowering of TC(Γ ). Such sharp fall of Tc(Γ ) with large Γ is obtained in almost
all theoretical studies of the phase diagram of the model.
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Edward-Anderson Model in a Transverse Field

The Hamiltonian for the Edward-Anderson spin glass in presence of transverse
field is that given by (27), where the random interaction this time is restricted
among the nearest neighbours and satisfies a Gaussian distribution with zero
mean and variance J , as given by

P (Jij) =
1√
2π

exp

(
−

J2
ij

2J2

)
.

With Γ = 0, the above model represents the E-A model with order parameter
q = 〈σz

i 〉2 = 1 (at T = 0). When the transverse field is introduced, q decreases,
and at a critical value of the transverse field the order parameter vanishes. To
study this quantum phase transition using quantum Monte Carlo techniques,
one must remember that the ground state of a d-dimensional quantum model
is equivalent to the free enery of a classical model with one added dimen-
sion which is the imaginary time (Trotter) dimension. The effective classical
Hamiltonian can be written as

H =
∑

k

∑

ij

Kijσikσjk −
∑

k

∑

i

Kσikσik+1 , (32)

with

Kij =
βJij

M
; K =

1
2

ln coth
(

βΓ

M

)
,

where σik are classical Ising spins and (i, j) denotes the original d-dimensional
lattice sites and k = 1, 2, . . . , M denotes a time slice. Although the equivalence
between classical and the quantum model holds exactly in the limit M →
∞, one can always make an optimum choice for M . The equivalent classical
Hamiltonian has been studied using standard Monte Carlo technique. The
numerical estimates of the phase diagram etc. are reviewed in details in [13]

7.2 Replica Symmetry in Quantum Spin Glasses

The question of existence of replica-symmetric ground states in quantum spin
glasses has been studied extensively in recent years. Replica symmetry restora-
tion is a quantum phenomena arising due to the quantum tunnelling between
the classically ‘traped’ states seperated by infinitely high (but infinitessimally
narrow) barriers in the free energy surface, which is possible as the tunnelling
probability is proportional to the barrier area, which remains finite. To inves-
tigate this aspect of quantum glasses, one has to study the overlap distribution
function P (q) given by

P (q) =
∑

l,l′

PlPl′δ(q − q(ll′)) , (33)
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where Pl is the Boltzman weight associated with the state l and qll′ is the
overlap between the sates l and l′

q(ll′) =
1
N

N∑

i=1

〈σi〉(l)〈σi〉(l
′) . (34)

One can also define the overlap distribution in the following form (for a finite
system of size N)

PN (q) = 〈δ(q − q(12))〉 , (35)

where q(12) is the overlap between two sets of spins σ
(1)
i and σ

(2)
i , with identical

bond distribution but evolved with different dynamics,

q(12) =
1
N

∑

i

σ
(1)
i σ

(2)
i . (36)

PN (q) → P (q) in the thermodynamic limit. In quantum glass problem one can
study similarly this overlap distridution PN (q); and if the replica symmetric
ground states exists, the above function must tend to a delta function in
thermodynamic limit. In para-phase, the the distribution will approach a delta
function at q = 0 for the infinite system.

Ray, Chakrabarti and Chakrabarti [10], performed Monte Carlo simula-
tions, mapping the d-dimensional transverse S-K spin glass Hamiltonian to
an equivalent (d + 1)-dimensional classical Hamiltonian and addressed the
question of stability of the replica symmetric solution, with the choice of or-
der parameter distribution function given by

PN (q) =

〈
δ

(
q − 1

NM

N∑

i=1

M∑

k=1

σ
(1)
ik σ

(2)
ik

)〉
, (37)

where, as mentioned earlier, subscripts (1) and (2) refer to the two identical
samples but evolved through different Monte Carlo dynamics. It may be noted
that a similar definition for q (involving overlaps in identical Trotter indices)
was used by Guo et al. [11]. Lai and Goldschmidt performed Monte Carlo
studies with larger system size (N ≤ 100) and studied the order parameter
distribution function

PN (q) =

〈
δ

(
q − 1

N

N∑

i=1

σ
(1)
ik σ

(2)
ik′

)〉
, (38)

where the overlap is taken between different (arbitrarily chosen) Trotter in-
dices k and k′; k �= k′. Their studies indicate that PN (q) does not depend upon
the choice of k and k′ (Trotter symmetry). Rieger and Young (see [4]) also
defined q(12) in similar way (q(12) = (1/NM)

∑i
N

∑M
kk′)σ

(1)
ik σ

(2)
ik′ . There are

striking differences between the results Lai and Goldschmidt obtained with
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the results of Ray et al. [10]. For Γ 
 Γc, P (q) is found to have (in [10]) an os-
cillatory dependence on q with a frequency linear in N (which is probably due
to the formation of standing waves for identical Trotter overlaps). However,
with increase in N , the amplitude of oscillation decreases and the magnitude
of P (q = 0) decreases, indicating that P (q) might go over to a delta function
in thermodynamic limit. The envelope of this distribution function appears
to have an increasing P (q = 0) value as the system size is increased. Ray
et al. [10] argued that the whole spin glass phase is replica symmetric due to
quantum tunnelling between the classical trap states. Lai and Goldschmidt
on the other hand, do not find any oscillatory behaviour in P (q). In contrary
they get a replica symmetry breaking (RSB) in the whole spin glass phase
from the nature of P (q), which in this case, has a tail down to q = 0 even
as N increases. According to them their results are different from Ray et al.
[10] because of different choices of the overlap function. Goldschmidt and Lai
have also obtained replica symmetry breaking solution at first step RSB, and
hence the phase diagram.

Büttner and Usadel (see e.g., Chakrabarti et al. [4]), have shown that
the replica symmetric solution is unstable for the effective classical Hamil-
tonian (58) and also estimated the order parameter and other thermodynamic
quantities like susceptibility, internal energy and entropy by applying Parisi’s
replica symmetry breaking scheme to the above effetive Hamiltonian. Using
static approximation, Thirumalai et al. (see [4]), found stable replica symmet-
ric solution in a small region close to the spin glass freezing temperature near
the phase boundary. But as mentioned earlier, in the region close to the criti-
cal line, quantum fluctuations are subdued by the thermal fluctuations. Thus
the restoration of replica symmetry breaking, which is essentially a quantum
effect, perhaps connot be prominent there.

All these numerical studies are for equivalent classical Hamiltonian, ob-
tained by applying the Suzuki-Trotter formalism to the original quantum
Hamiltonian, where the interactions are anisotropic in the spatial and Trotter
direction and the interaction in the Trotter direction becomes singular in the
limit T → 0. Obviously one cannot extrapolate the finite temperature results
in zero temperature limit. The results of exact diagonalization of finite sys-
tems (N ≤ 10) at T = 0 itself do not indicate any qualitative difference in the
behaviour of the (configuration average) mass gap ∆ and the internal energy
Eg from that of a ferromagnetic transverse Ising case, indicating the possi-
bility that the system might become ‘ergodic’. On the other hand, the zero
temperature distribution for the order parameter does not appear to go to
delta function with increasing N as is clearly found for the corrosponding fer-
romagnet (random long range interaction without competition). In this case
the order parameter distribution P (q) is simply the number of ground state
configuratons having the order parameter value as q. This perhaps indicate
broken ergodicity for small values of Γ . The order parameter distribution also
shows oscillations similar to that obtained by Ray et al. [10].
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Kim and Kim [14] have very recently investigated the S-K model in trans-
verse field using imaginary time replica formalism, under static approxima-
tion. They have shown that the replica-symmetric quantum spin glass phase
is stable in most of the area of the spin glass phase, as have been argued by
Ray et al., in contrary to the results of Lai et al. and Thirumalai et al. (see
e.g., Chakrabarti et al. [4]).

8 Quantum Annealing

8.1 Multivariable Optimization and Simulated Annealing

Multivarable optimization problems consists of finding the maximum or min-
imum values of a function (known as cost function) of very many independent
variables. A given set of values for the whole set of independent variables
defines a configuration. The value of the cost function depends on the con-
figurations, and one has to find the optimum configuration that minimizes or
maximizes the cost function. The explicit evaluation of the cost function for
all possible configurations in this context, generally turns out to be absolutely
impracticable for most systems.

One can therefore start from an arbitrary state and go on changing the con-
figuration following some stochastic rule, unless an extremum is reached. For
example, in a minimization problem, one may start from an arbitrary config-
uration, change the configuration according to some stochastic rule, evaluate
the cost function of the changed configuration, and then compare its value
with that of the original configuration. If the new cost function is lower, the
change is retained, i.e.,the new configuration is accepted. Otherwise the change
is not accepted. Such steps may be repeated for times unless a minimum is
reached. But in most cases of multivariable optimisation problem, there are
many local extrema in the cost function landscape, and one cannot be sure
that the extremum that has been reached is the global one. Kirkpatrick et al.
[15] proposed a very ingenious physical solution to this mathematical problem,
now known by the name simulated annealing. The basic underlying principle
of simulated annealing as follows. It is known that an ergodic physical system,
at any finite temperature resides in the global minimum of its free energy. The
minimum of the free energy is a thermodynamic macro-state corrosponding to
a maximum number of accessible microcsopic configuration. Hence at thermal
equilibrium an ergodic system explores its configuration space randomly with
equal apriori probability of visiting any configuration, and consequently is
found most of the time at one or other of the configurations that corrosponds
to the free energy minimum (since the number of configurations corrospond-
ing to such minimum is overwhelmingly large compared to that of any other
macro-state). Now if the system starts from an arbitrary macrostate (not the
minimum of free energy) then due to thermal fluctuation it reaches the free
energy minimum within some time τ known as the thermal relaxation time of
the system.
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For an ergodic system (away from critical point) this relaxation time in-
creases linearly with system size (which is logerithmically smaller a number
compared to the corrosponding number of all possible configurations). Hence
if one follows the random dynamics of the thermal relaxation of a system,
then he will be able to reach the minimum of cost function (zero temperatur
free energy) in a substancially smaller time. What one needs to do is to view
the cost function E as the internal energy of some system and start from
an arbitrary configuration. Then one changes the configuration according to
somestochastic rule, just as before. Now if the energy is lowered by the change,
the change is accepted, but if it is not, the change is not thrown away with
certainity. Instead it is accepted with a probability equal to the Boltzmann
factor e−∆E/kBT , where ∆E = E(after change) − E(before change) (since this is
the way how systems relax thermally to their free energy minimum). Tem-
perature T here is an artifically introduced parameter which has a high value
initially, and is reduced slowly as time goes on, finally tending towards zero.
At zero temperature the free energy is nothing but the internal energy of the
system, and thus at the end of the final stage of annealing the system can be
expected to be found, with a very high probability, in a configuration that
minimizes the internal energy (cost function).

However this simulated annealing technique can suffer severe set back when
the system is ‘nonergodic’, like the spin glasses we discussed earlier. In such
cases configurations corrosponding to minimum of the cost function are sep-
arated by O(N) sized barriers, and at any finite temperature thermal fluc-
tuations will take practically infinite time to relax the system to the global
minimum crossing these barriers in thermodynamic limit N → ∞.

8.2 Ergodicity of Quantum Spin Glasses and Quantum Annealing

The non-ergodicity problem makes the search of the ground state of a classical
spin glass a computationally hard problem (no algorithm bounded by some
polynomial in system size exists for such NP-hard problems). The problems
of simulated annealing of spin glass-like systems can be overridden (atleast
partially) by employing the method of quantum annealing [16, 17]. The basic
idea is as follows: First the problem has to be mapped to a corrosponding
physical problem, where the cost function is represented by some classical
Hamiltonian (say H0) of the form (22). Then a suitably chosen noncommuting
quantum tunnelling term (say H′(t)) is to be added so that the Hamiltonian
takes the form of (27). One can then solve the time dependent Schrodinger
equation

ih̄
∂ψ

∂t
= [H0 + H′(t)]ψ (39)

for the wave-function ψ(t) of the entire system H0 +H′(t). The solution of the
time dependent schrodinger equation approximately describes a tunnelling dy-
namics of the system between different eigenstates of H0. Like thermal fluctua-
tions in (classical) simulated annealing, the quantum (tunnelling) fluctuations
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owing to H′ in (39) help the system to come out of the local ‘trap’ states. If
H′(t) → 0 for t → ∞, the system eventually settles in one of the eigen-
states of H0; hopefully the ground state. The introduction of such a quantum
tunnelling is supposed to make the infinitely high (but infinitessimally thin)
barriers transparent to the system (see, e.g., Appendix C), and it can make
transitions to different configurations trapped between such barriers, in course
of annealing. In other words, it is expected that application of a quantum tun-
nelling term will make the free energy landscape ergodic, and the system will
consequently be able to visit any configuration with finite probability. Finally
the quantum tunnelling term is tuned to zero (H′(t) → 0) to get back the
classical Hamiltonian. It may be noted that the success of quantum annealing
is directely connected to the replica symmetry restoration in quantum spin
glass [10, 14] due to tunnelling through barriers (see Fig. 5 and the discussion
in the preceeding section).

en
er

gy
  -

--
--

->

configurations  ------>

Quantum Annealing

Thermal Annealing

Fig. 5. Schematic indication of the advantage of quantum annealing over classical
annealing

Here, the d-dimensional quantum Hamiltonian (27) (to be annealed) is
mapped to the (d + 1)-dimensional effective Hamiltonian

Hd+1 = −
M∑

k+1




N∑

i,j

Jijσ
k
i σk

j + J ′
N∑

i=1

σk
i σk+1

i



 ,

where

J ′ = −MT

2
ln tanh

(
Γ

MT

)
> 0
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is the nearest neighbour ferromagnetic coupling in Trotter direction, between
the Trotter replicas of the same spin. In course of annealing, the temperature
is kept constant at a low but nonzero value, and the tunnelling field Γ is
tuned slowly from a high initial value to zero. The decrease in Γ amounts to
the increase in J ′ (as casn be seen from above expression of J ′). Initially at
high Γ , J ′ is low, and each Trotter replica behaves almost like an independent
classical spin system. The tunnelling field is then lowered in small steps. In
each such step, the system is annealed in presence of the small temperature.
Finally as Γ → 0, J ′ → ∞, forcing all replicas to coinside at the end. As
mentioned already, quantum annealing possibility directly rests on the replica
symmetry restoration feature of quantum spin glasses, discussed in earlier sec-
tion. In fact ergodicity in quantum spin glasses, as suggested in Fig. 5 was
attributed by Ray et al. to the “quantum fluctuations due to transverse field.
Quantum tunnelling between the classical ‘trap’ states, separated by infinite
(but narrow) barriers in the free-energy surface, is possible as quantum tun-
nelling probability is proportional to the barrier area which is finite.” (Sect. V,
[10]).

8.3 Quantum Annealing in Kinetically Constrained Systems

It is largely believed that apart from the complexity associated to the non-
trivial ground state structure of a glassy system, the occurance of certain
kinetic constraints (blockings) during relaxation also contributes substancially
to the slowness of its low temperature dynamics. The Kinetic constraints or
blockings can be viewed as infinitely high energy barriers appearing in the
relaxation path of the system. In order to relax to the minimum of the free
energy, the system has to jump over these high barriers thermally, which they
fail to do at any finte temperature. However if such barriers are infinitessimally
narrow, then the system might be able to tunnel through them quantum
mechanically if sufficient quantum fluctuation Γ is present in the system.
Thus if one tries to anneal such a system down to its ground state starting
from an arbitrary state, then quantum annealing might turn out to be much
superior to the thermal annealing (see e.g., [18, 19]).

We have studied [20] the annealing of a kinetically constrained Ising spin
chain of N spins, starting from a disordered state (with negligible initial mag-
netization), to its (external field induced) fully ordered ground state. At any
finite temperature T (in the classical model) the system takes an exponen-
tially long time to relax to the ordered state because of the kinetic constraints,
which act like an infinite potential barrier, depending on the neighbouring spin
configurations. Quantum mechanically, this infinite barrier is taken to be pen-
etrable, i.e. with finite tunnelling probability, depending on the barrier height
χ and width a (a → 0 faster than χ−2). The introduced noise, required for
the annealing, is reduced following an exponential schedule in both the cases:
T = T0e

−t/τC , Γ = Γ0e
−t/τQ , with T0 ≈ Γ0. For our simulation for the quan-

tum case, we have taken the tunnelling probabilities P (for cases I–IV) and
employed them in a semi-classical fashion for the one dimensional spin chain



Transverse Ising Model, Glass and Quantum Annealing 25

considered. We observe that for similar achievement in final order (mf 
 0.92
starting from mi = 10−3), τC ∼ 103τQ for N = 5× 104. For even larger order
(mf ∼ 1), quantum annealing works even better (τC ∼ 103τQ, for the same
value of N). These comparison are for g = 102 and χ = 103 for the constraint
barriers [20].

In this picture, we considered the collective dynamics of a many particle
system, where each one is confined in a (field) induced asymmetric double
well potential for which we considered only the low lying two states (the wave
packet localized in one well or the other), representing the two states (up and
down) of an Ising spin discussed above. The tunnelling of the wave packet
from one well to the other was taken into account by employing a scattering
picture and we used the tunnelling probabilities as the flip probabilities for the
quantum Ising spins. As such, the reported simulation for the one dimensional
quantum East model is a semiclassical one. It may be noted however that,
because of the absence of inter-spin interaction, the dimensionality actually
plays no role in this model except for the fact that the kinetic constraints
on any spin depend only on the left nearest neighbour (directedness in one
dimension). Hence the semiclassical one dimensional simulation, instead of a
proper quantum Monte Carlo simulation (equivalent to a higher dimensional
classical one [4]), is quite appropriate here.

9 Summary and Discussions

We have introduced the transverse Ising model for discussing the order-
disorder transition (at zero temperature) driven by quantum fluctuations.
Mean field theories are discussed next in Sects. 3 and 4. Application to BCS
superconductivity theory is discussed in appendix A. Renormalization group
technique for study of critical behaviour in such quantum systems is discussed
in appendix B (for a chain). Next we have discussed the Suzuki-Trotter map-
ping of the d-dimensional quantum system to d + 1 dimensional classical sys-
tem (in Sect. 6). We introduce then the transverse Ising spin glass models,
namely, the S-K model in transverse field and the E-A model in transverse
field (Sect. 8.2). The existing studies on their phase diagrams are discussed
briefly. We then discuss about the problem of replica symmetry restoration
in quantum spin glasses (in Sect. 8.3). The application of the quantum an-
nealing technique to capture the near-global minima of NP-hard problems is
then discussed, and the effectiveness of quantum tunnelling over the thermal
barrier hopping is discussed (Sect. 9).

It may be noted in this connection that some recent attempts have been
made to apply similar annealing, induced by quantum fluctuations, to the
optimization problems like the travelling salesman problem, image restoration,
etc. [18, 19]. Like the near-global minima in free energy landscape of such spin
glasses, the barriers are often globally contributed and these barrier heights
grow as the system size grows (unlike the locally optimized configurations and
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the barriers between them). Classically, the system becomes nonergodic due
to these macroscopically high barriers (NP-hard to reach the ground state),
as thermal fluctuations have to wait until they can scale such macroscopically
high barriers. Quantum tunnelling does not necessarily look for barrier height
[10] to overcome them (by tunnelling through; see appendix C, see Fig. 5) and
helps restoring replica symmetry as well as annealing [16, 17].
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10 Appendix

Appendix A

MFT of TIM and BCS Theory of Superconductivity
The phonon mediated effective attractive interaction between electrons

give rise to a cooperative quantum Hamiltonian. Although the quantum phase
transition in such a system is not physical or meaningful, the finite temper-
ature superconducting phase transition can be studied easily following the
mean field theory discussed here (using a pseudo-spin mapping [5]). The rele-
vant part of the Hamiltonian of electrons that take part in superconductivity
has the following form

H =
∑

k

εk(c†kck + c†−kc−k) − V
∑

kk′

c†k′c
†
−k′c−kck (A1)

Here the suffix k indicates a state with momentum k and spin up, while
(−k) indicates a state with momentum −k and spin down and V is a posi-
tive constant that models the attractive coupling between electrons through
phonons. We will solve this equation following spin-analog method [4]. Here
we are considering low-lying states containing pair of electrons (k, −k). For a
given k, there are two possible states that come into consideration: either the
pair exists, or it does not. Thus we enter into a spin-like two-state picture as
follows.

Let us introduce the number operator n̂k = c†kck . This reduces the Hamil-
tonian (A1) to

Hred = −
∑

k

εk(1 − n̂k − n̂−k) − V
∑

kk′

c†k′c
†
−k′c−kck . (A2)

Here we have introduced a term −
∑

k εk with the choice
∑

k εk = 0 in mind,
for all k’s (basically these sums are over the states within energy ±ωD about



Transverse Ising Model, Glass and Quantum Annealing 27

the fermi level, where ωD is the Debye energy) that partictpates in pair forma-
tion. As stated earlier, if nk denotes the number of electrons in k-state, then
we are considering only a subspace of states defined by nk = n−k, where ei-
ther the both of the states in the pair (k,−k) are occupied, or both are empyt.
Now if we denote by |1k1−k〉 a (k,−k) pair-occupied state and by |0k0−k〉 an
unoccupied one, then

(1 − n̂k − n̂−k)|1k1−k〉 = (1 − 1 − 1)|1k1−k〉 = −|1k1−k〉 ,

and
(1 − n̂k − n̂−k)|0k0−k〉 = (1 − 0 − 0)|0k0−k〉 = |0k0−k〉

Thus we switch over to our good old pseudo-spin picture through the following
corrospondences

|1k1−k〉 ⇔ | ↓〉k ,

|0k0−k〉 ⇔ | ↑〉k ,

and (1 − nk − n−k) ⇔ σz
k . (A3)

Since

c†kc†−k| ↑〉k = | ↓〉k, c†kc†−k| ↓〉k = 0 & c−kck| ↓〉k = | ↑〉k, c−kck| ↑〉k = 0 ,

we immediately identify its corrospondence with raising and lowering operator
σ+/σ− :

σ− = σx − iσy =
(

0 0
2 0

)

and

σ+ =
(

0 2
0 0

)

and therefore
c†kc†−k =

1
2
σ−

k , c−kck =
1
2
σ†

k . (A4)

Hence in terms of these spin operators, Hamiltonian (A2) takes the form

H = −
∑

k

εkσz
k − 1

4
V

∑

kk′

σ−
k′σ

+
k . (A5)

Since the term
∑

kk′(σx
k′σ

y
k −σy

k′σx
k) vanishes due to symmetric summing done

over k and k′, the Hamiltonian finally reduces to

H = −
∑

k

εkσz
k − 1

4
V

∑

kk′

(σx
k′σx

k + σy
k′σ

y
k) . (A6)

To obtain the energy spectrum of the pseudo-spin BCS Hamiltonian (A6) we
apply now the mean field theory developed in earlier section.
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Weiss’ Mean Field Solution

Just as we did in case of TIM (see Sect. 3), here also we introduce an average
effective field hk for each pseudo-spin σk as

hk = εkẑ +
1
2
V

∑

k′

(〈σx
k′〉x̂ + 〈σy

k′〉ŷ)

and conseqently the Hamiltonian (A6) takes the form

H = −
∑

k

hk.σk .

Here for each k there is an independent spin σk which interacts only with
some effective field hk, and our system is a collection of such mutually non-
interacting spins under a field hk.

Now if redefine our x-axis along the projection of hk on the x-y plane for
each k, then with all 〈σy

k′〉 = 0 we get

tan θk =
hx

k

hz
k

=
1
2V

∑
k′〈σx

k′〉
εk

, (A7)

where θk is the angle between z-axis and hk.

Excitation Spectra at T = 0

Since at T = 0 〈σx〉 = 1,

〈σx
k′〉 = |σ| sin θk′ = sin θk′ (A8)

Thus from (A7) we get

tan θk = (v/2εk)
∑

k′

sin θk′

Now let us define
∆ ≡ 1

2
V

∑

k′

sin θk′ ,

so that tan θk = ∆/εk. Then simple trigonometry gives –

sin θk =
∆√

∆2 + ε2k
; cos θk =

εk√
∆2 + ε2k

. (A9)

Substituting for sin θk′ into the above equation we get

∆ =
1
2
V

∑

k′

∆√
∆2 + ε2k′

.
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Assuming the spectrum to be nearly continuous, we replace the summation by
an integral and note that V is attractive for energy within ±ωD on both sides
of fermi level; ωD being of the order of Debye energy. Then the last equation
becomes

1 =
1
2
V ρF

∫ ωD

−ωD

dε√
∆2 + ε2

= V ρF sinh−1(ωD/∆) .

Here ρF is the density of states at fermi level. Thus

∆ =
ωD

sinh(1/V ρF )
∼= 2ωDe−1/V ρF , (if ρF V 
 1) (A10)

We see that ∆ is positive if V is positive. To interprate the parameter ∆, one
may notice that at first approximation, the excitation spectrum is obtained
as the energy Ek to reverse a pseudo-spin in the field hk, i.e.,

Ek = 2|hk| = 2
(
ε2k + ∆2

)1/2
. (A11)

From this expression we clearly see that the minimum excitation energy is
2∆, i.e. ∆ gives the energy gap in the excitation spectrum.

Estimating Transition Temperature Tc

To find the critical temperature for BCS transition, we just extend here the
non-zero temperature version of mean field theory done for Ising case. We
should have (unlike that in (A11), where 〈σk〉 = 1) for T = 0:

〈σz
k〉 = tanh (β|hk|) . (A12)

Equation (23) accordingly modifies to

tan θk =
(

V

2εk

)∑

k′

tanh
(
β|hk′ |

)
sin θk′ ≡ ∆(T )

εk
, (A13)

where ∆(T ) = V
2

∑
k′ tanh

( |hk′ |
T

)
sin θk′ . From equation (A11) we have

|hk| =
[
ε2k + ∆2(T )

]
.

The BCS transition is characterized by the vanishing of the gap ∆, since
without such a gap in the spectrum, infinite conductance would not be possible
except at T = 0. Hence, as T → Tc, ∆ → 0, i.e., using (A11), |hk| = εk and
putting this and relations like (A9) in (A13), we get

1 = V
∑

k′

1
2εk′

tanh
(

εk′

Tc

)
. (A14)

Above relation is correct if we consider an excited pair as a single entity. How-
ever, if we extend our picture to incorporate single particles excited symmetri-
cally in momentum space, then we double the number of possible excitations,
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thereby doubling the overall entropy. This is exactly equivalent to a doubling
of the temperature in free energy. The energy contribution to the free energy,
however, remains unaltered, since two single particle excitations of same |k|
have same energy as that of a pair of equal |k|. Hence we replace Tc by 2Tc,
and in the continuum limit, get

2
V ρF

=
∫ ωD

−ωD

dε

ε
tanh

(
ε

2Tc

)
= 2

∫ ωD/2Tc

0

tanhx

x
dx ,

with (x = ε/2Tc) This is the equation from which we obtain Tc on integration.
If Tc 
 ωD, then we may approximate tanhx ≈ 1, for x ≥ 1, and for x 
 1, we
set tanh x ≈ x. This readily reduces the integral to the value 1+log(ωD/2Tc),
from which we have

Tc = (e/2)ωDe−1/V ρF .

Grphical integration gives a closer result

Tc = 1.14ωDe−1/V ρF . (A15)

Comparing (A10) and (A15) we get the approximate relationship

2∆ 
 3.5Tc . (A16)

This result is quite consistent with the exprimental values for a number of
materials. For example, the value of 2∆/Tc are 3.5, 3.4, 4.1, 3.3 for Sn, Al,
Pb, and Cd superconductors respectively.

Appendix B

Real Space Renormalization for Transverse Ising Chain

Here the basic idea of real space block renormalization [4, 6] is illustrated
by applying it on an Ising chain in transverse field. Taking the cooperative
interaction along x-axis, and the transverse field along z-axis, the Hamiltonian
reads

H = −Γ
N∑

i=1

σz
i − J

N−1∑

i=1

σx
i σx

i+1

= HB + HIB (say) . (B1)

Here

HB =
N/b∑

p=1

Hp ; Hp = −
b∑

i=1

Γσz
i,p −

b−1∑

i−1

Jσx
i,pσ

x
i+1,p (B2)

and
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HIB =
N/(b−1)∑

p=1

Hp,p+1 ; Hp,p+1 = −Jσx
b,pσ

x
1,p+1 . (B3)

The above rearrangement of the Hamiltonian recasts the picture of N spins
with nearest-neighbour interaction into one in which there are N/(b−1) blocks,
each consisting of b number of spins. The part HB represents the interaction
between the spins within the blocks, while HIB represents the interactions
between the blocks through their terminal spins(see Fig. 6).

Ηp

Ηp,p+1

p-th Block (p+1)th Block-

σ1,p σ2,p σ2,p+1σ1,p+1

Fig. 6. The linear chain is broken up into blocks of size b (= 2 here) and the
Hamiltonian (B1) can be written as the sum of block Hamiltonians Hp and inter-
block Hamiltonians Hp,p+1. The Hamiltonian Hp is diagonalized exactly and the
lowest lying two states are identified as the renormalized spin states in terms of
which the inter-block Hamiltonian is rewritten to get the RG recursion relation

Here we will consider b = 2, as shown in the figure. Now Hp has got 4
eigen-states, and one can express them in terms of the linear superposition of
the eigen-states of σz

1,p ⊗ σz
2,p; namely,

| ↑↑〉, | ↓↓〉, | ↑↓〉, and | ↓↑〉 .

Considering the orthonormality of the eigen-states, one may easily see that
the eigenstates of Hp can be expressed as

|0〉 =
1√

1 + a2
(| ↑↑〉 + a| ↓↓〉)

|1〉 =
1√
2
(| ↑↓〉 + | ↓↑〉)

|2〉 =
1√
2
(| ↑↓〉 − | ↓↑〉)

|3〉 =
1√

1 + a2
(a| ↑↑〉 − | ↓↓〉) . (B4)
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Here a is a coefficient required to be chosen properly, so that |0〉 and |3〉 are
eigenstates of Hp. One gets,

HP |0〉 = Hp

[
1√

1 + a2
| ↑↑〉 + a| ↓↓〉

]

= [−Γ (σz
1 + σz

2) − J(σx
1σx

2 )]
1√

1 + a2
(| ↑↑〉 + a| ↓↓〉)

=
1√

1 + a2
[−Γ (2| ↑↑〉 − 2a| ↓↓〉) − J(| ↓↓〉) + a| ↑↑〉]

= −(2Γ + Ja)
1√

1 + a2

[
| ↑↑〉 +

(
−2Γ − J/a

2Γ + Ja

)
a| ↓↓〉

]

Thus |0〉 to be an eigenstate of Hp, one must have

−2Γ − J/a

2Γ + Ja
= 1

=> Ja2 − 4Γa − J = 0

or, a =
±
√

4Γ 2 + J2 − 2Γ

J
. (B5)

To minimize the energy, we have to choose,

a =
√

4Γ 2 + J2 − 2Γ

J
.

One can now see, applying Hp on its eigen-states,

Hp|0〉 = E0|0〉, E0 = −
√

4Γ 2 + J2

Hp|1〉 = E1|1〉, E1 = −J

Hp|2〉 = E2|2〉, E2 = +J

Hp|3〉 = E3|3〉, E3 = +
√

4Γ 2 + J2 . (B6)

Now we define our new renormalized spin variables σ′’s, each replacing a block
in the original Hamiltonian. We retain only the two lowest lying states |0〉 and
|1〉 of a block and define corrosponding σ′Z

p to have them as its two eigenstates,
| ↑〉 = |0〉 and | ↓〉 = |1〉. We also define

σ′x =
σx

1 ⊗ I + I ⊗ σx
2

2
,

where I is the 2 × 2 identity matrix. Now since

〈0|σ′x|1〉 =
1 + a√

2(1 + a2)
,

we take our renormalized J to be
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J ′ = J
(1 + a)2

2(1 + a2)
, (B7)

and since the energy gap between |0〉 and |1〉 must be equal to 2Γ ′ (This gap
was 2Γ in the unrenormalized states), we set

Γ ′ =
E1 − E0

2
=

√
4Γ 2 + J2 + J

2
=

J

2
[
√

4λ2 + 1 + 1] , (B8)

where a =
√

4λ2 + 1 − 2λ, defining the relevant variable λ = Γ/J .
The fixed points of the recurrence relation (rewritten in terms of λ) are

λ� = 0
λ� → ∞

and λ� 
 1.277 . (B9)

Now if correlation length goes as

ξ ∼ (λ − λc)ν ,

in the original system, then in the renormalized system we should have

ξ′ ∼ (λ′ − λc)ν

=>
ξ′

ξ
=

(
λ′ − λc

λ − λc

)−ν

=>

(
ξ′

ξ

)−1/ν

=
dλ′

dλ

∣∣∣
λ=λc≡λ�

. (B10)

Now since the actual physical correlation length should remain same as we
renormalize, ξ′ (correlation length in the renormalized length scale) must be
smaller by the factor b (that scales the length), than ξ (correlation length in
original scale). i.e., ξ′/ξ = b, or,

b−1/ν =
(

dλ′

dλ

)

λ=λc=λ�

≡ Ω (say) ,

hence, ν =
(

ln Ω

ln b

)

λ=λ�

=
ln Ω

ln 2

 1.47, (for b = 2) , (B11)

compared to the exact value ν = 1 for (d + 1 =) 2 dimensional classical Ising
system. Similarly Eg ∼ ω ∼ (time)−1 ∼ ξ−z; z = 1. But for b = 2, we donot
get z = 1. Instead, λ′/λ ∼ b−z gives z 
 0.55. Energy gap

∆(λ) ∼ |λc − λ|s ∼ ξ−z ∼ |λc − λ|νz (B12)

Hence s = νz = 0.55 × 1.47 
 0.81 (compared to the exact result s = 1).
Results improve rapidly for large b values [6].
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Appendix C

Tunnelling Through Asymmetric Barrier

Let us consider an asymmetric potential energy barrier in one dimension, (as
shown in Fig. 7). It is essentially a rectangular barrier of height χ and width
a between two different energy levels with a potential difference h between
them. The potential energy V is zero at the left of the barrier (x < 0),

h

a

χ

x

v

V = 0

Γ

Fig. 7. Quantum tunnelling thruogh asymmetric barrier

and it is h (h may be negative as well) at the right of the barrier (x >
a). If a beam of free particles of mass m with kinetic energy Γ incidents
on the barrier from the left, then one can calculate the probability for a
particle in the beam to get transmitted through (or reflected by) the barrier by
solving the time-independent Schrödinger equation (with a time-independent
V ). The transmission coefficient T (defined below) describes the probability
of transmission for a single particle, as well as the average transmission of the
incident beam.

The incident wave function ψ1(x), the intermediate wave function ψ2(x)
and the transmitted wave function ψ3(x) then takes the form

ψ1(x) = Ae−ik1x, x < 0,

ψ2(x) = Bek2x + Ce−k2x, 0 ≤ x ≤ a

ψ3(x) = Deik3x, x > a

where,
k2
1 = Γ ; k2

2 = Γ − χ and k2
3 = Γ − h ,

setting 2m/h̄2 = 1. Here A and D are the amplitudes of the incident and the
transmitted wave respectively. At this point one may note that for Γ < h
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transmission is trivially zero. Hence we consider the case for Γ > h i.e., for
real k3. In that case, applying the condition of continuiety of the wave function
and its space derivatives at the boundaries, one obtains the relation (cf. [21])

A =
1
2
Deik3a[(1 + k3/k1) cosh κa + i(κ/k1 − k3/κ) sinh κa] ,

where κ2 = −k2
2 = χ− Γ . We now consider the limit of very high but narrow

barrier, such that χ → ∞, a → 0, with g = χa finite. We also assume
that χ � Γ , so that κ2 ≈ χ, and of course κ is real. Since Γ ≥ 0, k1 is
also real. Hence under this condition the transmission coefficient defined as
T = |D|2k3/|A|2k1 is given by (cf. [21])

T =
4k3/k1(

1 + k3
k1

)2

cosh2 (κa) +
(

κ
k1

− k3
κ

)2

sinh2 (κa)
.

In the limit of high but narrow barrier specified above, one has κa 
 1. Hence
neglecting terms quadratic or of higher order in κa and linear in 1/κ, one gets

T ≈ 4k3/k1(
1 + k3

k1

)2

+
(

κ
k1

)2

(κa)2

=
4
√

Γ (Γ − h)
(
√

Γ +
√

Γ − h)2 + g2
,

putting k1 =
√

Γ , k3 =
√

Γ − h and κ2a ≈ χa = g. The transmission coeffi-
cient T is thus finite even when the barrier height χ diverges keeping g = χa
finite.
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1 Introduction

In the present article, we review the progress in the last two decades of the
work on the Suzuki-Trotter decomposition, or the exponential product for-
mula. The simplest Suzuki-Trotter decomposition, or the well-known Trotter
decomposition [1, 2, 3, 4] is given by

ex(A+B) = exAexB + O(x2) , (1)

where x is a parameter and A and B are arbitrary operators with some com-
mutation relation [A,B] �= 0. Here the product of the exponential operators
on the right-hand side is regarded as an approximate decomposition of the ex-
ponential operator on the left-hand side with correction terms of the second
order of x. Mathematicians put (1) in the form

exAexB = ex(A+B)+O(x2) (2)

and ask what correction terms appear in the exponent of the right-hand side
owing to the product in the left-hand side. They hence refer to it as an ex-
ponential product formula. (The readers should convince themselves by the
Taylor expansion that the second-order correction in (1) is the same as that
in (2). The higher-order corrections take different forms.)

We here ask how we can generalize the Trotter formula (1) to decomposi-
tions with higher-order correction terms. We concentrate on the form

ex(A+B) = ep1xAep2xBep3xAep4xB · · · epM xB + O(xm+1) , (3)

or equivalently

ep1xAep2xBep3xAep4xB · · · epM xB = ex(A+B)+O(xm+1) . (4)

N. Hatano and M. Suzuki: Finding Exponential Product Formulas of Higher Orders, Lect. Notes
Phys. 679, 37–68 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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We adjust the set of the parameters {p1, p2, . . . , pM} so that the correction
term may be of the order of xm+1. We refer to the right-hand side of (3) as
an mth-order approximant in the sense that it is correct up to the mth order
of x. (See Appendix A for another type of the exponential product formula.)

One of the present authors (M.S.) has studied on the higher-order approx-
imant continually [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. The present
article mostly reviews his work on the subject. We first show the importance
of the exponential operator in Sect. 2 and the effectiveness of the exponential
product formula in Sect. 3. We demonstrate the effectiveness in examples of
the time-evolution operator in quantum dynamics and the symplectic integra-
tor in Hamilton dynamics. Section 4 explains a recursive way of constructing
higher-order approximants, namely the fractal decomposition. We present in
Sect. 5 an application of the fractal decomposition to the time-ordered expo-
nential. We finally review in Sect. 6 the quantum analysis, an efficient way
of computing correction terms of general orders algebraically. We can use the
quantum analysis for the purpose of finding approximants of an arbitrarily
high order by solving a set of simultaneous equations where the higher-order
correction terms are put to zero. We demonstrate the prescription in three
examples. We mention in Appendix A, a type of the exponential product for-
mula different from the form (3); it contains exponentials of commutation
relations. We give in Appendix B, a short review on the world-line quantum
Monte Carlo method with the use of the Trotter approximation (1).

2 Why Do We Need the Exponential Product Formula?

First of all, we discuss as to why we have to treat the exponential operator and
why we need an approximant in order to treat the exponential operator. The
exponential operator appears in various fields of physics as a formal solution
of the differential equation of the form

∂

∂t
f(t) = Mf(t) , (5)

where f is a function or a vector and M is an operator or a matrix. Typical
examples are the Schrödinger equation

i
∂

∂t
ψ(x, t) = Hψ(x, t) (6)

(we put h̄ = 1 here and hereafter), the Hamilton equation

d
dt

(
p(t)
q(t)

)
= H

(
p(t)
q(t)

)
, (7)

(see (14) below) and the diffusion equation with a potential
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d
dt

P (x, t) = LP (x, t) . (8)

A solution of (5) is given in the form of the Green’s function as

f(t) = G(t; 0)f(0) = etMf(0) , (9)

although it is only a formal solution; obtaining the Green’s function G(t; 0) ≡
etM is just as difficult as solving the equation (5) in any other way. Another
important incident of the exponential operator is the partition function in
equilibrium quantum statistical physics:

Z = Tr e−βH , (10)

where H is a quantum Hamiltonian.
The exponential operator, however, is hard to compute in many interest-

ing cases. The most straightforward way of computing the exponential opera-
tor exM is to diagonalize the operator M. In quantum many-body problems,
however, the basis of the diagonalized representation is often nontrivial, be-
cause we are typically interested in the Hamiltonian with two terms or more
that are mutually non-commutative; for example, the Ising model in a trans-
verse field,

H = −
∑

〈i,j〉
Jijσ

z
i σz

j − Γ
∑

i

σx
i , (11)

and the Hubbard model,

H = −t
∑

σ=↑,↓

∑

〈i,j〉

(
c†iσcjσ + c†jσciσ

)
+ U

∑

i

ni↑ni↓ . (12)

In the first example (11), the quantization axis of the first term is the spin
z axis, while that of the second term is the spin x axis. The two terms are
therefore mutually non-commutative. In the second example (12), the first
term is diagonalizable in the momentum space, whereas the second term is
diagonalizable in the coordinate space. In both examples, each term is easily
diagonalizable. Since one quantization axis is different from the other, the
diagonalization of the sum of the terms becomes suddenly difficult.

The same situation arises in chaotic Hamilton dynamics. Consider a clas-
sical Hamiltonian

H(p, q) = K(p) + V (q) , (13)

where K(p) is the kinetic term and V (q) is the potential term. The Hamilton
equation is expressed in the form

d
dt

(
p(t)
q(t)

)
=

(
− d

dq V (q)
d
dpK(p)

)
≡

(
−V̂ ·

K̂·

)(
p
q

)
, (14)

where the operators K̂· and V̂ · are symbolic ones standing for the operations
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K̂ · p ≡ d
dp

K(p) and V̂ · q ≡ d
dq

V (q) . (15)

Although each operation of K̂· and V̂ · is simple enough, the “Hamiltonian”
operator

H ≡
(

−V̂ ·
K̂·

)
(16)

is not easily tractable. This is because the kinetic part and the potential part,

K ≡
(

K̂·

)
and V ≡

(
−V̂ ·

)
, (17)

do not commute with each other; see an example in Sect. 3.2 below.
To summarize this section, we frequently encounter the situation where

the exponential operator of each term, exA and exB , is easily obtained and
yet the desired exponential operator ex(A+B) is hard to come. This is the
situation where the Trotter decomposition (1) becomes useful.

3 Why is the Exponential Product Formula
a Good Approximant?

We discussed in the previous section the importance of the exponential oper-
ator and the necessity of a way of treating it. We here discuss a remarkable
advantage of the Trotter approximant to the exponential operator.

Let us first confirm that the Trotter approximant (1) is indeed a first-order
approximant. By expanding the both sides of (1), we have

ex(A+B) = I + x(A + B) +
1
2
x2(A + B)2 + O(x3)

= I + x(A + B) +
1
2
x2

(
A2 + AB + BA + B2

)
+ O(x3) , (18)

exAexB =
(

I + xA +
1
2
x2A2 + O(x3)

)(
I + xB +

1
2
x2B2 + O(x3)

)

= I + x(A + B) +
1
2
x2

(
A2 + 2AB + B2

)
+ O(x3) , (19)

where I is the identity operator. The difference between the two comes from
the fact that in the approximant (19), the operator A always comes on the
left of the operator B. Hence we obtain

exAexB = ex(A+B)+ 1
2 x2[A,B]+O(x3) . (20)

In the actual application of the approximant, we divide the parameter x
into n slices in the form
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(
e

x
n Ae

x
n B

)n
=

[
e

x
n (A+B)+ 1

2 ( x
n )2

[A,B]+O
(
( x

n )3
)]n

= ex(A+B)+ 1
2

x2
n [A,B]+O

(
x3

n2

)
.

(21)
Thus the correction term vanishes in the limit n → ∞. We refer to the integer
n as the Trotter number.

Now we discuss as to why we should be interested in generalizing the Trot-
ter approximation. The Trotter approximant (1) and the generalized one (3),
in fact, have a remarkable advantage over other approximants such as the
frequently used one

ex(A+B) = I + x(A + B) + O(x2) . (22)

The approximant of the form (3) conserves an important symmetry of the
system in problems of quantum dynamics and Hamilton dynamics.

In problems of quantum dynamics, the exponential operator, or the
Green’s function e−itH is a unitary operator; hence the norm of the wave
function does not change, which corresponds to the charge conservation. We
here emphasize that the exponential product

e−itp1Ae−itp2Be−itp3A · · · e−itpM B (23)

is also a unitary operator. The perturbational approximant (22), on the other
hand, does not conserve the norm of the wave function; in fact, the norm
typically increases monotonically as the time passes as we demonstrate in
Sect. 3.1 below.

In problems of Hamilton dynamics, the time evolution of the Hamilton
system conserves the volume in the phase space {p, q}, which is called the
symplecticity in mathematics. The exponential product formula, in general,
also has the symplecticity.

The time evolution of the Hamilton equation (14) is described by the
exponential operator (

p(t)
q(t)

)
= etH

(
p(0)
q(0)

)
, (24)

where H is the “Hamiltonian” operator (16). The Trotter decomposition ap-
proximates the time evolution with the operator

etH 

(
e

t
nKe

t
nV

)n

(25)

with K and V given by (17). The operator e
t
nK describes the time evolution

over the time slice t/n of a Hamilton system with only the kinetic energy
K(p). It thereby conserves the phase-space volume, so does the operator e

t
nV .

The whole Trotter approximant therefore conserves the phase-space volume.
This holds for any exponential product formula in the form (3) as well. Hence
the exponential product formula, when used in the Hamilton dynamics, is
sometimes called a symplectic integrator.
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In equilibrium quantum statistical physics, the operator e−βH does not
have a particular symmetry except the symmetries of the Hamiltonian itself.
The above advantage of the exponential product formula is hence lost when
applied to numerical calculations of the partition function Z = Tr e−βH. In
fact, in applying the higher-order decomposition (3) to the world-line quantum
Monte Carlo simulation, some of the parameters {p1, p2, . . . , pM} are negative,
which causes the negative-sign problem in systems that usually do not have the
negative-sign problem [38]. The negative-sign problem is the problem that the
Boltzmann weight of the system to be simulated becomes negative for some
configurations.

Thanks to a recent development of the world-line quantum Monte Carlo
simulation [39], the higher-order decomposition is not necessary anymore in
some cases; the simulation is carried out in the limit n → ∞ from the very
beginning and hence the order of the correction term does not matter in such
cases. See Appendix B for a brief review over the recent development.

3.1 Example: Spin Precession

The fact that the exponential product formula keeps the symmetry of the sys-
tem is one of its remarkable advantages. In the present and next subsections,
we demonstrate that this indeed affects numerical accuracy strongly. In the
present subsection, we use a simple example of quantum dynamics, namely
the spin precession.

Consider the simple Hamiltonian

H = σz + Γσx =
(

1 Γ
Γ −1

)
. (26)

If we start the dynamics from the up-spin state

ψ(0) =
(

1
0

)
, (27)

the spin precesses around the axis of the magnetic field H = (Γ, 0, 1) with
the period

T =
π√

1 + Γ 2
. (28)

Although it is easy to compute the dynamics exactly, we here use the
Trotter approximant

G(t + ∆t; t) 
 e−i∆tσze−i∆tΓσx (29)

and the perturbational approximant

G(t + ∆t; t) 
 I − i∆tH = I − i∆t(σz + Γσx) . (30)

The exact dynamics should conserve the energy expectation 〈H〉. Figure 1
shows the energy deviation due to the approximations. The error in the energy
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Fig. 1. The energy deviation due to the approximations given by (a) the Trotter
approximant (29) and (b) the perturbational approximant (30). In both calculations,
we put Γ = 3/4 and ∆t = 0.0001. The initial state is the one in (27) with the energy
expectation 〈H〉 = 1

of the Trotter approximation (29) oscillates periodically and never increases
beyond the oscillation amplitude. The period of the oscillation in Fig. 1(a) is
equal to that of the spin precession. We can understand this as follows: when
the spin comes back to the original position after one cycle of the precession,
it comes back accurately to the initial state (27) because of the unitarity of
the Trotter approximation, and hence the oscillation.

In contrast, the error in the energy monotonically grows in the case of the
perturbational approximant as is shown in Fig. 1(b). This is because the norm
of the wave vector increases by the factor

‖ 1 − i∆tH ‖
 1 + ∆t ‖ H ‖> 1 . (31)

The remarkable difference between Fig. 1(a) and Fig. 1(b) thus comes from
the fact that the Trotter approximant is unitary.

3.2 Example: Symplectic Integrator

We next demonstrate the Trotter decomposition (25) in an interesting example
of chaotic dynamics. We again emphasize that keeping the symplecticity of
the Hamilton dynamics has an important effect on numerical accuracy.

Let us first notice that the operators in (17) satisfy

K2 = V2 = 0 . (32)

We therefore have

eK∆t

(
p
q

)
= (I + K∆t)

(
p
q

)
=

(
p
q + ∆t d

dpK(p)

)
, (33)

eV∆t

(
p
q

)
= (I + V∆t)

(
p
q

)
=

(
p − ∆t d

dq V (q)
q

)
. (34)
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Note that applying the two operators in the order eK∆teV∆t is different from
applying them in the order eV∆teK∆t; in the former, the update of q in the
application of eK∆t is done under the updated p, whereas in the latter, it is
done under p before the update.

Umeno and Suzuki [11, 12] demonstrated the use of symplectic integrators
for chaotic dynamics of the system

K(p) =
1
2
(
p1

2 + p2
2
)

and V (q) =
1
2
q1

2q2
2 . (35)

The equipotential contour is given by |q1q2| =constant; hence the system is
confined in the area surrounded by four hyperbolas as exemplified in Fig. 2(a).
The exact dynamics should conserve the energy. The Trotter approximation
of the dynamics, (25), gives the energy fluctuation shown in Fig. 2(b). The
energy, though deviates from the correct value sometimes, comes back after
the deviation. In fact, the deviation occurs when the system goes into one of
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Fig. 2. Simulations of the sys-
tem (35). The initial condition is p1 =
p2 = 0, q1 = 2 and q2 = 1 with the
energy E = 2. The time slice is ∆t =
0.0001. (a) The movement of the sys-
tem in the coordinate space (q1, q2)
for 700 ≤ t ≤ 900. The broken curves
indicate the hyperbolas |q1q2| = 2.
(b) The energy fluctuation due to the
Trotter approximation (25). We plot-
ted a dot every 1,000 steps. (c) The
energy increase due to the approxi-
mant (36)
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the four narrow valleys of the potential; it is suppressed again and again when
the system comes back to the central area.

This is in striking contrast to the update due to the perturbational ap-
proximant

(
p

q

)
−→ (I + ∆tH)

(
p

q

)
=

(
p − ∆t d

dq V (q)

q + ∆t d
dpK(p)

)
, (36)

which yields the monotonic energy increase shown in Fig. 2(c). The reason
of the difference between the approximants, though less apparent than in the
case of the previous subsection, must be keeping the symplecticity, or the
conservation of the phase-space volume.

4 Fractal Decomposition

We emphasized in the previous section the importance of the exponential
product formula. In the present section, we describe a way of constructing
higher-order exponential product formulas recursively [5, 6, 7, 8, 9, 10, 11, 12,
13, 14].

The easiest improvement of the Trotter formula (2) is the symmetrization:

S2(x) ≡ e
x
2 AexBe

x
2 A = ex(A+B)+x3R3+x5R5+··· . (37)

The symmetrized approximant has the property

S2(x)S2(−x) = e
x
2 AexBe

x
2 Ae−

x
2 Ae−xBe−

x
2 A = I , (38)

because of which the even-order terms vanish in the exponent of the right-hand
side of (37). We can thereby promote the approximant (37) to a second-order
approximant.

Now we introduce a way of constructing a symmetrized fourth-order ap-
proximant from the symmetrized second-order approximant (37). Consider a
product

S(x) ≡ S2(sx)S2((1 − 2s)x)S2(sx) (39)

= e
s
2 xAesxBe

1−s
2 xAe(1−2s)xBe

1−s
2 xAesxBe

s
2 xA , (40)

where s is an arbitrary real number for the moment. The expression (37) is
followed by

S(x) = S2(sx)S2((1 − 2s)x)S2(sx)

= esx(A+B)+s3x3R3+O(x5)e(1−2s)x(A+B)+(1−2s)3x3R3+O(x5)

× esx(A+B)+s3x3R3+O(x5)

= ex(A+B)+[2s3+(1−2s)3]R3+O(x5) . (41)
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(The readers should convince themselves by the Taylor expansion that the
third-order correction in the exponent of the last line is just the sum of
the third-order corrections in the exponents of the second line. This is not
true for higher-order corrections.) Note that we arranged the parameters in
the form {s, 1 − 2s, s} in (39) so that (i) the first-order term in the exponent
of the last line of (41) should become x(A + B) and (ii) the whole product
S(x) should be symmetrized, or should satisfy S(x)S(−x) = I. Because of the
second property, the even-order corrections vanish in the exponent of the last
line of (41). Making the parameter s a solution of the equation

2s3 + (1 − 2s)3 = 0, or s =
1

2 − 3
√

2
= 1.351207191959657 · · · , (42)

we promote the product (39) to a fourth-order approximant [5].
Following the same line of thought, we come up with another fourth-order

approximant [5] in the form

S4(x) ≡ S2(s2x)2S2((1 − 4s2)x)S2(s2x)2 (43)

= e
s2
2 xAes2xBes2xAes2xBe

1−3s2
2 xAe(1−4s2)xBe

1−3s2
2 xA

× es2xBes2xAes2xBe
s2
2 xA , (44)

where the parameter s2 is a solution of the equation

4s2
3 + (1 − 4s2)3 = 0, or s2 =

1
4 − 3

√
4

= 0.414490771794375 · · · . (45)

We can compare the fourth-order approximants (39) and (43) using the fol-
lowing diagram. Suppose that the exponential operator ex(A+B) is a time-
evolution operator from the time t = 0 to the time t = x. In the product (39),
the term S2(sx) on the right approximates the time evolution from t = 0 to
t = sx 
 1.35x, the term S2((1 − 2s)x) in the middle approximates the time
evolution from t = sx to t = sx + (1 − 2s)x = (1 − s)x 
 −0.35x, and the
term S2(sx) on the left approximates the time evolution from t = (1− s)x to
t = (1 − s)x + sx = x. Let us express this time evolution as in Fig. 3(a). The
product (43) is similarly represented as in Fig. 3(b).

As is evident, the first product (39) has a part that goes into the “past,”
or t < 0. This can be problematic in some situations; in the diffusion from
a delta-peak distribution, for example, there exists no “past” of the initial
delta peak. The second product (43) does not have the problem and hence is
recommended for general use.

Once we know how to construct the fourth-order approximant from the
second-order approximant, the rest is quite straightforward [5]. Following the
construction (43), we construct the sixth-order approximant in the form
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t
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Fig. 3. Diagrams that represent the time evolution of (a) the fourth-order approx-
imant (39) and (b) the fourth-order approximant (43)

S6(x) ≡ S4(s4x)2S4((1 − 4s4)x)S4(s4x)2

=
(
S2(s4s2x)2S2(s4(1 − 4s2)x)S2(s4s2x)2

)2

×S2((1 − 4s4)s2x)2S2((1 − 4s4)(1 − 4s2)x)S2((1 − 4s4)s2x)2

×
(
S2(s4s2x)2S2(s4(1 − 4s2)x)S2(s4s2x)2

)2
(46)

with

4s5
4 + (1 − 4s4)5 = 0, or s4 =

1
4 − 5

√
4

= 0.373065827733272 · · · , (47)

and further construct the eighth-order approximant in the form

S8(x) ≡ S6(s6x)2S6((1 − 4s6)x)S6(s6x)2 (48)

with

4s7
6 + (1 − 4s6)7 = 0, or s6 =

1
4 − 7

√
4

= 0.359584649349992 · · · . (49)

These approximants are represented by the diagrams in Fig. 4. We can con-
tinue this recursive procedure, ending up with the exact time evolution, where
the diagram ultimately becomes a fractal object. This is why the series of the
approximants is called the fractal decomposition. It is an interesting thought
that the back-and-forth time evolution in a fractal way reproduces the exact
time evolution.

5 Time-Ordered Exponential

Before going into another way of constructing higher-order exponential prod-
uct formulas, let us introduce, as an interlude, an important application of the
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Fig. 4. Diagrams that represent the time evolution of (a) the six-order approxi-
mant (46) and (b) the eighth-order approximant (48)

exponential product formula. We show how to approximate the time-ordered
exponential [10].

We have considered until now only the case where the operators A and
B do not depend on x, or in other words, only the time evolution of a time-
independent Hamiltonian. The fractal decomposition introduced in the previ-
ous section needs modification when applied to problems such as the quantum
dynamics of a time-dependent Hamiltonian; in quantum annealing [40, 41, 42],
for example, the transverse field Γ in the Hamiltonian (11) is changed in time.

The time-evolution operator of the quantum Hamiltonian

H(t) = A(t) + B(t) (50)

is not simply e−iHt but a time-ordered exponential in the form

G(t2; t1) = T
[
exp

(
−i

∫ t2

t1

H(s)ds

)]
. (51)

It is quite well-known that

G1(t + ∆t; t) ≡ e−i∆tA(t+∆t)e−i∆tB(t+∆t) (52)

is an approximant of the first order of ∆t and

G2(t + ∆t; t) ≡ e−
i
2∆tA(t+ 1

2∆t)e−i∆tB(t+ 1
2∆t)e−

i
2∆tA(t+ 1

2∆t) (53)

is an approximant of the second order. How do we construct higher-order
approximants? We here show that a slight modification of the fractal decom-
position gives the answer.

The key is to introduce a shift-time operator [10] defined in

F (t)e−i∆tT G(t) = F (t + ∆t)G(t) . (54)

Note that the operator acts on the function on the left. The shift-time operator
is expressed in the form
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T = i

←
∂

∂t
(55)

in the case where F (t) is an analytic function, but the definition (54) does
not limit its use to the analytic case. If we have two shift-time operators, the
result is

F (t)e−i∆tT G(t)e−i∆tT H(t) = F (t + ∆t)G(t)e−i∆tT H(t)
= F (t + 2∆t)G(t + ∆t)H(t) . (56)

With the use of the shift-time operator, the time-ordered exponential (51)
is transformed [10] as

T

[
exp

(
−i

∫ t+∆t

t

H(s)ds

)]
= e−i∆t(H(t)+T ) . (57)

We can prove this by using the Trotter approximation as follows:

e−i∆t(H(t)+T ) = lim
n→∞

(
e−i∆t

n H(t)e−i∆t
n T

)n

= lim
n→∞

e−i∆t
n H(t)e−i∆t

n T e−i∆t
n H(t)e−i∆t

n T · · · e−i∆t
n H(t)e−i∆t

n T

= lim
n→∞

e−i∆t
n H(t+∆t)e−i∆t

n H(t+ n−1
n ∆t) · · · e−i∆t

n H(t+ 1
n ∆t)

= T

[
exp

(
−i

∫ t+∆t

t

H(s)ds

)]
. (58)

Decomposing the Hamiltonian into two parts as in (50), we have now three
parts in the exponent of the time-evolution operator as in

T

[
exp

(
−i

∫ t+∆t

t

H(s)ds

)]
= e−i∆t(A(t)+B(t)+T ) . (59)

We then approximate the exponential in the right-hand side of (59). The
first-order approximant is given by

G1(t + ∆t; t) = e−i∆tA(t)e−i∆tB(t)e−i∆tT

= e−i∆tA(t+∆t)e−i∆tB(t+∆t) (60)

and the second-order approximant is given by

G2(t + ∆t; t) = e−
i
2∆tT e−

i
2∆tA(t)e−i∆tB(t)e−

i
2∆tA(t)e−

i
2∆tT

= e−
i
2∆tA(t+ 1

2∆t)e−i∆tB(t+ 1
2∆t)e−

i
2∆tA(t+ 1

2∆t) . (61)

Higher-order approximants are given by the fractal decomposition of the three
parts, A, B, and T . The fractal decomposition of three parts is easily obtained
by substituting
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S2(x) ≡ e
x
2 Ae

x
2 BexCe

x
2 Be

x
2 A = ex(A+B+C)+O(x3) (62)

for (37). The fourth-order approximant is thereby obtained [10] as

G4(t + ∆t; t)

≡
(
e−

i
2 s2∆tT e−

i
2 s2∆tA(t)e−is2∆tB(t)e−

i
2 s2∆tA(t)e−

i
2 s2∆tT

)2

× e−
i
2 (1−4s2)∆tT e−

i
2 (1−4s2)∆tA(t)

× e−i(1−4s2)∆tB(t)e−
i
2 (1−4s2)∆tA(t)e−

i
2 (1−4s2)∆tT

×
(
e−

i
2 s2∆tT e−

i
2 s2∆tA(t)e−is2∆tB(t)e−

i
2 s2∆tA(t)e−

i
2 s2∆tT

)2

= e−
i
2 s2∆tA(t+

2−s2
2 ∆t)e−is2∆tB(t+

2−s2
2 ∆t)e−

i
2 s2∆tA(t+

2−s2
2 ∆t)

× e−
i
2 s2∆tA(t+

2−3s2
2 ∆t)e−is2∆tB(t+

2−3s2
2 ∆t)e−

i
2 s2∆tA(t+

2−3s2
2 ∆t)

× e−
i
2 s2∆tA(t+ 1

2∆t)e−is2∆tB(t+ 1
2∆t)e−

i
2 s2∆tA(t+ 1

2∆t)

× e−
i
2 s2∆tA(t+

3s2
2 ∆t)e−is2∆tB(t+

3s2
2 ∆t)e−

i
2 s2∆tA(t+

3s2
2 ∆t)

× e−
i
2 s2∆tA(t+

s2
2 ∆t)e−is2∆tB(t+

s2
2 ∆t)e−

i
2 s2∆tA(t+

s2
2 ∆t) (63)

with the coefficient s2 given by (45).

6 Quantum Analysis – Towards the Construction
of General Decompositions

In the last section before the summary, we discuss the calculus of the correction
terms. In the fractal decomposition, we construct higher-order approximants
recursively. Is it possible to construct higher-order approximants directly, not
recursively? In fact, Ruth [43] found (not systematically) a third-order formula

e
7
24 xAe

2
3 xBe

3
4 xAe−

2
3 xBe−

1
24 xAexB = ex(A+B)+O(x4) , (64)

which would not be found within the framework of the fractal decomposition.
For the purpose of finding higher-order formulas directly, we need to com-

pute the correction terms in the exponent as

ep1xAep2xBep3xAep4xB · · · epM xB = ex(A+B)+x2R2+x3R3+··· . (65)

This is one of the aims of the quantum analysis developed by one of the present
authors (M.S.) [29, 30, 31, 32, 33, 34, 35]. Then we can put the correction terms
to zero up to a desired order and solve the set of non-linear simultaneous
equations

R2 = 0, R3 = 0, . . . , Rm = 0 , (66)

thereby obtaining the parameters {pi}.
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6.1 Operator Differential

The main feature of the quantum analysis is to introduce operator differential.
In order to motivate the readers, suppose that we can write down an identity

d
dx

f(A(x)) =
df(A)

dA
· dA(x)

dx
, (67)

where f(A) is an operator functional. The derivative with respect to x on
the right-hand side is well-defined; for example, dA(x)/dx = B + 2xC for
A(x) = xB +x2C. Now, is it possible to define the differentiation df(A)/dA?

Let us discuss as to what should be the definition of the operator differ-
ential in order for the identity (67) to hold. The definition of the x derivative
is expressed as

A(x + h) = A(x) + h
dA(x)

dx
+ O(h2) . (68)

The left-hand side of the identity (67) is given by the definition of the deriv-
ative as

d
dx

f(A(x)) = lim
h→0

f(A(x + h)) − f(A(x))
h

= lim
h→0

f
(
A(x) + hdA(x)

dx

)
− f(A(x))

h
. (69)

The identity (67) suggests that the operator differential df(A)/dA must be
a hyperoperator that maps the operator dA(x)/dx to the operator given by
(69).

Thus we arrive at the definition of the operator differential within the
framework of the quantum analysis [29]: if we can express the operator given
by

df(A) ≡ lim
h→0

f(A + hdA) − f(A)
h

(70)

in terms of a hyperoperator mapping from an arbitrary operator dA as in
dA −→ df(A), then we refer to the hyperoperator as an operator differential
df(A)/dA and denote it in the form

df(A) =
df(A)

dA
· dA . (71)

We stress here that the operator differential df(A)/dA must be expressed in
terms of A and the commutation relation of A, or the “inner derivation”

δA ≡ [A, ] , (72)

but not in terms of the arbitrary operator dA. The convergence of (70) is
in the sense of the norm convergence which is uniform with respect to the
arbitrary operator dA.
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Let us consider the application of the above in a simple example f(A) =
A2. The definition (70) is followed by

df(A) = lim
h→0

(A + hdA)2 − A2

h
= lim

h→0

hAdA + hdAA + h2(dA)2

h
= AdA + dAA = 2AdA − (AdA − dAA)
= (2A − δA) dA . (73)

Thus we have [29]
d(A2)
dA

= 2A − δA . (74)

If A = xB + x2C, we use the result (74) for (67) and have

d
dx

(xB + x2C)2 =
(
2xB + 2x2C − δxB+x2C

)
(B + 2xC)

= (2xB + 2x2C)(B + 2xC) −
[
xB + x2C,B + 2xC

]

= 2xB2 + 4x2BC + 2x2CB + 4x3C2

−2x2(BC − CB) − x2(CB − BC)
= 2xB2 + 3x2BC + 3x2CB + 4x3C2 , (75)

which is indeed identical to the result of straightforward algebra.
We cannot see in this simple example any merit of the use of the quantum

analysis. The readers should wait for more complicated examples given later
in Sect. 6.3, where we show that the differential of exponential operators is
given in terms of the inner derivation. The Lie algebra is defined by commu-
tation relations, or the inner derivation; it is hence essential to obtain results
in terms of the inner derivation, not in terms of naive expansions such as the
right-hand side of (75).

6.2 Inner Derivation

We here provide some of the important formulas of the inner derivation (72)
as preparation for the next subsection, where we give the differential of expo-
nential operators.

First, we have linearity: for any c-numbers a and b, the inner derivation
of the operators A and B satisfies

δaA+bB = [aA + bB, ] = a [A, ] + b [B, ] = aδA + bδB . (76)

Any powers of the operator A are commutable with the inner derivation of
any powers of the same operator:

[Am, δAn ] = 0 , (77)

because
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AmδAnB = Am [An, B] = [An, AmB] = δAnAmB (78)

for an arbitrary operator B and any integers m and n. We can generalize the
identity (77) to the case of any analytic functions of the operator A:

[
f(A), δg(A)

]
= 0 , (79)

where f(A) and g(A) are defined by the Taylor expansion as

f(A) =
∞∑

n=0

anAn and g(A) =
∞∑

n=0

bnAn . (80)

Next, we prove the identity [29]

δf(A)g(A) = f(A)δg(A) + g(A)δf(A) − δg(A)δf(A) . (81)

The proof is as follows: for an arbitrary operator B, we have

f(A)δg(A)B + g(A)δf(A)B − δg(A)δf(A)B

= f(A) [g(A), B] + g(A) [f(A), B] − [g(A), [f(A), B]]
= f(A) [g(A), B] + [f(A), B] g(A) = [f(A)g(A), B]
= δf(A)g(A)B . (82)

Note that we can rewrite the identity (81) as

δf(A)g(A) = δg(A)f(A) + g(A)δf(A) − δg(A)δf(A)

= δg(A)

(
f(A) − δf(A)

)
+ g(A)δf(A) (83)

because of the identity (79). In the special case f(A) = A, we have

δAg(A) = δg(A) (A − δA) + g(A)δA . (84)

With the repeated use of the identity (84), we then prove the identity [29]

δAn = An − (A − δA)n (85)

for any integer n. This is proved by means of mathematical induction. The
identity (85) indeed holds for n = 1. Assume now that

δAn−1 = An−1 − (A − δA)n−1
. (86)

Then the identity (84) yields

δAn = δAAn−1 = δAn−1 (A − δA) + An−1δA

=
[
An−1 − (A − δA)n−1

]
(A − δA) + An−1δA

= An − (A − δA)n
. (87)
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An interesting and quite well-known identity is

exABe−xA = exδAB . (88)

We can prove this by differentiating the left-hand side by x. First, note that

d
dx

exABe−xA = exAABe−xA − exABAe−xA = exA [A,B] e−xA . (89)

We thereby have the following in each order of x:

d
dx

exABe−xA

∣∣∣∣
x=0

= exA [A,B] e−xA
∣∣
x=0

= δAB , (90)

d2

dx2
exABe−xA

∣∣∣∣
x=0

= exA [A, [A,B]] e−xA
∣∣
x=0

= δA
2B , (91)

· · · ,

which proves the identity (88). As a corollary, we obtain the following identity:

eδAeδB = eδΦ if eAeB = eΦ . (92)

The proof is straightforward; for an arbitrary operator C, we have

eδAeδBC = eAeBCe−Be−A = eΦCe−Φ = eδΦC . (93)

6.3 Differential of Exponential Operators

We are now in a position to discuss the differential of exponential operators.
We begin with the differential of the power of an operator, f(A) = An, a
generalization of the identity (74). The result is [29]

d (An)
dA

=
An − (A − δA)n

δA
=

δAn

δA
. (94)

An important comment is in order. The identity (94) does not claim that the
inverse of δA is well-defined. In fact, the inner derivation δA in the denominator
is canceled when we expand the numerator of the second expression. The
denominator is well-defined only in such cases.

We use the identity (85) in the derivation of the identity (94). The defini-
tion (70) is followed by

df(A) = lim
h→0

(A + hdA)n − An

h
=

n∑

j=1

Aj−1(dA)An−j

=



nAn−1 −
n∑

j=1

Aj−1δAn−j



dA
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=




nAn−1 −
n∑

j=1

Aj−1
[
An−j − (A − δA)n−j

]



dA

=
n∑

j=1

Aj−1 (A − δA)n−j dA =
An − (A − δA)n

A − (A − δA)
dA

=
An − (A − δA)n

δA
dA =

δAn

δA
dA . (95)

Note again that the transformation in the fourth line is well-defined only
because the expansion of the numerator cancels the denominator.

We can generalize the identity (94) to any analytic functions defined by
the Taylor expansion (80). The result is

df(A)
dA

=
f(A) − f (A − δA)

δA
=

δf(A)

δA
. (96)

It is interesting to note that the operator differential or the quantum deriva-
tive [10] is expressed by a difference form of hyperoperators. As a special case,
we arrive at the identity [29]

deA

dA
=

eA − eA−δA

δA
= eA 1 − e−δA

δA
. (97)

6.4 Example: Baker-Campbell-Hausdorff Formula

We now use the formula (97) for the derivation of the Baker-Campbell-
Hausdorff formula, or the derivation of higher-order terms of the exponent
Φ(x) given in

eΦ(x) = exAexB . (98)

The differential of the left-hand side of (98) gives

d
dx

eΦ(x) =
deΦ

dΦ
· dΦ(x)

dx
= eΦ(x) 1 − e−δΦ(x)

δΦ(x)

dΦ(x)
dx

(99)

owing to (97), while the differential of the right-hand side of (98) gives

d
dx

exAexB = exAAexB + exAexBB = exAexB
(
e−xBAexB + B

)

= eΦ(x)
(
e−xδBA + B

)
, (100)

where we have used the identity (88). Equating the both sides, we have

dΦ(x)
dx

=
δΦ(x)

1 − e−δΦ(x)

(
e−xδBA + B

)
=

δΦ(x)

eδΦ(x) − 1

(
A + exδAB

)
. (101)

The second equality is due to the identity (92).
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We can expand the right-hand side of (101) as follows. Note here that

eδΦ(x) = exδAexδB yields δΦ(x) = log
(
exδAexδB

)
. (102)

Thus we transform (101) as

dΦ(x)
dx

=
log

(
exδAexδB

)

exδAexδB − 1
(
A + exδAB

)

=
∞∑

k=0

(−1)k

k + 1
(
exδAexδB − 1

)k (
A + exδAB

)
. (103)

We finally arrive [30] at

Φ(x) =
∞∑

k=0

(−1)k

k + 1

∫ x

0

(
etδAetδB − 1

)k (
A + etδAB

)
dt . (104)

It is very important to notice here that all the expansion terms are given by
commutation relations. One of the merits of the quantum analysis is to be
able to express the expansion in terms of commutation relations.

Let us derive, for example, the term of the third order of x, or the second
order of t of (104). Up to the second order, we have

etδAetδB − 1 
 t (δA + δB) +
t2

2
(
δA

2 + 2δAδB + δB
2
)

= tδA+B +
t2

2
(
δA+B

2 + δAδB − δBδA

)
, (105)

(
etδAetδB − 1

)2 
 t2δA+B
2, (106)

and hence
(
etδAetδB − 1

)0 (
A + etδAB

)

 (A + B) + tδAB +

t2

2
δA

2B, (107)
(
etδAetδB − 1

)1 (
A + etδAB

)

 tδA+B (A + B)

+
t2

2
(
δA+B

2 + δAδB − δBδA

)
(A + B) + t2 (δA + δB) δAB

=
t2

2
(δAδBA − δBδAB) + t2 (δA + δB) δAB, (108)

(
etδAetδB − 1

)2 (
A + etδAB

)

 t2δA+B

2 (A + B) = 0. (109)

Summing up the second-order terms with the coefficient (−1)k/(k + 1), we
have
t2

2
δA

2B − t2

4
(δAδBA − δBδAB) − t2

2
(δA + δB) δAB =

t2

4
(
δA

2B + δB
2A

)
,

(110)
which we integrate to obtain

x3

12
(
δA

2B + δB
2A

)
=

x3

12
([A, [A,B]] + [[A,B] , B]) . (111)
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6.5 Example: Ruth’s Formula

We now extend the above computation to the exponential product

ep1xAep2xBep3xAep4xBep5xAep6xB = eΦ(x) (112)

and seek Ruth’s formula (64) as a specific solution of the general formula. We
compute the second-order and third-order correction terms of Φ(x), defined
in

Φ(x) = x(A + B) + x2R2 + x3R3 + O(x4) , (113)

and put R2 = R3 = 0.
The same computation as from (99) through (104) produces

Φ(x) =
∞∑

k=0

(−1)k

k + 1

∫ x

0

(
ep1tδAep2tδB ep3tδAep4tδBep5tδAep6tδB − 1

)k

×
(
p1A + ep1tδAp2B + ep1tδAep2tδBp3A · · ·

)
dt . (114)

Note again that all the terms are given by commutation relations.
For the term k = 0, we have up to the second order of x,

p1A + ep1tδAp2B + ep1tδAep2tδBp3A · · ·


 p1A +
(

1 + tp1δA +
t2

2
p1

2δA
2

)
p2B

+
[
1 + t (p1δA + p2δB) +

t2

2
(
p1

2δA
2 + 2p1p2δAδB + p2

2δB
2
)]

p3A + · · ·

= (p1 + p3 + p5) A + (p2 + p4 + p6) B

+ t [p1p2δAB + p2p3δBA + (p1 + p3) p4δAB

+ (p2 + p4) p5δBA + (p1 + p3 + p5) p6δAB]

+
t2

2

[
p2
1p2δA

2B + p2
2p3δB

2A + 2p1p2p3δAδBA + (p1 + p3)
2
p4δA

2B

+ 2p2p3p4δBδAB + (p2 + p4)
2
p5δB

2A

+ 2 (p1p2 + p1p4 + p3p4) p5δAδBA + (p1 + p3 + p5)
2
p6δA

2B

+2 (p2p3 + p2p5 + p4p5) p6δBδAB
]

. (115)

The zeroth-order term with respect to t appears only here and hence we have
the conditions

p1 + p3 + p5 = 1 and p2 + p4 + p6 = 1 . (116)

Using (116) and the identity δBA = −δAB, we can reduce the right-hand side
of (115) as

A + B + t(1 − 2q)δAB +
t2

2
[
(1 − q − 3r)δA

2B + (q − 3s)δB
2A

]
(117)
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with

q ≡ p2p3 + p2p5 + p4p5 , (118)
r ≡ p1p2p3 + p1p2p5 + p1p4p5 + p3p4p5 , (119)
s ≡ p2p3p4 + p2p3p6 + p2p5p6 + p4p5p6 . (120)

For k = 1, we first have

ep1tδAep2tδBep3tδAep4tδBep5tδAep6tδB − 1


 tδA+B +
t2

2
[
δA

2 + δB
2 + 2(1 − q)δAδB + 2qδBδA

]
, (121)

where we already used the conditions in (116). Applying (121) to (117) and
dropping higher-order terms, we note that the first-order term vanishes and
have
(
ep1tδAep2tδB ep3tδAep4tδB ep5tδAep6tδB − 1

)

×
(
p1A + ep1tδAp2B + ep1tδAep2tδBp3A · · ·

)


 t2(1 − 2q)δA+BδAB +
t2

2
[
δA

2 + δB
2 + 2(1 − q)δAδB + 2qδBδA

]
(A + B)

= t2(1 − 2q)
(
δA

2B − δB
2A

)

+
t2

2
[
δA

2B + δB
2A − 2(1 − q)δA

2B − 2qδB
2A

]

= t2
(

1
2
− q

)(
δA

2B − δB
2A

)
. (122)

The second-order term of t in the term k = 2 vanishes just as in (109).
Thus we arrive at

Φ(x) = x(A + B) +
x2

2
(1 − 2q)δAB

+
x3

3!

[(
1
2
− 3r

)
δA

2B +
(

1
2
− 3s

)
δB

2A

]
+ O(x4) . (123)

Putting the second-order and third-order terms to zero, we have a set of
simultaneous equations of the parameters as

p1 + p3 + p5 = 1 , (124)
p2 + p4 + p6 = 1 , (125)

2q = 2 (p2p3 + p2p5 + p4p5) = 1 , (126)

6r
()
= 3 (p1 + 2p3p4p5) = 1 , (127)

6s
()
= 3 (2p2p3p4 + p6) = 1 . (128)
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Fig. 5. The solution line of the set of simultaneous equations (124)–(128)

We can confirm that Ruth’s formula (64), or

p1 =
7
24

, p2 =
2
3
, p3 =

3
4
, p4 = −2

3
, p5 = − 1

24
, and p6 = 1 (129)

is indeed a solution of the above set of simultaneous equations. With six
variables for five equations, the solution is in fact a continuous line; Ruth’s
solution (129) is just a point on the line. By adjusting the last variable p6, we
have the continuous solution shown in Fig. 5.

(We can solve the set of equations with five parameters by putting p6 = 0,
but the solution is complex.)

6.6 Example: Perturbational Composition

We finally present an interesting exercise, motivated by the “perturbational
composition” [44]. Suppose that we apply a weak transverse field to an Ising
spin. We ask what is the correction term in the exponent of the right-hand
side of

e
x
2 γσxexσze

x
2 γσx = eΦ(x,γ) = ex(σz+γC1(x)+O(γ2)) . (130)

Notice that we expand the exponent with respect to the perturbation para-
meter γ, not with respect to x as in the preceding sections The first-order
perturbation term C1(x) in turn contains higher orders of x. We could ex-
plicitly compute the 2× 2 matrices on both sides of (130), expand them with
respect to γ and compare them term by term, but the quantum analysis pro-
vides a more elegant way of computation.

We differentiate the both sides of (130) with respect to γ:

d
dγ

ex(σz+γC1(x)+O(γ2)) =
deΦ

dΦ
· ∂Φ(x, γ)

∂γ
= eΦ 1 − e−δΦ

δΦ

∂Φ

∂γ
, (131)
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d
dγ

e
x
2 γσxexσze

x
2 γσx =

x

2
(
σxe

x
2 γσxexσze

x
2 γσx + e

x
2 γσxexσze

x
2 γσxσx

)

=
x

2
eΦ

(
e−ΦσxeΦ + σx

)

=
x

2
eΦ

(
e−δΦ + 1

)
σx . (132)

Equating the both sides, we have

∂Φ

∂γ
= xC1(x) + O(γ)

=
x

2
δΦ

1 − e−δΦ

(
1 + e−δΦ

)
σx

=
x

2
(xδσz

+ O(γ))
1 + e−δΦ

1 − e−δΦ
σx . (133)

Putting γ = 0, we have

C1(x) =
1
2
xδσz

1 + exp (−xδσz
)

1 − exp (−xδσz
)
σx =

1
2

∞∑

n=0

anxnδσz

nσx (134)

owing to the fact δΦ = xδσz
+O(γ), where we have made the Taylor expansion

x
1 + e−x

1 − e−x
=

∞∑

n=0

anxn (135)

with a0 = 1. We also note that the function (135) is even with respect to x
and hence an = 0 for odd integers n.

The right-hand side of (134) is explicitly calculated as follows. In each
order, we have

δσz
σx = [σz, σx] = 2iσy , (136)

δσz

2σx = 2i [σz, σy] = 4σx , (137)
δσz

3σx = 4 [σz, σx] = 8iσy , (138)
· · · ,

or in general,

δσz

nσx =
{

2niσy for odd n ,
2nσx for even n .

(139)

We substitute (139) for each even-order term of the right-hand side of (134)
and arrive at

C1(x) =
1
2

∞∑

n=0

an(2x)nσx = x
1 + e−2x

1 − e−2x
σx = (x coth x) σx . (140)

(In the second equality, we used the Taylor expansion (135) in the reverse
direction.)
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In summary, we have

e
x
2 γσxexσze

x
2 γσx = ex[σz+γ(x coth x)σx+O(γ2)] . (141)

The coefficient x coth x behaves as shown in Fig. 6. We have x coth x 
 1 for
small x as is expected, but x coth x 
 x for large x, and hence the first-order
perturbation term grows as x2.

−4 −2 20 4

1

2

3

4

5

x

x coth x

Fig. 6. The coefficient of the first-order perturbation of (141)

7 Summary

In the present article, we have reviewed a continual effort on generalization
of the Trotter formula to higher-order exponential product formulas. As was
emphasized in Sect. 3, the exponential product formula is a good and useful
approximant, particularly because it conserves important symmetries of the
system dynamics.

We focused on two algorithms of constructing higher-order exponential
product formulas. The first is the fractal decomposition, where we construct
higher-order formulas recursively. The second is to make use of the quantum
analysis, where we compute higher-order correction terms directly. As inter-
ludes, we also have described the decomposition of symplectic integrators, the
approximation of time-ordered exponentials, and the perturbational compo-
sition. It is our hope that the readers find the present article a useful and
tutorial “manual” when they numerically investigate dynamical systems. For
more practical applications of the exponential product formulas, we refer the
readers to the review articles found in [45, 46, 47, 48].
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8 Appendix

Appendix A

Hybrid Exponential Product Formula

We mention here another kind of the exponential product formula [20, 21, 22].
Consider the Trotter approximant

exAexB = ex(A+B)+ 1
2 x2[A,B]+O(x3) . (142)

We can cancel out the second-order correction term in the form

exAexBe−
1
2 x2[A,B] = ex(A+B)+O(x3) . (143)

If, in some problems, the commutation relation [A,B] is easily diagonalized,
(143) may be a useful approximant.

A more complicated one is the fourth-order approximant [20, 21, 22]

e
x3
432 [B,[A,B]]Sa

(x

3

)
Sb

(x

3

)
Sa

(x

3

)
e

x3
432 [B,[A,B]] = ex(A+B)+O(x5) , (144)

where

Sa(x) ≡ e
1
2 xAexBe

1
2 xA and Sb(x) ≡ e

1
2 xBexAe

1
2 xB . (145)

In fact, the diffusion equation is described by

A = −1
2
∆ and B = V (q) (146)

and we have
[B, [A,B]] = (∇V (q))2 . (147)

The above type of the exponential product formula was referred to as
the hybrid exponential product formula. We do not give its details in this
article, since commutation relations are not easily diagonalized except for a
few specific problems.

Appendix B

World-Line Quantum Monte Carlo Method

In the present appendix, we give a short review of the world-line quantum
Monte Carlo method. The world-line quantum Monte Carlo method is to
transform the partition function (10) of a quantum system H into the partition
function of a classical system by means of the path-integral representation and
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simulate the latter system. We explain the method using the transverse Ising
model (11), or H = A + B with

A = −
∑

〈i,j〉
Jijσ

z
i σz

j and B = −Γ
∑

i

σx
i . (148)

The starting point is the Trotter decomposition (21) of the partition func-
tion, namely the Suzuki-Trotter transformation [3], of the form:

Z = Tr e−βH = lim
n→∞

Tr
(
e−

β
n Ae−

β
n B

)n

= lim
n→∞

∑

{σi}

〈{
σ

(0)
i

} ∣∣∣
(
e−

β
n Ae−

β
n B

)n∣∣∣
{

σ
(0)
i

}〉

= lim
n→∞

∑
{

σ
(0)
i

}

〈{
σ

(0)
i

}∣∣∣ e−
β
n Ae−

β
n Be−

β
n Ae−

β
n B · · · e−

β
n B

∣∣∣
{

σ
(0)
i

}〉
. (149)

In the second line, we have taken the trace with respect to a complete basis
set by using the spin z axis as the quantization axis:

σz
k

∣∣∣
{

σ
(0)
i

}〉
= σ

(0)
k

∣∣∣
{

σ
(0)
i

}〉
, (150)

where the eigenvalue is σ
(0)
k = ±1. The meaning of the superscript (0) becomes

self-evident just below. We further insert the resolution of unity in between
each pair of the exponential operators in the last line of (149), obtaining

Z = lim
n→∞

∑
{

σ
(0)
i

}
∑

{
σ

(1)
i

}
∑

{
σ

(2)
i

}
· · ·

∑
{

σ
(n−1)
i

}
〈{

σ
(0)
i

} ∣∣∣e−
β
n A

∣∣∣
{

σ
(0)
i

}〉〈{
σ

(0)
i

} ∣∣∣e−
β
n B

∣∣∣
{

σ
(1)
i

}〉

×
〈{

σ
(1)
i

} ∣∣∣e−
β
n A

∣∣∣
{

σ
(1)
i

}〉〈{
σ

(1)
i

} ∣∣∣e−
β
n B

∣∣∣
{

σ
(2)
i

}〉

· · · ×
〈{

σ
(n−1)
i

} ∣∣∣e−
β
n B

∣∣∣
{

σ
(0)
i

}〉
. (151)

In the above expression, we used the fact that the operator A is diagonal in
the representation of {σ(m)

i } and hence made the complete set on the both
sides of each operator e−

β
n A identical. In contrast, the operator e−

β
n B has

off-diagonal elements.
Let us calculate the matrix elements in (151). The matrix element of the

operator e−
β
n A is easy:

〈{
σ

(m)
i

} ∣∣∣e−
β
n A

∣∣∣
{
σ

(m)
i

}〉
= exp



β

n

∑

〈i,j〉
Jijσ

(m)
i σ

(m)
j



 . (152)
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This is because the operators {σz
i } are all diagonal in the present represen-

tation as in (150). On the other hand, the operator e−
β
n B has off-diagonal

elements as well as diagonal ones in the following form:
〈{

σ
(m)
i

} ∣∣∣e−
β
n B

∣∣∣
{

σ
(m+1)
i

}〉
=

∏

i

〈
σ

(m)
i

∣∣∣e
βΓ
n σx

i

∣∣∣σ(m+1)
i

〉
(153)

with each matrix element given by
〈
σ

(m)
i

∣∣∣e
βΓ
n σx

i

∣∣∣σ(m+1)
i

〉

=

∣∣∣σ(m+1)
i = +1

〉 ∣∣∣σ(m+1)
i = −1

〉

〈
σ

(m)
i = +1

∣∣∣

〈
σ

(m)
i = −1

∣∣∣





cosh
βΓ

n
sinh

βΓ

n

sinh
βΓ

n
cosh

βΓ

n




. (154)

These matrix elements are expressed in a single equation
〈
σ

(m)
i

∣∣∣e
βΓ
n σx

i

∣∣∣σ(m+1)
i

〉
= exp

(
γnσ

(m)
i σ

(m+1)
i + δn

)
, (155)

where the parameters γn and δn are defined in

eγn+δn = cosh
βΓ

n
and e−γn+δn = sinh

βΓ

n
, (156)

or more explicitly defined by

γn = −1
2

log tanh
βΓ

n
and δn =

1
2

log
1
2

sinh
2βΓ

n
. (157)

The expressions (152) and (155) give the partition function (151) in the
form [3]

Z = lim
n→∞

∑
{

σ
(m)
i

}
e−βHn (158)

with the resulting classical Hamiltonian [3]

− βHn ≡ β

n

n−1∑

m=0

∑

〈i,j〉
Jijσ

(m)
i σ

(m)
j + γn

n−1∑

m=0

∑

i

σ
(m)
i σ

(m+1)
i , (159)

where we dropped a constant term due to δn. Note that the periodic boundary
conditions, σ

(n)
i ≡ σ

(0)
i , must be required in the second term of (159) because

the trace operation in (149) demands it.
The classical Hamiltonian (159) is interpreted as follows (Fig. 7). Suppose

that the original quantum system (148) is defined on a square lattice. The
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Fig. 7. The three-dimensional classical system (159) mapped from the two-
dimensional quantum system (148)

first term of (159) indicates that the two-dimensional system is replicated
into n layers with the intra-layer interaction reduced by n times. The second
term of (159) represents the inter-layer interactions. The coupling is −γn/β as
defined in (159). Thus the quantum system on a square lattice is mapped to an
Ising model on a cubic lattice. In general, a d-dimensional quantum system
is mapped to a (d + 1)-dimensional classical system. The additional axis is
called the Trotter direction. The physical quantities of the quantum system
can be estimated by Monte Carlo simulation of the mapped classical system.
This is the basic idea of the world-line quantum Monte Carlo method [3].

We can use this mapping in order to study the quantum annealing [40, 41,
42]. Suppose that we look for the ground state of the diagonal part A of the
system (148). Random exchange interactions {Jij} may produce many local
minima that are only slightly above the ground state in energy but far apart
from the ground state in the phase space. The simulated annealing, a well-
known method of ground-state search, is often trapped in a local minima and
does not reach the ground state. In quantum annealing, we use the transverse
field Γ in order to induce tunneling from local minima to the ground state.
We first apply the off-diagonal part B of (148) strongly and turn it off grad-
ually, hoping to end up with the ground state of the diagonal part A. This
corresponds to a Monte Carlo simulation of the mapped classical system (159)
with the intra-layer coupling γn being infinitesimally weak at the beginning
and infinitely strong at the end. Each layer of the system (159) is first inde-
pendent of each other and is gradually frozen into an identical configuration,
which we hope is the ground state.
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An annoying problem inherent in the algorithm of the quantum Monte
Carlo method is the systematic error due to the finite Trotter number n.
It used to be that simulations were carried out for various finite values of
n, quantities were estimated in each simulation, and then the limit n → ∞
was taken in the process of the data analysis, which was called the Trotter
extrapolation. A recent development of the quantum Monte Carlo method
dramatically changed the situation. We here mention the development briefly;
see [39] for a tutorial and exhaustive review of the topic.

In the most recent quantum Monte Carlo algorithm, it is possible for some
systems to take the Trotter limit before we set up the classical system for
simulation. Taking the Trotter limit n → ∞, we have a continuum Trotter
axis (Fig. 8). (Note again that the boundary conditions are required in the
Trotter direction.) The interaction is described as follows (Fig. 9). Instead of
Ising spins on lattice points of a Trotter axis, we have up-spin domains and
down-spin domains on the axis. Instead of intra-layer interactions between a
pair of nearest-neighbor spins, we have parallel-spin areas and anti-parallel-
spin areas. In Monte Carlo simulation, we update the up-spin domains and
down-spin domains on the basis of the energy of the parallel-spin areas and
anti-parallel-spin areas.

It is thus possible in such situations to carry out a simulation in the Trotter
limit n → ∞. Monte Carlo estimates of such a simulation are free of the
systematic error of the order β2/n in (21), and hence do not need the higher-
order exponential product formula for such systems.

layer 0

layer 1

layer 2

layer m 

site j site i site j site i site j site i 

layer n−1 

…
…

Fig. 8. In the Trotter limit n → ∞, the Trotter axis becomes a continuum. The
intra-layer interaction becomes an interaction between two continuum axes
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site j site i site j site i 

Fig. 9. Spins on lattice points become domains on Trotter axes in the Trotter limit
n → ∞
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1 Introduction

In this chapter of this monograph we want to provide an overview on the
current status of our knowledge on the theory of quantum spin glasses. Spin
glasses are frustrated magnetic systems and a hallmark of their “glassiness” is
the presence of a rugged energy landscape with many local minima. It appears
obvious that in such an environment quantum effects might play an impor-
tant role by opening new routes for relaxation due to quantum mechanical
tunneling and indeed one observes experimentally a significant acceleration
of the dynamics at low temperatures if quantum fluctuations are enhanced.
Here we will first focus more on the equilibrium properties of disordered quan-
tum magnets, with and without frustration, in particular to what is expected
(theoretically) to happen at and close to a quantum critical point.

A quantum spin glass is a magnetic system that can be described by a
quantum mechanical Hamiltonian with spin-glass like features (randomness
and frustration). In such a system, a spin glass phase may exist while at the
same time quantum fluctuations play an important role, possibly a dominant
role, in particular, in the absence of thermal fluctuations at zero temperature.
Such a Hamiltonian is, for instance, the spin-1/2 Heisenberg spin glass

H =
∑

(ij)

Jij(σx
i σx

j + σy
i σy

j + σz
i σz

j ) , (1)

where σx,y,z are Pauli spin-1/2 operators, Jij random exchange interactions
(e.g., Gaussian), and the sum runs over all nearest neighbors on some d-
dimensional lattice. Another example is the Ising spin glass in a transverse
field

H = −
∑

(ij)

Jijσ
z
i σz

j + Γ
∑

σx
i , (2)

where Γ denotes the transverse field strength. This Hamiltonian becomes di-
agonal if Γ is zero, in which case it reduces simply to the classical Ising spin

H. Rieger: Quantum Spin Glasses, Lect. Notes Phys. 679, 69–99 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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glass that we have discussed in the previous sections. Thus the role of the pa-
rameter Γ is to tune the strength of quantum fluctuations, they do not play
a role in the equilibrium statistical physics of a diagonal Hamiltonian. An
important experimental realization of this model Hamiltonian is the system
LiHoxY1−xF4,[5] an insulating magnetic material in which the magnetic ions
(Ho) are in a doublet state due to crystal field splitting. The interactions be-
tween Ho ions can be described by an Ising model with dipolar couplings. For
x = 1 the system is a ferromagnet with a critical temperature of Tc = 1.53 K
at Γ = 0 and as x is reduced the critical temperature decreases. For concen-
trations below 25% Ho and above 10% Ho a thermal phase transition to a
spin glass phase occurs indicated by a diverging nonlinear susceptibility (for
instance at x = 0.167 the spin glass transition temperature is Tg = 0.13 K at
Γ = 0). If a transverse field is applied (Γ > 0) the spin glass transition tem-
perature decreases monotonically to zero (see Fig. 1). This particular point,
at zero temperature and at a critical field strength is what we denote as a
quantum-phase-transition point [1].

Fig. 1. Phase diagram of LiHo0.167Y0.833F4 according to the measurement of the
nonlinear susceptibility. From [5]

Earlier reviews on quantum spin glasses and in particular the Ising spin
glass in a transverse field can be found in [2, 3, 4]. Here we try to focus on a
number of new developments that have been made since then.

2 Random Transverse Ising Models in Finite Dimensions

The generic phase diagram for the EA Ising spin glass model in a transverse
field Γ is shown in Fig. 2 for two dimensions and for three dimensions. In
the three-dimensional case, starting from the classical spin glass transition
temperature Tc for Γ = 0 the critical temperature decreases monotonically
with increasing transverse field strength Γ until it reaches T = 0. One expects
that the universality class of the transition at any non-vanishing temperature
is the same as the one of the classical Ising spin glass transition at Tc. The
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δ=Γ−Γc

Γc

ξ∼δ−ν
Γ

T 2d

ξ∼T
−1/z

T

Γc

Tc

QSG
Γ

ξ∼(T-Tc[Γ])−νcl

ξ∼T-1/z

ξ∼δ−ν

3d

PM
SG

Fig. 2. Left: Generic phase diagram for the two-dimensional Ising spin glass in
a transverse field Γ . Since no spin glass phase is present in d = 2 for T > 0,
only a quantum spin glass phase and a quantum phase transition at T = 0 exists.
Approaching the quantum critical point at Γc by decreasing the temperature T , the
correlation length diverges like T−1/z, where z is the dynamical critical exponent
(if z is formally infinite, it increases logarithmically). Right: Generic phase diagram
of a three-dimensional Ising spin glass in a transverse filed. The classical transition
temperature (at Γ = 0) is Tc and the corresponding classical correlation length
exponent is νcl

zero-temperature quantum phase transition, however, establishes a new uni-
versality class. This transition exists in any dimension, including one and two
dimensions. A critical value Γc for the transverse field strength separates a dis-
ordered or paramagnetic phase for Γ > Γc from an ordered phase for Γ < Γc.
This transition is characterized by a diverging length scale ξ ∼ |Γ −Γc|−ν and
a vanishing characteristic frequency ω ∼ ∆E ∼ ξ−z. The latter is the quan-
tum analog of “critical slowing-down” in the critical dynamics of classical,
thermally driven transitions. The new and most important property occur-
ring at zero temperature in the random transverse Ising model is the infinite
randomness fixed point (IRFP) that governs the quantum critical behavior at
the critical value Γc of the transverse field [13]. One feature of the IRFP is
that the dynamical exponent z is formally infinite, the relation between length
and energy scales is not algebraic but exponential: ∆E ∼ exp(−Aξψ).

To describe this scenario we generalize the discussion of the transverse
Ising spin glass by including also random ferromagnetic interactions Jij >
0, because many more analytical and numerical results are available for the
ferromagnetic rather than the spin glass case and the same main features are
expected to hold in both cases.

2.1 Random Transverse Ising Chain
and the Infinite Randomness Fixed Point

Let us start with a review of the one-dimensional case, in which the sign (if it
can be negative) of the nearest neighbor couplings can be gauged away so that
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all interactions are ferromagnetic and the resulting model is the random Ising
chain in a transverse field or a random transverse-field Ising model (RTIM)
in one dimension:

H = −
∑

i

Jiσ
z
i σz

i+1 +
∑

i

hiσ
x
i . (Ji > 0) (3)

A uniform transverse field is represented by hi = Γ for all sites. Since this
case and the case of random transverse fields turn out to belong to the same
universality class, we also consider random transverse field here. The couplings
Ji and the transverse fields hi are random variables with distributions π(J)
and ρ(h), respectively. The Hamiltonian in (3) is closely related to the transfer
matrix of a classical two-dimensional layered Ising model, which was first
introduced and studied by McCoy and Wu [9]. Extensive researches on this
model were initiated by D. Fisher[10] with an application of the Ma-Dasgupta-
Hu renormalization group scheme,[14] followed by numerical and analytical
work [15, 16, 17, 18, 19, 20, 21, 22]. We briefly summarize the results. The
quantum control-parameter of the model is given by

δ =
[lnh]av − [ln J ]av

var[ln h] + var[ln J]
. (4)

For δ < 0 the system is in the ordered phase with a non-vanishing aver-
age magnetization, whereas the region δ > 0 corresponds to the disordered
phase. There is a phase transition in the system at δ = 0 with rather special
properties, which differs in several respects from the usual second-order phase
transitions of pure systems. One of the most striking phenomena is that some
physical quantities are not self-averaging, which is due to very broad, loga-
rithmic probability distributions. As a consequence the typical value (which is
the value in an frequent event) and the average value of such quantities can
be drastically different. Thus the critical behavior of the system is primarily
determined by rare events that give dominating contributions to the averaged
values of various observables.

The average bulk magnetization is characterized by an exponent β, which
is β = 2 − τ where τ = (1 +

√
5)/2 is the golden-mean. The average spin-

spin correlation function C(r) = [〈σz
i σz

i+r〉]av involves the average correlation
length ξ, which diverges at the critical point as ξ ∼ |δ|−νav , and νav = 2.
On the other hand, the typical correlations have a faster decay, since ξtyp ∼
|δ|−νtyp with νtyp = 1.

Close to the critical point the relaxation time tr is related to the corre-
lation length as tr ∼ ξz, where z is the dynamical exponent. The random
transverse-field Ising spin chain is strongly anisotropic at the critical point,
since according to the RG-picture[10] and to numerical results[23]

ln tr ∼ ξ1/2 , (5)

which corresponds to z = ∞. On the other hand the relaxation time is related
to the inverse of the energy-level spacing at the bottom of the spectrum tr ∼
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(∆E)−1. Then, as a consequence of (5), some quantities (such as specific
heat, bulk and surface susceptibilities, etc.) have an essential singularity at
the critical point, and the correlation function of the critical energy-density
has a stretched exponential decay, in contrast to the usual power law behavior.

Away from the critical point in the disordered phase the rare events with
strong correlations still play an important role, up to the point, δ = δG. Above
this point, all transverse-fields are bigger than the interactions. In the region
0 < δ < δG, which is called the Griffiths-McCoy phase [9, 8], the magnetization
is a singular function of the uniform longitudinal field Hz as msing ∼ |Hz|1/z,
where the dynamical exponent z varies with δ. At the two borders of the
Griffiths-McCoy phase it behaves as z ≈ 1/2δ × (1 + O(δ)) [10] as δ ↘ 0 and
z = 1 as δ ↗ δG, respectively.

All these results could be obtained and understood by the application of
a Ma-Dasgupta-Hu renormalization group scheme [10], in which strong bonds
or fields are successively decimated either by elimination of spins (in case of
large transverse fields) or formation of strongly coupled clusters (in case of
large ferromagnetic bonds). With decreasing energy scale ∆ of the bonds and
fields to be decimated the typical size L of these strongly coupled clusters
increases as

L ∼ | ln ∆|1/ψ (6)

defining an exponent ψ that is 1/2 in the random transverse-field Ising chain.
Such a cluster typically contains

µ ∼ Lφψ(= | ln ∆|φ) (7)

spins that essentially behave collectively (for instance in response to the ap-
plication of a longitudinal magnetic field H – and thus generating a huge con-
tribution to the spin susceptibility). This defines another exponent φ, which
is (1 +

√
5)/2 in the RTIM. Finally there is the correlation length exponent ν

that defines the characteristic length scale of spin-spin correlations away from
the critical point.

The RG runs into a fixed point that is fully determined by the geometri-
cal features of the clusters that are generated asymptotically – very much in
reminiscence of the percolationndexpercolation fixed point inconventional per-
colation. This picture is expected to hold also for higher-dimensional RTIMs,
and even for the spin glass case. Therefore we summarize its essence here.
The distribution of the random bonds and fields not yet decimated during
the RG procedure becomes broader and broader. Hence the name, infinite
randomness fixed point (IRFP). It is characterized by the three exponents ψ,
φ and ν and the critical behavior of the physical observables is determined
by them. For instance the correlation function (at criticality) for two spins
at site i and j with a distance r from each other is simply given by their
probability to belong to the same cluster of size r: [Cij ]av ∼ |ri − rj |−2(d−φψ).
Other relations follow straightforwardly from this scheme[13]:
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lowest energy scale: − ln ∆ ∼ Lψ

magnetic moment: µ ∼ (− ln ∆)φ

average correlations: [Cij ]av ∼ |ri − rj |−2(d−φψ)

typical correlations: −[ln Cij ]av ∼ κij |ri − rj |ψ
finite T -susceptibility: χ ∼ T−1(− ln T )2φ−d/ψ

finite H-magnetization: M ∼ (− ln H)−φ+d/ψ

Away from the critical point (δ �= 0) the correlation length is finite and its
average and typical value scale differently:

average correlation length: ξav ∼ δ−ν

typical correlation length: ξtyp ∼ ξ1−ψ
av

spontaneous magnetization: M0 ∼ (−δ)ν(d−φψ)

In spite of the finiteness of the average correlation length away from the
critical point still arbitrarily large strongly-coupled clusters exist – though
with an exponentially small probability – leading to algebraically decaying
correlations in imaginary time. Phenomenologically, one can understand that
as a consequence of the appearence of Griffiths singularities [8] close to a
quantum critical point [7, 11]: Let L be the size of a region of strongly coupled
spins. In a random system in the paramagnetic phase they occur with an ex-
ponentially small probability P (L) ∝ exp(−λLd). For instance in the diluted
ferromagnet strongly coupled regions are connected clusters and their proba-
bility is pV , where V is the region’s volume and p is the site occupation prob-
ability (0 < p < 1). Then, λ is given by λ = | ln p| > 0. The special feature of
transverse-field Ising systems is that in first order perturbation theory the gap
of a finite system containing Ld spins is exponentially small: ∆0 ∼ exp(−sLd).
An exponentially small gap means an exponentially large tunneling time,
and combining the two observations on cluster probability and relaxation
time one obtains an algebraical decay for the spin-spin correlation function:
C(τ) = [〈σi(τ)σi(0)〉]av ∼ τ−λ/s = τ−d/z(δ). The parameter z(δ) = s/dλ is
called the dynamical exponent in the Griffiths phase and it varies continuously
with the distance from the critical point. The consequences, e.g., for the sus-
ceptibility are dramatic: χ(ω = 0) =

∫ 1/T

0
dτ C(τ) ∝ T−1+d/z(δ) which implies

that for z > d the susceptibility diverges for T → 0 even away from the crit-
ical point. Since in random transverse-field Ising system z(δ) grows without
bounds for δ → 0 (and thus merging with the critical dynamical exponent at
δ = 0, which is infinite), there is always a region around the critical point,
where the susceptibility diverges.

In general the dynamical exponent z(δ) introduced above is expected to
determine all singularities occurring in the Griffiths-McCoy phase close to an
IRFP[13]:
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dynamical exponent: z(δ) ∝ δ−ψν

lowest energy scale: ∆ ∼ L−z(δ)

finite H-magnetization: M ∼ H1/z(δ)

susceptibility: χ(ω = 0) ∼ T−1+d/z(δ)

nonlinear susceptibility: χnl(ω = 0) ∼ T−1+d/3z(δ)

specific heat: c ∼ T d/z(δ)

The last three tables summarize the scaling predictions at and close to
a IRFP and in 1d they have been confirmed many times, analytically and
numerically [15, 16, 17, 18, 19, 20, 21, 22].

2.2 Diluted Ising Ferromagnet in a Transverse Field

In higher dimensions d ≥ 2 the randomly diluted Ising-ferromagnet in a trans-
verse field is a show-case for a quantum phase transition governed by an IRFP.
The site diluted model is defined by the Hamiltonian

H = −J
∑

(ij)

εiεjσ
z
i σz

j − Γ
∑

i

εiσ
x
i (8)

and the bond diluted model by

H = −J
∑

(ij)

εijσ
z
i σz

j − Γ
∑

i

σx
i (9)

where εi and εij are random variables that take on the values 1 with proba-
bility p and 0 with probability 1 − p. Its phase diagram is depicted in Fig. 3

Along the vertical line starting from the point (p, Γ ) = (pc, 0) up to the
multi-critical point the transition from the paramagnetic to the ferromagnetic
phase is a classical percolation transition [24, 25]. Denoting the distance from
the critical point with δ = pc − p the connectivity correlation length diverges

Γc

Multicritical point

Percolation threshold

T=0

1-pc

ΓM

Γ
QPT pure d-dim. TFIM

FM

1-p10

PM

Griffiths-
phase

Fig. 3. Phase diagram of the diluted Ising ferromagnet in an transverse field Γ at
zero temperature T = 0
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upon approaching the percolation point 1 − pc as ξ ∼ |δ|−νperc . The num-
ber of spins M in the percolating cluster at p = pc scales with the linear
system-size L as M ∼ LDperc , where Dperc is the fractal dimension of the
percolating clusters. For small values of the transverse field Γ one expects
the percolating cluster to be fully magnetized, which implies that the gap
scales as ∆ ∼ exp(−LDperc). This means that ψ = Dperc in the IRFP scenario
described above. Moreover, the connectivity correlation function at the per-
colation threshold pc decays as C(r) ∼ r−(d−2+ηperc), which means that the
exponent φ is given by the relation 2(d−ψφ) = (d− 2+ ηperc). To summarize
the exponents characterizing the IRFP in the randomly diluted ferromagnet
in a transverse field are related to the classical percolation exponents (which
are exactly known in dimensions d = 2 and in d > 6) via:

ν = νperc , ψ = Dperc , φ = (d + 2 − ηperc))/Dperc . (10)

2.3 Higher Dimensional Random Bond Ferromagnets
in a Transverse Field

Let us consider now to the random bond ferromagnet in a transverse field in
dimensions d ≥ 2

H = −
∑

(ij)

Jijσ
z
i σz

j −
∑

i

hiσ
x
i , (11)

where the sum runs over all nearest neighbor pairs (ij) of a d-dimensional
lattice, the random couplings Jij and transverse fields hi are all positive and
obey some distribution. Here one has to rely on numerical calculations. In
quantum Monte-Carlo simulations the IFRP-scenario manifests itself in a non-
conventional finite size scaling behavior with lnβ/Lψ as one scaling varibale
(instead of β/Lz in conventional scaling scenarios) and a different scaling of
average and typical correlation functions. For instance for the Binder cumulant
gav one would expect the following scaling form

gav = 0.5[3 − 〈M4〉/〈M2〉2]av = g(δL−1/ν , ln β/Lψ) , (12)

where M is the magnetization and δ is the distance from the critical point.
In Fig. 4 we show numerical data for gav at the critical point (h0 = 7.5 for
hi uniform over [0, h0] and Jij uniform over [0, 1]) of the 2d random bond
ferromagnet in a transverse field, and we observe that they scale accordingly
with ψ ≈ 0.6.

In Fig. 5 we show numerical data for the average and typical correlation
functions Cav(r) = [〈σz

i σz
i+r〉]av and Cav(r) = exp(ln[〈σz

i σz
i+r〉]av), respec-

tively. On one hand Cav(r) decays algebraically with an exponent −2.3, im-
plying 2(d−φψ) = 2.3, i.e φ ≈ 1.41 when we use the estimate ψ = 0.6 obtained
from scaling of the Binder cumulant. On the other hand Ctyp(r) decays with
a strechted exponential, i.e ∝ exp(−crψ), with ψ ≈ 0.58, compatibel with the
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Fig. 4. 2d random bond Ising ferromagnet: Scaling plot of the Binder cumulant at
the critical point using activated dynamics scaling wth ψ = 0.6. Data obtained by
quantum Monte Carlo simulations using a continuous time cluster algorithm [26, 27]
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Fig. 5. 2d random bond Ising ferromagnet: Left: Average correlation function Cav

in a log-log plot. The straight line has slop −2.3. Right: Typical correlation function
Ctyp as a function of r0.58. The data tend to approach a straight line for L → ∞.
Data obtained by quantum Monte Carlo simulations using a continuous time cluster
algorithm [26, 27]

estimated for ψ obtained before. Both results, the activated dynamics scal-
ing for gav as well as the different scaling of Cav(r) and Ctyp(r), the latter
compatible with the exponent ψ estimated from the activated dynamics scal-
ing, indicate strongly that the quantum critical point in the 2d random bond
ferromagnet in a transverse field is an IRFP.

A numerical implementation of the Ma-Dasgupta-Hu RG scheme indeed
provided another evidence for an infinite randomness fixed point[28, 29] with
estimate for φ and ψ that are compatibel with those mentioned above obtained
in quantum Monte Carlo simulations. For random Ising ferromagnets in a
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transverse field the existence of the IRFP dominating the quantum critical
behavior thus appears to be confirmed for finite dimensions. Strictly speaking
detailed numerical studies have only be performed for d = 1 and d = 2 up to
now, but there seems to be no strong argument against the existence of the
IRFP also in higher, finite, dimensions although one expects the numerical
and experimental visibility of the IRFP to diminish for increasing dimension
d. In the mean field limit (d → ∞) the quantum phase transition is not
described by an IRFP and obeys conventional scaling laws. In particular z is
finite and Griffiths-McCoy singularities are absent.

2.4 Quantum Ising Spin Glass in a Transverse Field

What about the spin glass case? Within the SDRG picture of the quan-
tum phase transition in disordered systems with a discrete symmetry, as
for instance Ising systems, one would also expect an IRFP in quantum spin
glasses [13]. Quantum Monte Carlo simulations of the Ising spin glass with a
transverse-field have been performed for the cases d = 2[6, 7] and d = 3,[31, 32]
they are reviewed in [3, 4]. The main result is that the numerical data ap-
peared to be compatible with a finite value for the dynamical exponent in
d = 2 and 3 and that the critical behavior can be described by conventional
scaling laws. However, the existence of a Griffiths-McCoy phase away from
the critical point has been uncovered, with a continuously varying dynamical
exponent describing the singularities of the susceptibility and non-linear sus-
ceptibility. In contrast to the quantum Monte-Carlo simulations of the random
bond ferromagnets no cluster-algorithm could be used in the quantum spin
glass case, which restricted the system sizes and in particular the temperatures
to rather small values (note that anisotropic finite size scaling demands that
the temperature has to decrease exponentially with the system size at a quan-
tum critical point described by an IRFP). In addition a homogeneous rather
than a random transverse field has been used, which causes strong cross-over
effects and the true asymptotic scaling behavior might be more difficult to
extract. Therefore it might very well be that the indications found for the ab-
sence of a IRFP in the 2d and 3d quantum spin glass are still pre-asymptotic
and that studies using larger system sizes and more sophisticated simulation
methods could detect evidence for the IRFP also here.

Finally a word about the consequences of the aforementioned theoretical
developments for the experiments. There it was observed that upon approach-
ing the quantum critical point the divergence of the non-linear susceptibility
was drastically suppressed indicating even the absence of a divergence at zero
temperature. The numerical results, on the other hand, hint at a strong di-
vergence of the non-linear susceptibility at the quantum critical point – even
more than the IRFP scenario. Up to now no clear reason for the discrepancy
has been pinned down. The possibility of a second-order transition turning
a first-order one at low temperatures has been raised,[42] but this possibil-
ity can definitely be ruled out for a system that can be described by the



Quantum Spin Glasses 79

Hamiltonian (3) that we discussed here. We do not think that dipolar interac-
tions of a magnetically diluted system cause substantial modifications of the
picture that emerged for short range interactions. At this point one cannot rule
out the possibility that the transverse field Ising Hamiltonian with quenched
disorder is simply not a sufficiently detailed description of LiHo0.167Y0.833F4.

3 Mean-Field Theory for Quantum Ising Spin Glasses

As a mean-field model of quantum Ising spin glass, we consider the Sherring-
ton-Kirkpatrick model in a transverse field

H = −
∑

(i,j)

Jijσ
z
i σz

j − Γ
∑

i

σx
i . (13)

The first sum is over all pairs of spins and the couplings Jij are quenched
random variables that obey the Gaussian distribution with zero mean and
variance J2/N , where N is the number of spins. Γ is the strength of the
transverse field. Although no exact solution has been found for finite Γ , the
phase diagram of this model has been well delineated. At zero transverse
field the transition is the well-known classical transition of the SK model at
Tc(Γ = 0) = J . For sufficiently high temperature and/or sufficiently large Γ ,
thermal and/or quantum fluctuations destroy the spin glass order, yielding a
paramagnet [30]. For low T and small Γ one finds a SG ordered phase, appar-
ently with broken replica symmetry [33]. Monte Carlo calculation, numerical
spin summation[34] and perturbation expansion[35] in 1/Γ have determined
the phase boundary to some precision. As in the classical model, the infinite
range interactions apparently wipe out the Griffiths singularities discussed in
the last subsection. The critical behavior along the line Tc(Γ ) is expected to
be the same as the classical critical behavior, i.e., the non-linear susceptibility
diverges as χnl ∼ (T − Tc(Γ ))−γ with γ = 1, the specific heat exponent is
α = 0, etc.

3.1 Quantum Phase Transition

The zero temperature quantum critical point Γc(T = 0) is in a differ-
ent universality class and has been studied in [37, 38, 39]. The static ap-
proximation – the approximation usually applied to small field values in
which the imaginary time correlation function C(τ) = 〈σi(τ)σi(0)〉 is as-
sumed to be time independent – is not valid at T = 0 (large fields)
and the full functional form of C(τ) has to be explored. The dynami-
cal self-consistency equations obtained via standard manipulations[30, 36]
was analyzed at T = 0 at the quantum critical point in [37, 38, 39],
and it turned out that the quantum critical point is located at Γc ≈
0.7J . At Γ > Γc (and zero temperature) C(τ) decays exponentially with
τ as τ → ∞, indicating a gap ∆ in the corresponding spectral density;
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at Γ = Γc, C(τ) decays as 1/τ2, and in the ordered phase, C(τ) → qEA.
The Fourier transform of C(τ) has the form C(ω) ∼ const. −

√
ω2 − ∆2 for

Γ ≥ Γc, which is responsible for the 1/τ2 behavior at Γc and it turned out
that the correlation time diverges as ξτ ∼ 1/∆ ∼ [(Γ − Γc)−1 ln(Γ − Γc)]1/2.
Thus we can define an exponent zν, anticipating anisotropic scaling in space
and time in the short range model, which takes the value zν = 1/2 in the
infinite-range model. Since C(τ → ∞) = qEA is the Edwards-Anderson order
parameter, we may also define qEA = (Γc − Γ )β and it was found that β = 1.
At Γ = Γc one expects C(τ) ∼ τ−β/zν , which is satisfied with the values
obtained. The non-linear susceptibility diverges as 1/∆, which implies with
χnl ∼ (Γ − Γc)−γ that γ = 1/2. Studying Gaussian fluctuations around the
saddle-point solution valid for infinite range one finds[39] for the correlation
length exponent above the upper critical dimension (i.e. d ≥ 8) that ν = 1/4
and therefore z = 2. Moreover η = 0 in mean field theory. The complete
collection of critical exponents obtained so far in comparison with the classical
model (T > 0, where we assume to cross the phase boundary under a non-
vanishing angle) are as follows:

β γ ν z
quantum (T = 0) 1/2 1/2 1/4 2
classical (T = 0) 1 1 1/2 −

(14)

Note that as a consequence of the absence of Griffiths-singularities in mean-
field models the dynamical exponent z is finite in contrast to the IRFP scenario
that is supposedly valid for the finite-dimensional models. In a longitudinal
field one obtains, in analogy to the classical case, an AT manifold in the T, Γ, h
phase diagram below which replica symmetry is broken and the system is in
the SG phase.

The dynamics of the model (13) in the paramagnetic phase has been stud-
ied in [40], where the dynamical single-site self-consistency equations have
been iteratively solved using a quantum Monte Carlo scheme developed in
[41]. They mapped the spin-glass transition line in the Γ -T plane using the
stability criterion 1 = Jχloc, where χloc =

∫ β

0
dτ C(τ) is the local suscepti-

bility. They found a second-order transition line ending at a quantum critical
point at T = 0 in agreement with the argument presented above. Going down
in temperature to T ∼ 0.01J and extrapolating the results to T = 0 they
determined a precise value for the critical field Γc = 0.76±0.01, which lies be-
tween previous estimates [33, 37]. The asymptotic form of C(τ) ∼ τ−2 found
in [37] was also confirmed. A comparison of the results for the low-frequency
susceptibility with the experimental curves obtained for LiHo0.167Y0.833F4 in
[5] yields a good agreement.

A different class of mean-field spin-glass models has been studied in [42] –
simplified in so far as spherical spins rather than Ising spins were considered
and more general in so far as p-spin interactions were considered. The quan-
tum fluctuations are introduced via a kinetic energy rather than the trans-
verse field. The corresponding quantum spherical p-spin-glass Hamiltonian is
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defined by

H =
1

2M

N∑

i=1

p̂2
i −

∑

i1,...,ip

Ji1,...,ip
si1 · · · sip

(15)

where si are “soft-spins” fulfilling the spherical constraint
∑N

i=1 si(t)2 = N
for all times t. Quantum mechanics is introduced into the classical p-spin
glass via the canonical momenta p̂i that fulfill the commutation relation
[p̂i, sj ] = −ih̄δij . The multi-spin coupling constants are taken from a Gaussian
distribution with zero mean and variance J̃p!/(2Np−1) with J̃ being a con-
stant of O(1).

Before we discuss this model we want to clarify the connection to the SK
model in a transverse field discussed above. The replacement of Ising spins
Si = ±1 by continuous spins si ∈ [−∞,+∞] is often performed in the theory
of critical phenomena – the discrete symmetry is then enforced by a quartic
term

∑
i s4

i in the Hamiltonian (this is just the usual Φ4 Ginzburg-Landau
theory for critical phenomena with a discrete symmetry), which also restricts
automatically the spin length. Analytically the quartic term causes extra com-
plications in all computations, saddle point evaluations, RG calculations, dy-
namical formalism etc. – for which reason one often skips it and replaces it by
a spherical constraint (either strictly or via a Lagrangian parameter having
the same effect as a chemical potential). Unfortunately the classical spherical
mean-field spin-glass model with the usual 2-spin interactions does not have a
non-trivial spin glass phase. Therefore, generalizations to p-spin interactions
are sometimes considered. [56] At this point a clear connection to the original
magnetic system of interest is already lost. Nevertheless, one might expect
that one can learn something about possible scenarios.

Finally spherical spins cannot be quantized in the same way as Ising spins
via the application of a transverse field. Therefore they are usually quan-
tized via the introduction of a kinetic energy term as in (15). In addition,
various analytical techniques available for interacting soft spins with kinetic
energy, such as the Schwinger-Keldysh formalism [54], are not available for
spin operators. The microscopic details of the quantum dynamics described
by either a transverse field or a kinetic energy term might be very different,
on large timescales, however, one expects a similar behavior for the following
reason. To see this, let us consider a model that consists of two terms; an ar-
bitrary classical Hamiltonian, Hcl, that is diagonal in the z-representation of
the spins, and the transverse-field term. Performing a Trotter decomposition
of the partition function of this model, one obtains

Tre−β(Γσx+Hcl(σ
z)) = lim

∆τ→0

Lτ∏

τ=1

〈
Sτ

∣∣∣e−∆τ [Γσx+Hcl(σ
z)]

∣∣∣Sτ+1

〉

∝ lim
∆τ→0

∑

S1,...,SLτ

exp

(
−∆τ

[ Lτ∑

τ=1

K(Sτ − Sτ+1)2 + Hcl(Sτ )
])

(16)
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where Lτ is the number of Trotter slices in the imaginary time direction, ∆τ =
β/Lτ and K given by e−2K = tanh(∆Γ ). For ∆τ 
 1 it is K = | ln(∆τΓ )|/2.
In the last step we neglected a constant factor cosh(∆τΓ )Lτ . If we choose
∆τ as a small time cut-off (representing the typical spin flip time) we can
approximate the last Trotter sum as the imaginary time path integral

Z ≈
∫

DS(τ) exp

(∫ β

0

dτ

[
M

2

(
∂S

∂τ

)2

+ Hcl(S(τ))

])
(17)

where M = 2K∆τ = ∆τ | ln(Γ∆τ)|. The first term in the integral of the action
is identical to what one would obtain for the kinetic energy if one writes down
the imaginary time path integral for the partition sum of the Hamiltonian
(15). In this way, the transverse-field term and the kinetic-energy term are
related.

In [42] the equilibrium properties of the model were obtained using a repli-
cated imaginary-time path integral formalism[36] and analyzing the dynamical
self-consistency equations for the spin auto-correlation function C(τ) arising
in the limit N → ∞ from a saddle point integration. The result for the phase
diagram, EA order-parameter and linear susceptibility in the case p = 3 are
depicted in Fig. 6, where the parameter Γ = h̄2/(JM) has been used – resem-
bling the transverse field strength (since for Γ → 0 one recovers the classical
case). Above a temperature T ∗ one has a continuous transition at a criti-
cal point Γ = Γc(T ) from a paramagnetic phase with vanishing EA order
parameter to a spin glass phase with qEA �= 0 and one-step replica-symmetry-
breaking (1RSB). Although the EA order-parameter jumps discontinuously
the transition is second order: there is no latent heat (as in the classical case
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Fig. 6. Left: Static (thin lines) and dynamic (thick lines) phase diagrams of the
p-spin model for p = 3. Solid and dashed lines represent second and first order
transitions, respectively. Right: Magnetic susceptibility (a) and Edwards-Anderson
order parameter (b) of the p = 3 model. (From [42])



Quantum Spin Glasses 83

Γ = 0) and the susceptibility has only a cusp. This is due to the fact that the
parameter m characterizing the Parisi order parameter function q(x) (which
is a step function with a single step at x = m) is unity at the transition.
However, for temperatures below T ∗ this parameter jumps at the transition,
too, and the transition becomes discontinuous; for T < T ∗ the transition is of
the first order with latent heat and a discontinuous susceptibility (see Fig. 6).

3.2 Dissipative Effects

An important question that arises for interacting quantum spins at low tem-
peratures are the effects of a dissipative environment [44, 45]. This is usu-
ally described in terms of its collective excitations, lattice vibrations, spin or
charge fluctuations, etc., which may be thought of as an ensemble of indepen-
dent quantum harmonic oscillators [46, 47, 48, 49, 50]. A concrete example
of a single quantum degree of freedom, a spin-1/2 or a so-called two-level-
system (TLS), coupled to a bath of bosons is the well-known spin-boson-model
[44, 45]:

H = HS + HB + HSB (18)

where HS , HB and HSB denote the Hamiltonian of the system, the bath and
their coupling, respectively. These are given by

HS = −Γσx

HB =
1
2

∑

n

(p2
n/mn + mnω2

nx2
n)

HSB = −
∑

n

cnxnσz

(19)

where Γ is the transverse field (or tunneling matrix element in the con-
text of TLSs), n the index enumerating an infinite number of harmonic
oscillators with coordinates and momenta, xn and pn, and mass and fre-
quency, mn and ωn, respectively. The constant cn is the coupling between
oscillator n and the spin. The spectral density of the environment, I(ω) =
π
∑

n(|cn|2/(mnωn)δ(ω − ωn)), is commonly assumed to take the standard
form[45]

I(ω) = 2αh̄(ω/ωph)s−1ωe−ω/ωc , (20)

where α is a dimensionless coupling constant, ωc a high frequency cut-off
(which can be set to ωc = ∞ if 0 < s < 2), and ωph a phonon frequency
necessary in the non-ohmic (s �= 1) case to keeps α dimensionless.

With standard techniques[51, 44] one can integrate out the oscillator de-
grees of freedom to express the partition function of the system solely in terms
of the spin variables

Z = Tr e−βH =
∫

Dσ(τ) T exp(−S/h̄) , (21)
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where
∫
Dσ(τ) denotes a path integral over all spin configurations (in time),

T is the imaginary time ordering operator and the action is

S = −
∫ βh̄

0

dτ Γσx(τ) − 1
2

∫ βh̄

0

dτ

∫ βh̄

0

dτ ′ K(τ − τ ′)σz(τ)σz(τ ′) . (22)

The kernel K(τ) is related to the spectral density I(ω) and is for the ohmic
case (s = 1) essentially an inverse square K(τ − τ ′) ∝ α/(τ − τ ′)2. The effect
of the dissipative environment is therefore a long range interaction of the
quantum spin in imaginary time. In analogy to the Ising model with inverse
square interactions[53] depending on the strength of the coupling constant
α, the system is ferromagnetically ordered or paramagnetic in the imaginary
time direction; for large α the spin is frozen and for small α the spin will
tunnel.

Indeed, for the ohmic case, at zero temperature, there is a phase transition
at α = 1 [47, 48]. For α < 1 there is tunneling and two distinct regimes
develop. If α < 1/2, the system relaxes with damped coherent oscillations; in
the intermediate region 1/2 < α < 1 the system relaxes incoherently. For α >
1 quantum tunneling is suppressed and 〈σz〉 �= 0, signaling that the system
remains localized in the state in which it was prepared. These results also
hold for sub-Ohmic baths while weakly damped oscillations persist for super-
Ohmic baths [44]. At finite temperatures (but low enough such that thermal
activation can be neglected) there is no localization but the probability of
finding the system in the state it was prepared decreases slowly with time for
α > αc.

These conclusions hold for a single spin interacting with a bath. The ques-
tion then arises as to which are the effects of the interplay between the spin-
spin interactions and the spin-noise coupling in the physics of the interacting
system. In [54] the effect of a dissipative bath on a mean-field spin glass model
with p-spin interactions has been investigated. They studied the dissipative
spin-boson system (19) for N interacting spins H = HS + HB + HSB , where
the bath Hamiltonian is the same, the coupling Hamiltonian gets an addi-
tional sum over the spin index i and HS is now the p-spin Hamiltonian with
transverse field

HS = −Γ
N∑

i=1

σx
i −

∑

i1,...,ip

Ji1,...,ip
σz

i1 · · ·σ
z
ip

. (23)

The second term, namely, the multi-spin interaction term is the same as the
one in (15). For the reason explained in the last section it is analytically easier
to study spherical spins instead of quantum spin-1/2 degrees of freedom and
the quantization of the spherical spins is done via the introduction of a kinetic
energy term. The partition function then reads

Z =
∫

Dσ(τ) exp(−S/h̄) , (24)
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with the action

S =
∫ h̄β

0

dτ

[
M

2

∑

i

(
∂si(τ)

∂τ

)2

−
∑

i1<...<ip

Ji1,...,ip
si1(τ) · · · sip

(τ)

+ z
∑

i

[s2
i (τ) − 1]

]
−

∫ h̄β

0

dτ

∫ h̄β

0

dτ ′ K(τ − τ ′)si(τ)si(τ ′) , (25)

where the first term is the kinetic-energy term already motivated in (16–17)
replacing the transverse-field term, the second is the p-spin interaction term,
the third a term with the Lagrangian multiplier z enforcing the spherical
constraint and the last term is the long range interaction imaginary time (22)
that is generated by the integration over the bath variables.

Starting from (25) the saddle point equations for the self-consistent single-
spin dynamics were derived[54] and the phase diagram computed. Analogous
to the non-dissipative case discussed in the previous subsection a critical line
with a second-order section (close to the classical critical point (Td, Γ = 0))
and a first-order section (close to the quantum critical point (T = 0, Γd))
was obtained in the presence of a dissipative environment. The second order
critical line is determined by the condition m = 1, the first order critical
line is defined as the locus of the points where a marginally stable solution
first appears with decreasing Γ for T fixed. For each Γ and α this defines a
dynamic transition temperature Td(Γ, α). The qualitative features of the phase
diagram, similar to those found for the isolated system, see the discussion in
the previous section. Notice that the line Td(Γ, α) lies always above Ts(Γ, α),
the static critical line that we shall discuss below.

On the right side of Fig. 7 the dynamic phase diagrams obtained for p = 3
and three values of the coupling to an Ohmic bath, α = 0, 0.25, 0.5 is shown.
The full line and the line-points represent second and first order transition,
respectively.

The first observation that can be made is that in the limit Γ → 0 the tran-
sition temperature is independent of the strength of the coupling to the bath.
This is a consequence of the fact that in the limit Γ → 0 the partition function
is essentially determined by the zero-frequency components of the pseudo-spin
which are decoupled from the bath. This result is however non-trivial from
a dynamical point of view, since it implies that the dynamic transition of a
classical system coupled to a colored classical bath is not modified by the
latter.

The second observation is that the size of the region in the phase space
where the system is in the ordered state increases with α. Coupling to the
dissipative environment thus stabilizes this state. This follows from simple
physical considerations. The interaction term in the action favors spin-glass
order. Coupling to the bath favors localization and its effect is to reduce
the effective tunneling frequency. Therefore, in the presence of the bath, the
value of the bare tunneling frequency needed to destroy the ordered state
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Fig. 7. Static (left) and dynamic (right) phase diagrams for the p = 3 spin model
coupled to an Ohmic bath (s = 1). The couplings to the bath are α = 0, 0.25, and
0.5 from bottom to top. The solid line and line-points represent second and first
order transitions, respectively. (From [54])

must increase with α. Even if the localized state and the glassy state may
seem superficially similar, they are indeed very different. In the former, the
correlation function C(t + tw, tw) approaches a plateau as a function of t and
never decays toward zero while in the latter the relaxation first approaches
a plateau but it eventually leaves it to reach zero for t � tw. The fact that
the coupling to the environment favors the ordered state also reflects itself in
the value taken by the order parameters C(τ) and qEA. As α increases, qd(τ)
reaches a higher plateau level at long imaginary times.

3.3 Off Equilibrium Dynamics

The out-of-equilibrium dynamics in real time of the quantum spherical p-
spin glass model coupled to a dissipative environment, which was discussed
in the last subsection, was actually studied earlier[55] than the equilibrium
properties. The response and correlation function are defined in analogy to
the classical case; C(t + tw, tw) = N−1

∑
i(si(t + tw)si(tw) + si(tw)si(t + tw))

(note that the time evolution is now governed by the quantum dynamics
and C has to be symmetrized in the operators si(t + tw) and si(tw)) and
R(t + tw, tw) = N−1

∑
i δsi(t + tw)/δhi(tw).

In equilibrium the quantum FDT relates R(t) and C(t):

R(t) =
2i

h̄
θ(t)

∫
dω

2π
e−iωt tanh(βh̄ω/2)C(ω) (26)

Away from the critical line, C and R decay to zero very fast with oscillations.
Approaching the critical line Td(α), the decay slows down and if Td > 0 a
plateau develops in C. At the critical line the length of the plateau tends to
infinity.
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In the glassy phase (below the transition) the system does not reach
equilibrium. For small time differences the dynamics is stationary and time
translational invariance as well as the QFDT holds: limtw→∞ C(t + tw, tw) =
q + Ceq(t). For large times the dynamics is non-stationary, time translational
invariance nor the QFDT does not hold, and the correlations decay from q
to 0. The decay of C becomes monotonic in the aging regime, which implies
Caging(t + tw, tw) = c(h(tw)/h(t + tw)). One can generalize the QFDT in the
same spirit as the classical FDT was generalized [56]:

R(t+ tw, tw) =
2i

h̄
θ(t)

∫
dω

2π
e−iωt tanh(X(t+ tw, tw)βh̄ω/2)C(t+ tw, ω) (27)

with C(t, ω) = 2Re
∫ t

0
ds exp[iω(t − s)]C(t, s). Again, as in the classical case,

Teff ≡ T/X(t + tw, tw) acts as an effective temperature in the system. For a
model with two time-sectors it is proposed

X(t + tw, tw) =
{

Xst = 1 if t ≤ T (tw)
Xage(h̄, T ) if t > T (tw) .

with Xage a non-trivial function of h̄ and T and T (tw) is a certain time-
scale that separates the stationary and aging time-regimes. When t and tw
are widely separated, the integration over ω in (27) is dominated by ω ∼
0. Therefore, the factor tanh(Xage(t + tw, tw)βh̄ω/2) can be substituted by
Xageβh̄ω/2 (even at T = 0 if Xage(h̄, T ) = x(h̄)T when T ∼ 0). Hence,

Rage(t + tw, tw) ∼ θ(t)Xageβ∂tw
Cage(t + tw, tw) (28)

and one recovers, in the aging regime, the classical modified FDT [56, 58].
The self-consistency equations for C(t + tw, tw) and R(t + tw, tw) were

evaluated numerically in [55]. An example of the solution is shown in Fig. 8
for p = 3. In all figures the following parameters have been chosen: zero tem-
perature T = 0, the width of the coupling distribution J = 1, the frequency
cut-off for the oscillator bath set to ωc = 5, the mass in the kinetic energy
term M = 1, and the strength of the quantum fluctuations ˜̄h = αh̄ (where α
is the spin-bath coupling strength) is ˜̄h = 0.1.

These plots demonstrate the existence of the stationary and aging regimes.
For t < T (tw) (e.g. T (40) ∼ 5) time translational invariance and fluctuation
dissipation theorem are established while beyond T (tw) they break down.
For ˜̄h = 0.1 the plateau in C is at q ∼ 0.97. C oscillates around q but is
monotonous when it goes below it. In the inset the dependence of qEA on
˜̄h for T = 0 is presented. Quantum fluctuations generate a qEA < 1 such
that the larger ˜̄h the smaller qEA. The addition of thermal fluctuations has
a similar effect, the larger T , the smaller qEA. In order to check the FDT in
the stationary regime, in the inset of the right part of Fig. 8 a comparison
is shown of R(t + tw, tw) from the numerical algorithm for t + tw = 40 fixed
and tw ∈ [0, 40] (full line) with R(t + tw, tw) from (27) with X = 1 using
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Fig. 8. Left: The correlation function C(τ + tw, tw) vs τ for the p = 3 quan-
tum spherical p-spin SG model. The waiting times are, from bottom to top,
tw = 2.5, 5, 10, 20, 40. qEA ∼ 0.97. In the inset, the same curves for tw = 40 and, from
top to bottom, ˜̄h = 0.1, 0.5, 1, 2. Right: The response function for the same model as
in the left part. The waiting-times increase from top to bottom. In the inset, check
of FDT in the stationary regime. The full line is R(t + tw, tw) for t + tw = 40 fixed
and tw ∈ [0, 40]. The dots are obtained from (27) with Xst = 1, using the numerical
data for Cstat(t) = C(t + tw, tw) − q (qEA ∼ 0.97, see left part). In both cases the
response is plotted against t. (From [55])

Cstat(t) = C(t+ tw, tw)− q, q ∼ 0.97 obtained from the algorithm (dots). The
accord is very good if t ≤ T (tw) ∼ 5. Finally, when one plots parametrically
the integrated response χ vs. C one finds that for C < q ∼ 0.97 the χ vs C
curve approaches a straight line of finite slope 1/Teff = Xage/T ∼ 0.60.

4 Heisenberg Quantum Spin Glasses

The spin-1/2 Heisenberg quantum spin glass is defined by the Hamiltonian
(1) where the random exchange interactions Jij can be ferromagnetic and
anti-ferromagnetic. The system cannot be studied efficiently with quantum
Monte-Carlo methods, due to the sign problem arising from the frustration.
Therefore, not much is known about these models in finite dimensions, and
also the mean field theory becomes tractable only in certain limits and ap-
proximations.

4.1 Finite Dimensions

In [61] and later in [62] small clusters of the two-dimensional Heisenberg quan-
tum spin glass were studied using exact diagonalization. The average total
spin in the ground state turned out to scale as S ∝

√
N , where N is the

number of sites. The spin glass order parameter in the ground state extrap-
olates to a small but non-vanishing value in the thermodynamic limit and
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the spin stiffness does not scale to zero either in the thermodynamic limit.
Ma-Dasgupta-Hu renormalization group studies[14, 66] were performed for
randomly frustrated spin-ladders[64] and in d = 2 and 3[65] for various lat-
tices and spin-values. The general idea of this RG procedure was already
described in Subsect. 2; large energies (in the form of exchange interactions)
are successively decimated, ferromagnetic bonds lead to large spin formation
and anti-ferromagnetic bonds to a spin reduction or even elimination in case
of equal effective spins connected by the bond to be decimated.

The basic ingredient of the SDRG method in Heisenberg models is a suc-
cessive decrease of the energy scale of excitations via a successive decimation
of couplings. We start with a S = 1/2 HAF model in which the strongest
coupling is, say J23, the one between lattice sites 2 and 3 (c.f. Fig. 9). If J23

is much larger than its neighboring couplings J12, J13, J24 and J34, the spins
at 2 and 3 form an effective singlet and are decimated. The effective coupling
between the remaining sites, 1 and 4 in second order perturbation theory is
given by:

J̃eff
14 = λ

(J12 − J13)(J34 − J24)
J23

, λ(S = 1/2) = 1/2 . (29)

In a chain geometry the couplings J13 and J24 would not be present and the
resulting RG flow always generates AF couplings. However, for extended, not
strictly 1d objects, some of the generated new couplings can be ferromagnetic
(e.g. if J12 < J13 and J34 > J24 or vice versa) and therefore the decimation
rules have to be extended. If at one RG step an F bond turns out to be
the strongest one, its decimation will lead to an effective spin S̃ = 1. In
the following steps, the system will renormalize to a set of effective spins of
different magnitude interacting via F and/or AF couplings.

1

2

3

4 41

Fig. 9. Singlet formation and decimation for a spin configuration that does not have
a chain topology and typically occurs in higher dimensional systems

For higher dimensional systems, the basic decimation processes are the
singlet formation in (29) and the effective spin (cluster) formation. To specify
the latter, let us consider three spins S1, S2 and S3 with interactions fulfilling
|J23| � |J12|, |J13|. In the action of the RG, the two original spins S2 and S3

form a new effective spin of magnitude S̃ = |S2 ± S3| representing the total
spin of the ground state in the two-spin Hamiltonian H23 = J23S2S2, where
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the positive (negative) sign refers to an F (AF) coupling. The corresponding
energy gap, ∆, between the ground state and the first excited state in the
Hamiltonian H23 is given by ∆ = |J23|(S2 + S3) and ∆ = J23(|S2 − S3| + 1),
for an F and AF coupling, respectively. If J23 > 0 (AF) and S2 = S3, it follows
an effective singlet formation as described above. If S̃ �= 0, within first order
perturbation theory the new coupling between S1 and S̃23 is given by

J̃eff = c12J12 + c13J13 , (30)

with

c12 =
S̃(S̃ + 1) + S2(S2 + 1) − S3(S3 + 1)

2S̃(S̃ + 1)

and

c13 =
S̃(S̃ + 1) + S3(S3 + 1) − S2(S2 + 1)

2S̃(S̃ + 1)
.

At each RG step, we find the pair of the spins with the largest energy gap ∆
that sets the energy scale, Ω, and decimate them according to renormalization
rules described in (29) or (30). A detailed derivation of these renormalization
rules can be found in [67].

The fixed point of the RG transformation for lattices that do not have
a chain geometry may depend on their topology, the original distribution of
bonds, the strength of the disorder, etc. We briefly summarize the existing
results for spin chains and ladders since it might be helpful for analyzing the
RG results in higher dimensional systems.

In the case of the random AF chain (which does neither have F bonds
nor frustration), the RG procedure described above runs into an infinite ran-
domness fixed point (IRFP) corresponding to a random singlet phase. In this
phase the renormalized clusters are singlets, thus the total magnetic moment
is zero, and the energy and length scales are related via

− ln Ω ∼ L1/2 , (31)

which means that the dynamical exponent is formally infinite.
A dimerized S = 1/2 chain with random AF even (Je) and odd (Jo)

couplings shows dimer order and the low-energy behavior is controlled by a
random dimer fixed point at which the dynamical exponent, z, is finite and
a continuously varying function of the strength of the dimerization measured
by δdim = [lnJe]av − [lnJo]av[22]. At this fixed point, the low-energy-tail of
the distribution of the effective couplings, Je, is given by:

P (Je, Ω)dJe 

1
z

(
Je

Ω

)−1+1/z dJe

Ω
, (32)

for δdim > 0. This random dimer phase is a Griffiths phase [8] and we refer
to it as a Griffiths fixed point (GFP). At this GFP, the gap of finite chains of
length L obey a distribution similar to (32):
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PL(∆) = LzP̃ (Lz∆) ∼ Lz(1+ω)∆ω , (33)

which is characterized by the gap exponent, ω. As a consequence of (33), which
holds in any dimension, several dynamical quantities at a GFP are singular
and the characteristic exponents can all expressed via ω. For example the
susceptibility χ, the specific heat Cv (at a small temperatures T ), and the
magnetization m (in a small field h), behave as:

χ(T ) ∼ T−ω, Cv(T ) ∼ Tω+1, m(h) ∼ hω+1 . (34)

In the Griffiths phase there is a simple relation between the dynamical ex-
ponent, z, and the gap exponent, ω, which can be obtained by the following
phenomenological consideration [11, 7, 20]: If the Griffiths singularities are
due to rare events (produced by the couplings) that give rise to localized low-
energy excitations, the gap distribution should be proportional to the volume,
PL(∆) ∼ Ld. From (33) then follows:

z =
d

1 + ω
or ω = −1 +

d

z
, (35)

which is consistent with the exact result in the random dimer phase in (32).
However, if the low-energy excitations are extended the relation (35) might
not hold.

In a spin chain with mixed F and AF couplings [68], large effective spins,
Seff , are formed at the fixed point of the transformation. The size of these spin
clusters scales with the fraction of surviving sites during decimation, 1/N , as:

Seff ∼ N ζ . (36)

The following random walk argument [68] gives ζ = 1/2: The total moment
of a typical cluster of size N can be expressed as Seff = |

∑N
1=1 ±Si|, where

neighboring spins with F (AF) couplings enter the sum with the same (differ-
ent) sign. If the position of the F and AF bonds are uncorrelated and if their
distribution is symmetrical, one has Seff ∝ N1/2, i.e. (36) with ζ = 1/2.

A non-trivial relation constitutes the connection between the energy scale
Ω and the size of the effective spin:

Seff ∼ Ω−κ , (37)

where a numerical estimate of the exponent is κ = 0.22(1)[68]. Comparing
(36) with (37), the relation between the length scale L ∼ N1/d (d = 1) and
the energy scale is:

Ω ∼ L−z, z =
dζ

κ
=

1
2κ

, (38)

where z is the dynamical exponent. The distribution of low-energy gaps,
PL(∆), has the same power-law form as in (33). Therefore from the scaling
behavior of PL(∆) the gap exponent, ω, and the dynamical exponent, z, can
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be obtained. Due to the large moment formation the singularities of the dy-
namical quantities are different from those in the random dimer phase in (34),
i.e. at a GFP. Generalizing the reasoning in [68], one obtains in d-dimensions:

χ(T ) ∼ T−1, Cv(T ) ∼ T 2ζ(ω+1)| ln T |, m(h) ∼ h
ζ(1+ω)

1+ζ(1+ω) , (39)

thus the singularities involve both exponents ζ and ω. In the following, we
refer to this type of fixed point as large spin fixed point (LSFP).

AF spin ladders, although being quasi-one-dimensional, have a non-trivial,
non-chain-like topology and during renormalization also F bonds can be gen-
erated according to (29). Different random AF two-leg ladders were studied
in [64] with the following results: If the disorder is strong enough the gapped
phases of the non-random systems become gapless. The low energy behav-
ior is generally controlled by a GFP, where the dynamical exponent is finite
and depends on the strength of the disorder. However, at random quantum
critical points, separating phases with different topological or dimer order,
the low-energy behavior is controlled by an IRFP. In diluted AF spin ladders
also LSFP-s have been identified [69]. Thus in one-dimensional and in quasi-
one-dimensional random Heisenberg systems there are two different types of
low-energy fixed points, which are expected to be present in higher dimen-
sional systems, too. Both for a GFP and for a LSFP, the low-energy excitations
follow the same power-law form in (33) from which the exponents, ω and z
can be deduced. At a GFP these two exponents are expected to be related
through z = d

1+ω (35). On the other hand, for a LSFP, where the excitations
are not localized, this relation probably does not hold. At such a LSFP there
is a third independent exponent, ζ involved in the dynamical singularities
partially listed in (39).

Various two- and three-dimensional Heisenberg antiferromagnets with ran-
dom couplings were studied by the application of the SDRG described above
[65]. Here we discuss the results for the Heisenberg model on the square lattice
with a random mixture of F and AF couplings. This is a model for a Heisen-
berg quantum spin glass [61, 62] and the corresponding fixed point is denoted
as a spin glass fixed point (SGFP) since it differs from the other fixed points
one finds for non-frustrated models. In particular we one finds a large spin
formation proportional to L during RG procedure implying a ground state
spin S ∝

√
N , which is reminiscent of the spin glass behavior found in [61, 62]

for this model with alternative methods.
For Gaussian randomness (i.e P (Jij) a Gaussian with mean zero an vari-

ance one) the distributions of the gaps and of the effective spin moments
are shown in Fig. 10. The gap-distributions for different finite sizes have a
very similar structure: they are merely shifted to each other by a constant
proportional to lnL. The slope of the low-energy tail of the distributions is
practically independent of the strength of disorder and in all cases the gap
exponent is equal to:

ωSG = 0, d = 2 , (40)
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Fig. 10. Heisenberg spin glass in 2d: Probability distribution of the energy gap for a
2d Heisenberg antiferromagnet on a square lattice with Jij distributed according to
a Gaussian with mean zero and variance one. Inset: Distribution of the spin moments

within an accuracy of a few percent. From the finite-size scaling of the gap
distribution, we infer that the relation in (35) is satisfied and therfore the
excitations are localized, implying

zSG = 2, d = 2 , (41)

within an accuracy of a few percent.
On the other hand, the distribution of the effective spin moments in the

inset to Fig. 10 shows a tendency to broaden with increasing system size and
its average value has a linear L dependence, [µL]av ≈ .42L. Therefore the
moment exponent in (36) is

ζSG = 1/2, d = 2 , (42)

Other coupling distributions, like a uniform distribution of Jij between −1
and +1, other spin values (S = 1 in addition to S = 1/2) yield the same
critical exponents as in the Gaussian case. Thus one can conclude that the
low-energy behavior in randomly frustrated 2d models is controlled by the
same SGFP, independent of the type of randomness and the size of the spin.
Even more, also geometrically frustrated Heisenberg models with random an-
tiferromegnetic couplings are described by the same SGFP in 2d [65].

In 3d SDRG computations for models with mixed F and AF couplings for
different form of initial randomness (Gaussian, symmetric and asymmetric
rectangular) and different spin values have been performed [65]. Figure 11
shows the resulting gap distributions. One observes that the slopes of the
low-energy tail of the gap-distributions are approximately constant, and for
our finite systems they are consistent with a vanishing gap exponent:
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Fig. 11. Probability distribution of the energy gap on the cubic lattice with mixed
F and AF bonds. (a) Gaussian distribution, σ = 1; (b) symmetric rectangular
distribution (r = 0); (c) asymmetric rectangular distribution (r = 0.25); (d) S = 1
symmetric rectangular distribution. The low-energy tails of the gap distributions for
all cases, indicated by straight lines, have a slope −1, corresponding to ω = 0

ω ≈ 0 (d = 3) . (43)

During renormalization, as in 2d, there is a large spin formation and the corre-
sponding moment exponent is ζ = 0.55, for symmetric distributions (Gaussian
and rectangular) and ζ = 0.58 for the asymmetric rectangular distribution.
Thus ζ appears to be close to 1/2 in both cases. The scaling behavior of the
reduced gap distribution, P̃ (Lz∆) = L−zPL(∆) is shown in Fig. 12, and yields
z ≈ 1.5 independently of the disorder distribution. The scaling curves seem to
tend to a finite limiting value at ∆ = 0, implying a gap exponent ω ≈ 0. One
can thus conclude that – within the range of validity of the SDRG method –
the relation in (35) is not valid for frustrated 3d models.

To summerize the picture that emerges from the application of the SDRG
to Heisenberg quantum spin glasses in 2 and 3 dimensions: The ground state
magnetization increases with system size as

√
N , the probability distribution

of the low energy excitations scales as P (∆) ∼ ∆ω with ω = 0, i.e. P (∆) does
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Fig. 12. Scaling of the reduced gap distribution, P̃ (Lz∆) = L−zPL(∆), for ran-
domly frustrated 3d systems: a) Gaussian randomness, σ = 1, b) uniform random-
ness. In both cases it is z = 1.5

not diverge (or only weakly) at δ = 0 in 2d as well as in 3d and the dynamical
critical exponent is z = 2 in d = 2 and z = 3/2 in d = 3.

4.2 Mean-Field Model

The first analytical treatment of the mean-field model of the Heisenberg quan-
tum spin glass was performed in [36] applying the replica theory. Although
the solution was confined to the paramagnetic state, the arguments for the
existence of a low-temperature spin-glass phase were given and the critical
temperature was estimated.

Later a Landau theory for quantum rotors on a regular d-dimensional
lattice was studied in [39], which is defined by the Hamiltonian

H =
g

2

∑

i

L̂2
i −

∑

〈ij〉
Jijn̂in̂j , (44)

where n̂i are M -component vectors of unit length (n̂2
i = 1) and represent the

orientation of the rotors on the surface of a sphere in M -dimensional rotor
space. The operators L̂iµν (µ < ν, µ, ν = 1, . . . ,M) are the M(M − 1)/2
components of the angular momentum L̂i of the rotor: the first term in H is
the kinetic energy of the rotor with 1/g the moment of inertia. The different
components of n̂i constitute a complete set of commuting observables and the
state of the system can be described by a wave function Ψ(ni). The action of L̂i

on Ψ is given by the usual differential form of the angular momentum L̂iµν =
−i(niµ∂/∂iν −niν∂/∂iµ). The difference between rotors and Heisenberg-Dirac
quantum spins is that the components of the latter at the same site do not
commute, whereas the components of the n̂i do.
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In [39] a Landau theory for this model is derived and it is shown that
for a suitable distribution of exchange constants Jij this model displays spin-
glass and quantum paramagnetic phases and a zero-temperature quantum
phase transition between them. The mean-field phase diagram near the T = 0
critical point is mapped out as a function of T , the strength of the quantum
coupling g and applied fields. The spin glass phase has replica symmetry
breaking. Moreover, the consequences of fluctuations in finite dimensions are
considered and above d = 8 the transition turned out to be controlled by a
Gaussian fixed point with mean-field exponents. Below d = 8 a runaway RG
flow to strong coupling was found.

Recently the mean-field Heisenberg quantum spin glass model was gen-
eralized from the SU(2) spin algebra to an SU(N) symmetry and solved in
the limit N → ∞ [70]. Certain universal critical properties are shown to hold
to all orders in 1/N . A spin-glass transition was found for all values of the
spin S and the phase diagram as a function of the spin S and temperature
T was described. The quantum critical regime associated with the quantum
transition at spin value S = 0 and the various regimes in the spin-glass phase
at high spin are analyzed. The specific heat is shown to vanish linearly with
temperature.

The out-of-equilibrium dynamics of the the same model in the same limit
N → ∞, but coupled to a thermal bath, was studied in [71]. It was found that
the model displays a dynamical phase transition between a paramagnetic and
a glassy phase. In the latter, the system remains out-of-equilibrium and dis-
plays an aging phenomenon, which we characterize using both analytical and
numerical methods. In the aging regime, the quantum fluctuation-dissipation
relation is violated and replaced over a very long time-range by its classical
generalization, as in models involving simple spin algebras studied previously.

In the context of Heisenberg spin glasses also the work on metallic spin
glasses should be mentioned, which were first considered in [57] and later
more extensively in [59], [72] and [73]. The main ingredient of a metallic spin
glass is an itinerant electron systems with random (and frustrated) exchange
interactions between the electron spins. Thus in contrast to the spin glass
systems discussed so far the spins are not fixed to particular sites but can
diffuse (quantum mechanically) from site to site. These systems are motivated
by experiments on heavy-fermion compounds such as Y1−xUxPd 3,[60] which
appear to show a paramagnetic to spin-glass transition with increasing doping,
x, in a metallic regime. To be concrete the Hamiltonian studied in [72] is

H = −
∑

i<j,α

tijciαcjα −
∑

i<j,µ

JijSiµSjµ + Hint , (45)

where ciα annihilates an electron on site i with spin α =↑, ↓, and the spin
operator is given by Siµ =

∑
αβ c+

iασµ
αβciβ/2, with σµ the Pauli spin matri-

ces. The sites i, j lie on a d-dimensional lattice, the hopping matrix elements
tij are short-ranged and possibly random, and the Jµ

ij are Gaussian random
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exchange interactions, possibly with spin-anisotropies. The remainder Hint in-
cludes other possible short-range interactions between the electrons, and the
resulting total Hamiltonian H has a metallic ground state.

Starting from this Hamiltonian, in [72], an effective field theory for the
vicinity of a zero temperature quantum transition between a metallic spin glass
(“spin density glass”) and a metallic quantum paramagnet was introduced.
Following a mean-field analysis, a perturbative renormalization-group study
was performed and it was found that critical properties are dominated by
static disorder-induced fluctuations, and that dynamic quantum-mechanical
effects are dangerously irrelevant. A Gaussian fixed point was found to be sta-
ble for a finite range of couplings for spatial dimensionality d > 8, but disorder
effects always lead to runaway flows to strong coupling for d ≤ 8. Moreover,
scaling hypotheses for a static strong-coupling critical field theory were pro-
posed. The non-linear susceptibility has an anomalously weak singularity at
such a critical point.

In [73] the competition between the Kondo effect and RKKY interactions
near the zero-temperature quantum critical point of an Ising-like metallic spin-
glass was studied. In the ‘quantum-critical regime,’ non-analytic corrections to
the Fermi liquid behavior were found for the specific heat and uniform static
susceptibility, while the resistivity and NMR relaxation rate have a non-Fermi
liquid dependence on temperature.
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12. F. Iglói and H. Rieger, Phys. Rev. B 57, 11404 (1998).
13. D. S. Fisher, Physica A 263 (1999) 222. 71, 73, 74, 78
14. S. K. Ma, C. Dasgupta, and C.-K. Hu, Phys. Rev. Lett. 43 (1979) 1434; C.

Dasgupta and S. K. Ma, Phys. Rev. B 22 (1980) 1305. 72, 89
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1 Introduction

This pedagogical lecture note is aimed at a tutorial introduction to the es-
sential concepts of spin glass with a focus on quantum spin glass in order to
make a comfortable contact with spin glass problems in quantum annealing
and optimization applications.

Although this subject of spin glass is well known, quantum spin glass has
been considered something beyond reality as noted in the book of Fisher and
Hertz[1], where we read “· · · because quantum effects are not very important
in the materials which have been studied experimentally, nor have quantum
models been a significant part of the conceptual theoretical developments.”

They were both frontier pioneers studying quantum effects on spin glass
to introduce the Heisenberg quantum spin glass[2] and a quantum phase tran-
sition in Fermi liquid metals[3].

I would like to follow also this classics on spin glass by Fisher and Hertz[1]
to give an overview of spin glass phenomenology.

Thus this lecture will be presented according to the outlines as follows

(1) Introduction
(2) Overview of spin glass
(3) Ergodicity
(4) Replica symmetry
(5) Glass Transition
(6) Quantum phase transition
(7) Quantum spin glass
(8) Appendix

Indeed, nothing new from my own but more comprehensive introductions
of representative works, already so well presented as in many other previous
lecutre notes [4, 5, 6, 7, 8, 9, 10] and books [1, 11, 12, 13, 14], are attempted.

J.-J. Kim: Ergodicity, Replica Symmetry, Spin Glass and Quantum Phase Transition, Lect.
Notes Phys. 679, 101–129 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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2 Overview of Spin Glass

Spin glass is characterized by a cusp anomaly of magnetic susceptibility at
finite temperature and a very slow dynamics of relaxations represented by a
power law or a stretched exponential tail. Figures 1 & 2 are intended to show
the essential schematics of these spin glass anomalies [1, 11, 15, 16].

Figure 1 represents a typical experimental data of a real part susceptibil-
ity measured as a function of temperature at dc static (solid line), very low
frequency ac fields (• • •), and high frequency ac fields (◦ ◦ ◦). A sharp cusp
discontinuity can be observed at T = Tg only with a small field dc static
measurement, and already at mHz ac fields this cusp anomaly is changed to
a continuous peak, which becomes more rounded as the ac frequency of the
probe field increases to kHz [1, 11, 15].

In Fig. 2 a schematic cartoon of the remanent magnetization decaying
after removal of magnetic field is depicted to show the experimental data of

Fig. 1. A schematic drawing of magnetic susceptibility χ′ across the spin glass
transition probed by χFC-static (solid line), mHz (•••), and kHz (◦◦◦) ac fields as
a function of temperature (see for details of experimental measurements [1, 11, 15])

MR

t

Fig. 2. A schematic cartoon of remanent magnetization observed as a function
of time after removal of the applied field in the spin glass phase (see for details of
experimental measurements [1, 11, 16]). Experimental data (◦◦◦) are fitted (−−−)
by a power law decay function t−x plus a stretched exponential dacay function
exp−(t/τ)β [16]
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measurements (◦ ◦ ◦) best fitted (− − −) by a power law plus a stretched
exponential decay function.

A power law function is seen to fit the experimental data in the tail part
whereas a stretched exponential function better fits the head part of the data,
and there is certainly a region where both power law and stretched exponential
functions can best fit the experimental data.

A small concentration (0.1% ∼ 10%) of transition metal magnetic impu-
rities (Mn, Cr, Fe, etc.) in noble metals (Cu, Ag, Au, etc.) forms a canonical
spin glass.

We have also insulating mixed crystal spin glass systems between ferromag-
netic and antiferromagnetic components, and many other spin glass systems
including amorphous or diluted magnetic semiconductors [1, 11].

Spin glass is characterized by randomly competing interactions and
quenched disorders. A simple model has been known for long [1, 4, 11, 12]
to capture essential features of the spin glass transition

H = −1
2

∑

i>j

Jij
−→
S i ·

−→
S j

with the random interaction variables {Jij} assumed to have a Gaussian dis-
tribution

P (Jij) =
1√

2π∆ij

exp(−Jij
2/2∆ij)

The short-range Edward-Anderson model [17] can be simplified when the
Heisenberg spins are replaced by the Ising spins on a regular lattice of trans-
lational symmetry so that we can take

〈Jij
2〉C = ∆ij = ∆(−→R i −

−→
R j)

where 〈· · ·〉C represents a configurational average over the Gaussian ran-
dom distribution of {Jij}. The difference between annealed-disorder para-
magnetic phase and quenched-disorder spin glass phase can be described by
the Edwards-Anderson order parameter qEA defined by

qEA = lim
t→∞

lim
N→∞

〈〈Si(t0)Si(t0 + t)〉t0〉C

where 〈· · ·〉t0 represents an average over an infinite set of initial times t0. This
qEA can be seen to be zero when the system is ergodic as in the paramagnetic
phase with Si = ±1.

One important ingredient to form a spin glass is frustration [1, 11, 12, 18],
and the Mattis disorder system lacking of frustration is known to have no spin
glass transition [1, 7, 19, 20].

We show a schematic illustration of frustration in Fig. 3. Figure 3 (a,b)
illustrates a possible generation of frustration by a randomly competing in-
teraction between +J and −J in a square lattice.
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Fig. 3. Origins of frustration. Rectangluar lattice systems with random bond
disorder (a, b), and a triangluar lattice system with all antiferromagnetic bonds
and no random bond disorder (c). Frustrations are generated in (b) and (c). See
[1, 11, 12, 18] and [20] for more details

For a square lattice system a frustration spin site can be produced only
when the four random bonds are distributed to give an odd number of −J and
+J bonds so that only the (b) system is frustrated but the random disorder
system (a) is not frustrated. Fig. 3(c) illustrates a triangular lattice of no
random disorder but uniform −J bonds can have frustration generated due
to a geometrical constraint [1, 12].

Ising spin version of the Edwards-Anderson model in the infinite-range
interaction, mean field approximation was then introduced by Sherrington
and Kirkpatrick [21]. The SK solution of this mean field model was found
to be unstable in magnetic field in the low temperature region below the
Almeida-Thouless line [22].

Parisi then succeeded to find a stable solution of the SK model in the low
temperature phase characterized by the replica symmetry breaking and the
order parameter function [23].

In more realistic 3D systems of spin glass model it has been shown that
there is no Almeida-Thouless line, that is, no phase transition under magnetic
field, implying that any finite magnetic field would destroy the equilibrium
phase of spin glass state [24].

Susceptibility defined as χ = ∂M/∂H in magnetic materials, where mag-
netization M can be easily measured, need a more general definition from the
fluctuation-dissipation theorem to be extended to spin glass :

χ(T,H = 0) =
µ0

kBT

1
V

∑

i>j

(
〈〈SiSj〉 − 〈Si〉〈Sj〉〉C

)

In spin glass of no spatial (i �= j) correlations and thus no magnetization,
with 〈〈Si

2〉〉C = 1 and 〈〈Si〉2〉C = q, we can obtain [1, 15]

χ(T ) =
µ0

kBT

1
V

∑

i=j

(
S2 − 〈〈Si〉2〉C

)

= χ0 −
µ0

kBT
q(T )
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where S = |Si|, χ0 = µ0S
2N/V kBT , and a Gaussian distribution is as-

sumed for quenched random disorder variables in the configurational average
of 〈· · ·〉C .

We may thus obtain the order parameter q(T ) from the susceptibility
measurements. However, the static susceptibility can not be readily measured
due to extremely slow responses as T → Tg [15].

We can also define a nonequilibrium local order parameter q(t) as

q(t) = 〈〈Si(0)Si(t)〉〉C .

We can then find [25]
lim

t→∞
q(t) = qEA

and true equilibrium order parameter can be seen to be obtained by

q = lim
N→∞

lim
t→∞

q(t) .

In terms of the time-dependent local order parameter q(t) we may thus
define the time dependent susceptibility as [11]

χ(t) =
1

kBT
[1 − q(t)]

corresponding to the dynamical susceptibility as defined from the Sompolinsky
dynamic formulation [1, 26].

Instead of the cusp anomaly for all these linear response susceptibilities a
divergence at Tg is expected in the order parameter random field susceptibility
χSG defined as [15]

χSG ∝ 1
(kBT )2

〈
(〈σiσj〉 − 〈σi〉〈σj〉)2

〉

C

∝ ε−γ

where ε = (T − Tg)/Tg.
This divergence is more discernible than the cusp anomaly by experimental

measurements. What is more, this χSG conjugate to random field is found to
be proportional to the second order nonlinear susceptibility χ2 measurable by
a laboratory uniform field. Nonlinear susceptibility χnl is defined by a power
series expansion of the magnetization M [1, 11]

M = χ0h − χ2h
3 + · · ·

that is, χnl = χ0 − M/h = χ2h
2 + χ4h

4 + · · ·.
Scaling analysis can be applied to χSG, that is, experimental data of χ2

measurements, to obtain various critical exponents of the spin glass transition
at Tg [15].



106 J.-J. Kim

With applied fields of h = H +h′ cos ωt, where H is a dc field and h′ 
 H,
ac susceptibility χ′ at a fundamental frequency ω can be written as [15, 27]

χ′ = χ0 + 3χ2H
2 + 5χ4H

4 + · · ·

to give χnl = χ0 − χ′ in the static limit where the imaginary part χ′′ can be
set to be zero.

This ac susceptibility χ′ is distinguished from the equilibrium susceptibility
represented by the small field field-cooled susceptibility χFC as measured, for
example, by cooling the sample in a field and equilibrating the system for
∼ 1000 sec at each temperature with temperature decrements by ∼ 0.1K [28].

Temperatures at which χ′′ signals (loss part of the dynamic susceptibility)
start to appear mark the irreversibility temperatures of starting deviation
between χ′ and χFC .

Below the irreversibility temperatures of deviation the χnl data of ex-
perimental measurements often includes additional dynamic effects from the
critical slowing down behavior of the spin glass transition.

Application of a dc field H would suppress the dynamic loss part χ′′ and
lower the appearance temperatures of χ′′ signals so that the scaling analysis
may be well extended to be applied at lower temperatures, down to T 
 1.05Tg

at ω = 0.01Hz for example [15]. Although it is better to use χ2 measurement
rather than ac susceptibility or low field χFC data for determination of Tg,
diversity or discrepancy is reported in the experimental results probably due
to still too high fields or too large ε values employed in the scaling analysis
of the χ2 data to determine the critical exponents [15]. Especially, metallic
spin glass of RKKY interaction may belong to a different universality class
of a mean field behavior due to a long range interaction in comparison to the
Ising or Heisenberg systems of short range interactions [15].

In the weak field regime we have

M(t)/h = χ0 −
µ0

kBT
q(t)


 χ′(ω = 1/t) ,

and obtain from the χ′(ω) measurements

q(t) =
(
χFC − M(t)

h

)/
χFC

in the equivalent time domain as wide as from 10−6/sec to 103/sec, which was
found to be best fitted by [15, 29]

q(t) = at−α exp(−(t/τ)β)

in the temperature range of 1.04 < T/Tg < 1.10 for Fe0.5Mn0.5TiO3.
Although dynamic scaling analysis of the susceptibility data has been used

to support evidence for universal critical behaviors of the spin glass transition
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[15], with respect to 3D spin glass under fields the renormalization group
theory suggests disappearance of phase transition in a field [30] whereas a
mean field theory predicts a field dependence of the transition temperature
[22].

Experimental results of crossing points between the ac susceptibility
χ′(ω, T ) and the field cooled susceptibility χFC = ∂MFC/∂H give the
Tf (ω,H) line, from which an activation dynamics of ln(t/τ) ∝ ∆/Tf is sug-
gested rather than a phase transition at a finite temperature Tg for 3D Ising
spin glass in magnetic field [31].

Another important characteristics of spin glass is the ageing [1, 8, 9, 10, 11],
where the age is defined as the time spent at constant T and H after being
quenched. Although the spin glass can be viewed as being in a nonequilibrium
state with a continuous and spontaneous reorganization of the spin configu-
ration, the observables may appear as stationary, that is, observations are
bound to show equilibrium responses as long as ln t 
 ln ta where t = 1/ω is
a probing time and ta the age of the quenched system.

Otherwise, nonlinearity effects associated with nonequilibrium dynamics
may start to affect the measurements in fields [15].

3 Ergodicity

Glass is a representative system of the ergodic to nonergodic crossover tran-
sition. Ergodic state is so defined as returning to equilibrium from any initial
state of nonequilibrium ultimately after a sufficiently long time of relaxation.

Equilibrium value of a thermodynamic measurement is given by a long
time average as

〈X〉 = lim
tA→∞

1
tA

∫ tA

0

X(t)dt

where tA represents the observing period of time.
Fluctuations and correlation functions are then defined as ∆X(t) = X(t)−

〈X〉 and 〈∆X(t)∆X(0)〉 = 〈X(t)X(0)〉 − 〈X〉2, respectively.
Mean square fluctuations of thermodynamic equilibrium variables are

bound to follow the fluctuation-dissipation theorem to be related to the re-
spective linear response functions [32, 33].

For example, fluctuation in number of particles N in the system can be
shown to satisfy

〈(∆N)2〉 = 〈(N − 〈N〉)2〉

= 〈N〉 kBT

V/N
KT

where V represents volume, T temperature, and KT isothermal compressibil-
ity. Similarly for fluctuation of thermal energy E we have
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〈(∆E)2〉 = 〈(E − 〈E〉)2〉
= kBT 2CV,N

where CV,N represents heat capacity at constant volume V and constant num-
ber of particles N .

We can also define the statistical average or the expectation value 〈X〉 in
terms of the probability density ρ of phase points at time t as corresponding
to the number density of phase points divided by the total number of phase
points to write

〈X〉 =
∫

Ω

ρXd−→p d−→q .

This is an ensemble average at a single instant of time t equivalent to
the time average for one single system. Since each member of the ensemble
corresponds to a point of the phase space Ω, we may well understand the
ergodicity hypothesis as equivalent to a statement that ensemble average gives
the same result as time average.

Different thermodynamic conditions of a system lead to different ensemble
averages. Quantum mechanics is introduced in the statistical averages by use
of the probability density operator ρ̃ as [33]

〈X̃〉 = Tr(ρ̃(t)X̃) = Tr(ρ̃X̃(t))

where X̃ represents the quantum mechanical operator corresponding to the
classical observable X.

Thermodynamic quantities of a macroscopic system are given a time-
independent average value

〈φ〉 = lim
t∞→∞

1
t∞

∫ t∞

0

φ[−→XN
(t)]dt

where −→
X

N
(t) represents a state vector of the system at time t in the 6N -

dimensional phase space of the N particle system.
In the above calculation of 〈φ〉 we assume the ergodic hypothesis: “during

the time interval t∞ the phase point −→XN
(t) of the system dynamics will spend

equal times at all the phase points accessible to the selected ensemble.”
In the microcanonical ensemble where N , V and E are specified in the

system so that all systems of the ensemble have the same fixed energy E
the ergodic hypothesis can be reworded as, “all the degenerated J states of
En = E will be equally probable with the same probability 1/J” where J is
the degeneracy. That is,

Pn = 〈En|ρ̃|En〉
= δ(En − E)/J

where Pn represents the probability of observing the system to be in the state
|En〉,

∑J
n=1 Pn = 1, and ρ̃|En〉 = En|En〉 since [H̃, ρ̃] = 0.
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In the canonical ensemble specified by N , V and T the probability to find
the system in a state |En〉 is given by

Pn =
1
Z

exp(−En/kBT )

where Z =
∑

n exp(−En/kBT ) is the partition function.
In the grand canonical ensemble of open systems characterized by V , T

and chemical potential µ we can define

F = H̃ − µÑ and F |n〉 = Fn|n〉

so that we may generalize the definition as

ρ̃G =
1

ZG
exp(−F/kBT )

to obtain [33]

〈X〉G = Tr(X̃ρ̃G)

=
1

ZG
Tr

(
X̃ exp(−F/kBT )

)

=
1

ZG

∑

n

〈n|X̃|n〉 exp(−Fn/kBT )

where

ZG = Tr (− exp(−F/kBT ))

=
∑

n,N

exp
(

µN − En

kBT

)

and
Tr(ρ̃G) = 1

All these ensemble averages, equivalent to each other in the thermody-
namic limit, assume the system to be ergodic in probabilistic terms.

A quantum mechanical system is found to be ergodic only when the sys-
tem is nondegenerate, that is, no other observables are commuting with the
Hamiltonian [34].

Ergodicity breaking is accompanied also by a phase transition of sponta-
neous symmetry breaking at Tc. Even at above Tc the crystal, strictly speak-
ing, may not be ergodic because not all the phase space points allowed ener-
getically are sampled in a finite time of observation.

However, we do not have to stick to the ergodic hypothesis of equivalence
between time average and ensemble average when the lattice atoms are at
well-defined sites of crystallographic equivalence so that different regions of
the equipotential configurational energy surface would make essentially the
same contribution to the ensemble average.
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In glass, however, every site is at specific local environment of a specific
ligand and may not be equivalent to each other so that the permutation sym-
metry is broken. This permutation symmetry is equivalent to the statistical
symmetry with respect to the time average in fluids due to the spatial homo-
geneity.

With freezing into a structural state before internal state of equilibrium
is reached, that is, as the system is quenched, the internal equilibrium state
will get lost at the glass transition temperature Tg. Above Tg the ergodic
hypothesis of statistical mechanics holds so that thermal fluctuations would
drive the system at equilibrium to revisit the same state in a finite period of
time whereas glass is frozen at one minimum valley, leading to a difference
between time average and ensemble average over all the minimun valleys, and
becomes nonergodic below Tg.

Glass transition temperature Tg depends on cooling rate when observation
is made in the cooling cycle but would depend also on thermal history when
observation is made in the heating cycle because ergodicity is broken in the
beginning [1, 35].

New excitations of some glassy degrees of freedom are expected to take
place as T → T+

g . Two major relaxations are a strong cooperative dynam-
ics of α-relaxation and a weak faster β-relaxation as a continuation from
high temperature relaxations before a full strength cooperative moding. This
relaxation occurs from a landscape generality, and rearrangement over the
landscape energy barrier is a cooperative action of 3N + 1 coordinates.

In the ergodic region relaxations are of entropic type given by

τ = τ0 exp(a∆F/TSc)

where ∆F represents a free enegy barrier to rearrangement, and Sc =
∆Cp ln T/Tk excess configurational entropy with excess specific heat ∆Cp =
b/T . When approximation is made of ∆S = ∆Cp(Tk)(T − Tk)/Tk we can
obtain the Vogel-Fucher equation [35]

τ = τ0 exp(cT0/(T − T0)) .

In the nonergodic region Sc becomes time-dependent with an ultimate
relaxation to the Adam-Gibbs value of equilibrium where τ becomes time-
independent [36]

Ergodic hypothesis may be generalized to mean that a system at equi-
librium can be found in any other accessible configuration corresponding to
a macrostate of various microstates with a probability given by Boltzmann
distribution exp(−E/kBT ). The ergodicity breaking is thus not possible at
T = 0 if the system is prepared strictly at equilibrium. Ergodicity breaking is
then put in by hand such as by the way of applying an infinitesimal field h to
restrict the trace sum average,

lim
h→0

( lim
N→∞

MN ) = M .
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However, we get a different result if there is no symmetry-breaking field
kept until taking the thermodynamic limit (N → ∞)

lim
N→∞

( lim
h→0

MN ) = 0

since fluctuations in a finite system have a finite lifetime, and lead to the
Gibbs average over two possible microstates of the thermodynamic ground
state at T = 0 as an equal mixture [1].

4 Replica Symmetry

Let’s consider a representative exactly solvable model of spin glass,
Sherrington-Kirkpatrick(SK) model, which is the infinite range (R → ∞),
infinite number of interaction neighbors (z → ∞), and infinite dimensional
(d → ∞), randomly disordered Ising spin glass model as described by [21, 37]

H = −
N∑

i�=j

Jijσi
zσj

z

with

P (Jij) =
∏

i�=j

(√
N

2π
exp(−N

2
Jij

2)

)

for a Gaussian probability distribution of quenched random variables Jij de-
scribing a pairwise interaction between any two spins at the sites i and j. For
each spin σi all the other spins σj(i �= j) form the coordinate neighbors of
interaction so that this SK model of infinite range interactions corresponds to
the space dimensionality of infinity in the N → ∞ limit.

The SK model of this infinite dimensionality should then have exact solu-
tion given by the mean field approximation.

For this randomly quenched disorder system the free energy F is given by

F = 〈〈FJ 〉〉C = −kBT 〈〈ln ZJ〉〉C

where partition function ZJ is

ZJ =
∑

{σ}
exp

(
− H({σ}J )

kBT

)

with the subscript J representing a fixed set of quenched random variables
{Jij} supplied from the Gaussian distribution.

Direct calculation of F is not trivial, and we make use of a mathematical
identity of replica trick to deal with ZJ instead of lnZJ

ln Z = lim
n→0

(
1
n

(Zn − 1)
)
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That is,

F = −kBT

〈〈
lim
n→0

(
1
n

(Zn
J − 1)

)〉〉

C

= lim
n→0

Fn

where we introduce n-replica free energy

Fn = − 1
n

kBT (Zn − 1)

by defining the partition function of the n-replica systems [1, 11, 12, 37]

Zn = 〈〈Zn
J 〉〉C

=
∫

DJP (J)Zn
J

=
∫

DJP (J)
n∏

α=1

∑

{σ(α)}

exp

(
1

kBT

N∑

i�=j

Jijσ
(α)
i σ

(α)
j

)

=
∫

DJ
∑

{σ(α)}

exp

(
1

kBT

n∑

α=1

N∑

i�=j

Jijσ
(α)
i σ

(α)
j − 1

2

∑

i�=j

NJ2
ij

)

=
∑

{σ(α)}

exp

(
1

2N

1
k2

BT 2

N∑

i�=j

(
n∑

α=1

σ
(α)
i σ

(α)
j

)2)

=
∑

σ(α)

exp

(
1

4k2
BT 2

Nn +
N

1
2k2

BT 2

n∑

α�=β

(
1
N

N∑

i

σ
(α)
i σ

(β)
i

)2)

=
n∏

α�=β

(∫
dQαβ

) ∑

{σ
(α)
i

}

× exp



 1
4k2

BT 2
Nn − 1

2
N

k2
BT 2

n∑

α�=β

Q2
αβ +

1
k2

BT 2

n∑

α,β

N∑

i

Qαβσ
(α)
i σ

(β)
i





where the replica matrix Qαβ is given by

Qαβ =
1
N

N∑

i

〈σ(α)
i σ

(β)
i 〉

as satisfying δZn/δQαβ = 0. We can rearrange terms to rewrite [1, 12, 20]

Zn =
n∏

α,β

(∫
dQαβ

)
exp

(
1
4

1
k2

BT 2
Nn − N

2
1

k2
BT 2

n∑

α,β

Q2
αβ

)
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×
N∏

i




∑

{σ
(α)
i

}

exp

(
1

k2
BT 2

n∑

α,β

Qαβσ
(α)
i σ

(β)
i

)



=
n∏

α,β

(∫
dQαβ

)

× exp



1
4

1
k2

BT 2
Nn − N

2
1

k2
BT 2

n∑

α,β

Q2
αβ

+N ln

(
∑

{σ(α)}

exp

(
1

k2
BT 2

n∑

α,β

Qαβσ(α)σ(β)

))



=
∫

dQ̃ exp

(
− 1

kBT
nNf(Q̃)

)

where we have

f(Q̃) =
1
4

1
kBT

+
1
2n

1
kBT

n∑

α,β

Q2
αβ − kBT

n
ln

(
∑

{σ(α)}

exp

(
1

k2
BT 2

n∑

α,β

Qαβσασβ

))

The above integral can be solved from the saddle point method (the steep-
est descent method) to give, in the thermodynamic limit, in the leading order
of N [12]

Zn 
 1√
|detδ2f/δQ̃2|

exp
(
− 1

kBT
nNf(Q̃∗)

)

where Q̃∗ is the matrix for minimizing f(Q̃) and giving the saddle point, that
is,

δf(Q̃)
δQαβ

∣∣∣∣∣
Q̃=Q̃∗

= 0

Replica symmetric solutions are obtained by assuming

Qαβ = q for all α and β

corresponding to one and only one ground state in the system.
In the limit n → 0 we find

f(q) = −1
4

1
kBT

(1 − q)2 − kBT

∫ ∞

−∞
dz

1√
2π

exp
(
− 1

2
z2

)

ln
(

2 cosh
(

1
kBT

√
qz

))
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where we have [11, 20, 37]

q =
∫ ∞

−∞
dz

1√
2π

exp
(
− 1

2
z2 tanh2

(
1

kBT

√
qz

))
.

We can see that q = 0 at T > 1 and q → 1 at T → 0. However, this
replica symmetric solution can be seen to be unstable at low temperatures of
T < 1, that is, det|δ2f/δQ̃2| < 0, and give a negative entropy at very low
temperatures with SC = −1/2π at T = 0 [11, 21, 37].

A correct low temperature solution of the replica matrix Q̃ in the n → 0
limit is obtained by a replica symmetry breaking scheme of Parisi [1, 4, 11,
12, 38].

An infinite sequence of the symmetry breaking scheme improves the results
towards the true solution by introducing the continuous stability parameters.
By one-step replica symmetry breaking Q̃ will assume the following new struc-
ture [1, 4, 11, 12].

Q̃ =

0 q1 q1 q1

q1 0 q1 q1

q1 q1 0 q1

q1 q1 q1 0

((q0)) ((q0)) ((q0))

((q0)) ((q̃1)) ((q0)) ((q0))

((q0)) ((q0)) ((q̃1)) ((q0))

((q0)) ((q0)) ((q0)) ((q̃1))

where

((q0)) =

∣∣∣∣∣∣∣∣

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

q0 q0 q0 q0

∣∣∣∣∣∣∣∣
and ((q̃1)) =

∣∣∣∣∣∣∣∣

0 q1 q1 q1

q1 0 q1 q1

q1 q1 0 q1

q1 q1 q1 0

∣∣∣∣∣∣∣∣

Further to the two-step replica symmetry breaking the new structure of
the replica matrix Q̃ is organized in the following form [4, 12]
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0 q2 q1 q1

q2 0 q1 q1

q1 q1 0 q2

q1 q1 q2 0

((q0)) ((q0)) ((q0))

((q0))

0 q2

q2 0 ((q1))
0 q2

((q1)) q2 0

((q0)) ((q0))

((q0)) ((q0))
((q̃2)) ((q1))

((q1)) ((q̃2))

((q0))

((q0)) ((q0)) ((q0))
((q̃2)) ((q1))

((q1)) ((q̃2))

((q0)) ((q0)) ((q0)) ((q0))

where ((q1)) represents
∣∣∣∣
q1 q1

q1 q1

∣∣∣∣ and ((q̃2)) represents
∣∣∣∣

0 q2

q2 0

∣∣∣∣.

Starting from (n×n) matrix Q̃ of n replicas where all the diagonal elements
are zero and all the off-diagonal elements are q0, we divide the matrix into (m×
m) matrix blocks where n/m is a complete integer. In the above illustration
of one-step replica symmetry breaking the (n × n) matrix Q̃ can be seen to
be divided into (4 × 4) matrix blocks, ((q̃1)) and ((q0)).

In the two-step replica symmetry breaking the (m×m) matrix blocks are
further divided into smaller (l×l) matrix blocks where m/l is again an integer.
In the illustration above we can see m = 4 and l = 2.

We can observe that the off-diagonal matrix blocks are left without any
change and only along the diagonal blocks new q values are introduced in the
succeeding steps of replica symmetry breaking as in (m×m) ((q̃1)) – and then
(l× l) ((q̃2)) – block matrices derived from the preceding (n×n) and (m×m)
parent matrices, respectively.

All the n replicas are supposed to have the same microscopic distribu-
tion of randomly competing interactions {J} but do not represent the same
ground states degenerated from the frustration structures of the spin configu-
rations {σ} so that they are macroscopically different. That is, replicas do not
correspond to valleys by one to one but certainly have nontrivial relations.

Instead of the two equivalent valleys, corresponding to +M and −M in the
ferromagnetic systems, separated by an infinite barrier of free energy, in the
spin glass systems of replica symmetry breaking solutions so many valleys of
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ergodicity breaking are formed with each valley containing many metastable
states separated by finite energy barriers [1, 4, 8, 10, 39].

As temperature is lowered phase space is broken into many valleys, that
is, different regions separated by energy barriers in free energy landscape.

Although each separated valley of infinite barrier in the N → ∞ limit has
the same value of qEA defined by

qEA =
1
N

N∑

i=1

|〈σ(a)
i 〉|2

overlap or closeness between two valleys a and b may well be defined as [1, 4,
12]

qab =
1
N

N∑

i=1

〈σ(a)
i 〉〈σ(b)

i 〉 .

The probability distribution function for this overlap parameter qab defines
the order parameter function of spin glass as [1, 4, 40, 41]

P (q) =
∑

a,b

δ(q − qab) .

Edwards-Anderson order parameter qEA then corresponds to a typical
overlap between two representative configurations inside the same valley qaa.
From the whole distribution of valleys only those valleys of the minimum free
energy are dominant to determine thermodynamics, and zero overlap can be
assumed for the probability distribution of free energy in a valley [42].

5 Glass Transition

One of the best understood model system for glass transition is the spin glass
characterized by a random distribution of quenched disorders and frustra-
tion. Glass transition in spin glass system has been understood mostly by the
Sherrington-Kirkpatrick(SK) model. Parisi showed from his low temperature
solutions of the SK model that glass transition should be an equilibrium phe-
nomenon of replica symmetry breaking. Mezard et al., exploring physics of
the replica symmetry breaking, succeeded to give a better understanding of
the replica physics in terms of overlaps, ultrametricity and non-self averaging
[4, 11, 12, 43].

A new type of ordering of the spin glass transition may be represented by
superposition of infinitely many pure states [4, 40, 44] which are not related
by simple symmetry transformations, and we may require a continuous order
parameter function instead of one single order parameter.

In contrast to this mean field replica symmetry breaking theory assuming
infinitely many pairs of pure states we have also the droplet model theory
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[1, 11, 45] based on one single pair of pure states where low temperature
behavior is described in terms of low energy excitations forming clusters of
coherent spin-flips.

At low temperatures a dilute gas of coherent clusters may be considered
as a common origin for the two level systems in glass [10, 46], and leading to
the asymptotic behavior of two states rather than infinitely many pure states.

A nonequilibrium signature of glassy systems can be verified with the aging
phenomena [8, 9, 47, 48]. The glassy response function R(t, tw) of a very weak
and long memory can not easily be measurable, and instead, an integrated
response is used to introduce the time-dependent susceptibility χ(t, tw)

χ(t, tw) =
∫ t

tw

R(t, t′)dt′

where tw represents a waiting time [1, 11, 15].
Fluctuation-dissipation theorem of equilibrium systems does not hold in

the aging systems of nonequilibrium, and χ(t, tw) can be approximated as a
sum of two separate contributions: a stationary part satisfying the fluctuation-
dissipation theorem and an aging part violating the fluctuation-dissipation
theorem [8, 9].

In the asymptotic limit of (t − tw) � tw we can approximate [8, 9]

C(t, tw) 
 Cage(t, tw)

so that we may assume [9]

∂

∂tw
Cage(t, tw) = Teff (Cage(t, tw)) Rage(t, tw)

where Teff represents an effective temperature, C(t, tw) correlation function,
and R(t, tw) response function.

This definition of effective temperature introduces quasi fluctuation-
dissipation theorem in conformity with the fluctuation-dissipation theorem
of equilibrium system.

Glassy system, characterized by an extremely slow relaxation, may be
regarded as to be in quasi equilibrium over time scales much longer than
microscopic fast time scales but shorter than macroscopic slow relaxation
times. A more general extension of partial equilibrium in a limited subset
of relaxational degrees of freedom may be incorporated to nonequilibrium to
define an ensemble sampling of phase space components [49].

Many effective temperatures may be required to cover the whole nonequi-
librium regime so that glassy systems can be classified into three hierachical
groups according to Teff dependence on Cage(t, tw) [8, 9]. Coarsening sys-
tems, for example, are replica symmetric and described by two Teff values
with two time scales. Systems of one-step replica symmetry breaking also need
two Teff values and two time scales, which include structural glasses and are
often referred to two time scale systems.
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Full scale replica symmetry breaking systems including spin glass are
known to have many time scales with a continuous spectrum of Teff values
[8, 9]. A special one-step replica symmetry breaking system of zero tempera-
ture glass transition is often referred as one time scale system because of no
stationary regime with nonequilibrium dynamics characterized by a Teff .

In the region of C(t, tw) > qEA corresponding to the stationary regime all
the above three classes of glassy systems are found to satisfy the fluctuation-
dissipation theorem [8, 9].

In the mean field limit N → ∞ the two-time correlation fuction

C(t, t′) = 〈Si(t)Si(t′)〉

and the linear response function

R(t, t′) =
〈

δ〈Si(t)〉
δhi(t′)

〉

vanish for t < t′ due to causality, and the correlation function develops a
plateau with C(t− t′) → qEA near T

>∼ Tc before decaying ultimately to zero
at very long t [8, 9].

The plateau interval increases toward divergence at T = Tc of the mode-
coupling theory in a power law and a dynamic crossover follows in C(t − t′)
as [8, 9, 47]

C(t − t′) ∼ qEA + A(t − t′)−a, C > qEA

∼ qEA − B(t − t′)b, C < qEA

This plateau length sets the equilibration time scale so that the correlation
function would not decay to the equilibrium zero with a divergence of the
plateau length as temperature is lowered to Tc [8, 9, 50].

Further below Tc the spin glass system cannot go equilibrating but the
system evolution may go depending on initial states with ergodicity break-
ing, which brings about the permutation symmetry breaking between replicas
[40, 51]. Effective temperature can also be defined in terms of configurational
entropy or complexity in analogy with equilibrium temperature of Boltzmann
entropy to attempt a thermodynamic formulation of glassy states.

Within the mean field approximations the short-range models and the
infinite-range Sherrington-Kirkpatrick model are in qualitative agreements in
most of the results, although cooperative slow dynamics of glass was found to
involve only a few tens of atoms in nanometer scale cages [35, 52].

Discontinuous spin glass transition was predicted by models including q-
state Pott glass (q ≥ 4) [53] and p-spin glass (p ≥ 3) [54].

In the limit of p → ∞ and q → ∞ the models correspond to the random
energy model [55] which can be solved without replica trick to show a discon-
tinuous jump from qEA = 0 (T > Tg) to qEA = 1 (T < Tg) at the transition
temperature Tg. Random orthogonal model [56] is another model showing
the discontinuous transition where random quenched disorder variables Jij
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are matrix elements in a random orthogonal ensemble of matrices satisfying
JijJjk = δik. Both continuous and discontinuous spin glass transitions with
respect to qEA may be continuous in viewpoints of thermodynamic averages
as suggested by a notion that q(x) is a continuous function of x[0, 1] and ther-
modynamic quantity is given by an integral involving various moments of q(x)
[57].

The p-spin spherical model, showing a mean field discontinuous spin glass
transition, can be solved by one-step replica symmetry breaking to give the
spin glass solution. This implies that the phase space may be broken up into
all equivalent ergodic components separated by infinite barriers, when three
parameters may be sufficient to describe the equilibrium: the overlap between
two ergodic components, the overlap inside each ergodic component (equiva-
lent to qEA), and the probability distribution that two different replicas will
be found in the same ergodic component [58, 59]. Ising spin p-spin model has
a more complex solution at very low temperature as obtained by infinite step
replica symmetry breaking [54].

The Thouless-Anderson-Palmer approach [60] based on the free energy
landscape topology, and the Sompolinsky approach [25, 26] of spin glass dy-
namics assume two separate regimes, corresponding to the equilibrium regime
and the nonergodic regime of quasi fluctuation-dissipation theorems, where
dynamics in a single ergodic component is important in the former regime
whereas slow dynamics across different local minima becomes important in
the time scales of the latter regime [8, 44, 48].

When dynamics is dominated by activation processes in the free energy
landscape with a broad distribution of barrier heights, the underlying con-
figurational space with the activation transition times as a metric becomes
ultrametric [61]. That is, the metastable spin configurations, with the ham-
ming distance of activation barrier, or equivalently, logarithm of relaxation
time, form the ultrametric space [62]. Considering a droplet of uniform spin
configuration in a size L, the droplet model of Fisher and Huse [45] is based
on the scaling assumption for the flipping free energy as Lx and the kinetic
barrier against flipping of the droplet as Ly. Hamming distance dH is then
defined, to measure a hopping distance between two different spin configura-
tions, as

dH ∝ 〈(δR)2〉
where δR represents random fluctuation in resistance R due to spin flip con-
figurations and 〈(δR)2〉 tends to simulate a variance of a Gaussian distribution
around zero [61].

Algebraic growth of inter-valley barrier height with increasing dH leads
to a logarithmic growth in time for dH(t), and this logarithmic growth of
〈(δR)2〉 in time brings about 1/f noise [61]. Higher than the second moment
for 〈(δR)2〉 will be an implication for a non-Gaussian fluctuation. Once the
droplet completes an infinite percolation network this droplet picture must
be modified. The ultrametric dynamics as well as the droplet model leads to
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the same 1/f fluctuation spectra of magnetization, corresponding to a linear
response in a logarithmic time scale [63].

A local equilibrium state is defined such that a relative probability for a
system to be in the states within a finite volume of the configurational space
is given by Boltzmann distribution [10, 44]. That is, a state is represented by
a probability distribution function P (C) over the configurations C. Any local
equilibrium state may thus be represented by a sum over pure equilibrium
states, and thus pure states correspond to the extremal states of a convex set
of equilibrium states [10]. Different boundary conditions yield different local
equilibrium states, but intensive variables should not show fluctuations in the
pure states showing a clustering behavior [10, 44].

A dynamical transition at Td > Tg is predicted in the discontinuous tran-
sition models as corresponding to the instability encountered with the mode
coupling theory of glass transition [8, 9, 59].

A zero frequency mode at Td is considered to be responsible for divergent
relaxation time in glassy dynamics [9, 64, 65], and a speculation remains
whether this Td instability may be a mean filed artifact which can be removed
by including activations over finite energy barriers [66, 67]. This instability
is also reminiscent of a spinodal development of instability in the first order
transitions [57].

A very large number of metastable states in proportion to exp(NC∗)are
involved in dynamic response to the instability but free energy remains to be
in the paramagnetic phase in the region of Td > T > Tg [57].

As temperature is lowered further to Tg the number of metastable con-
figurations would decrease, and the free energy is decreased. A true thermo-
dynamic transition will then be reached when the metastable phase has free
energy equal to that of the paramagnetic phase.

In mean field theories the metastable states get an infinite lifetime, and
these mean field models of spin glass with a discontinuous transition (with
respect to qEA the Edwards-Anderson order parameter) would show a ther-
modynamic transition at Tg where the configurational entropy C∗ collapses
to zero with dynamics described by mode-coupling equations [57].

Statics and dynamics are not commuting in quantum mechanics, and the
dynamical instability may survive with the quantum phase transition at zero
temperature.

Non-dissipative quantum fluctuations can still generate disorders, driving
discontinuous phase transition at Tc > 0 to a continuous phase transition
at Tc = 0. Dynamical instability of mode-coupling theory may then be sup-
pressed at T = 0 by quantum fluctuations [57].

Model systems without disorders are shown to be possible to exhibit spin
glass dynamics due to a dynamic self generation of disorders [68].

Order parameter Qtt′

ab = 〈σa(t)σb(t′)〉 and response function R(|t− t′|) for
a = b can be shown to be related to the susceptibility as [57]
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χ0 =
1

kBT
R̂0

where R̂0 is given from the following transforms

R̂p =
1
M

M−1∑

t=0

eiωptR(t), ωp =
2π

M
p .

In the static approximation of Bray and Moore [69], considering only the
zero frequency (p = 0) Matsubara mode, Td and Tg coincide at T = 0 so that
the transition may become continuous. That is, transition at T = 0 must be
continuous since there is no room for metastable phase.

Although incorrect results of thermodynamic quantities such as finite en-
tropy at T = 0 in the mean field glass of Sherrington-Kirkpatrick model and
infinite entropy in the random orthogonal matrix model remain as serious de-
fects of the static approximations, discontinuous transitions are well predicted
to become continuous at T = 0 as shown schematically in Fig. 4 [57].

Fig. 4. Numerical studies of static (Tg) and dynamical (Td) transitions of ROM
model in the static approximation [57]. (a) Phase boundaries in temperature (T )-
transverse field (Γ ) plane, and (b) qEA values along the phase boundary lines of
Tg(Γ ) and Td(Γ )

6 Quantum Phase Transition

Quantum phase transition was noted as an important problem in Fermi liquid
metals where the divergent susceptibility may lead to an infinitely strong
effective interaction between electrons [3].

This quantum critical point can be observed in the zero temperature con-
tinuous phase transition. As thermal fluctuations with increasing temperature
can cause a phase transition from order to disorder, zero point quantum fluc-
tuations tunable by an external control of pressure, field, etc. can cause a
phase transition from ordered to disordered phase.
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Critical divergence to infinity may well invalidate the Fermi liquid theory
of metals, when metals turn into a non-Fermi liquid at the quantum critical
point.

The standard φ4 theory of critical region employs an effective dimension-
ality deff = d+z where d is the space dimension and z the dynamic exponent
to reflect a quantum mechanical mixing between statics and dynamics [70].

For systems of deff > 4, the upper critical dimension of the φ4-model, the
mean-field theory, that is, the Gaussian approximation should give the exact
solutions. However, non-Gaussian localities of the quantum critical behaviors
have been reported [71].

Coexistence of a long-range spatial ordering and local critical fluctuations
is then expected to give novel anomalies as in the heavy fermion metals [72].
There are also quantum phase transitions without well-defined order para-
meter as in the disordered interacting electron system [13, 14]. Heisenberg
quantum spin glass was studied as early as in 1975 [2], where quantum effects
in the Sherrington-Kirkpatrick model spin glass were found to lower the tran-
sition temperature in quantum spin glass. Quantum fluctuations can indeed
drive the spin glass transition down to absolute zero [73].

Replica symmetry breaking is expected to vanish in the limit Tc → 0,
and quantum spin glass should become most interesting. Critical behavior of
a quantum spin glass will be same as that of a classical model in the phase
transition at nonzero temperatures except renormalizations of such nonuni-
versal quantities as Tc by quantum effects.

Only at Tc = 0 by tuning quantum fluctuations of quantum tunneling be-
tween ground states, being equivalent to a disordering field, a genuine quan-
tum phase transition of a different fixed point and different univerality class
will be realized.

One-dimensional Ising spin glass (due to no frustration this model maps
onto a random Ising ferromagnet) is ordered at T = 0, and requires a finite
transverse field to go disordered, when a genuine quantum phase transition is
introduced with the Griffiths phase of divergent paramagnetic susceptibilitiy
(Γ > Γc) [74, 75, 76, 77]. Excitations in spin glass phase of a quantum Ising
spin glass are known to conform with the droplet excitations of classical spin
glass [78]. Continuous quantum phase transition at Tc = 0 is similar to those
at Tc �= 0 but with different critical exponents. The critical exponents are not
controlled by quantum fluctuations in the quantum spin glass of Tc �= 0.

This is because kBT � h̄Ωc, with Ωc = 1/τ ∼ ξ−z → 0, unless Tc = 0 of
no thermal energy [74]. A spin glass system of LiHoxY1−xF4(0.25 > x > 0.1)
was shown to have Tc → 0 in a transverse magnetic field [79].

Quantum system of d-dimension can be transformed to a (d+1)-dimensional
classical problem. In fact, for uniform systems, quantum phase transitions
are no longer different from showing classical universalities. However, for
randomly quenched disorder systems the corresponding classical models be-
come quite anisotropic, and a simple correspondence cannot be applied [80].
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In the classical thermodynamic limit of infinite barrier height, nonergod-
icity sets in under thermal activation attempt, but the configurational en-
ergy barrier decreases in width with increasing system size so that quantum
tunneling may be enhanced to give an ergodic, that is, replica-symmetric spin
glass solutions [7, 74, 81, 82]. However, nonergodic solutions are also reported
[83].

7 Quantum Spin Glass

We have two distinctive models of quantum spin glass:

1. vector spin glass [69] where quantum fluctuations are not tunable,
2. transverse Ising spin glass, which is a classical spin glass perturbed by

tunable quantum fluctuations [84, 85, 86].

Statics of disorder-free H is quantum mechanically linked with Schroedinger
dynamics in an imaginary time axis equivalent to another extra space dimen-
sion where the correlation length becomes proportional to inverse energy gap
1/∆E. Randomly distributed quenched disorders implicate no correlation in
space dimensions but time-independent perfect correlation in time dimension,
and this extreme anisotropy is expected to give ξτ ∼ (∆E)−z with z �= 1 [87].
This nontrivial extreme anisotropy may be more suscptible to the Griffiths
phase in the quantum phase transition [87].

A good model of quantum spin glass is the transverse field Ising spin glass
model [7, 84, 85, 86] defined by

H̃ = −
∑

ij

Jijσ
z
i σz

j − Γ
∑

i

σx
i

where (i, j) is restricted to the nearest neighbor pairs, and quenched disorders
{Jij} introduce frustration except for 1D system.

This quantum system H̃ exhibits a 2nd order phase transition at T = 0
and Γ = Γc, characterized by [87]

ξτ ∼ |Γ − Γc|−ν and ∆E ∼ ω ∼ ξ−z
τ

For 1D system, with a broad distribution function for critical properties
in logarithmic scales, a typical correlation length with critical exponent ν = 1
becomes different from an average correlation length of critical exponent ν = 2
[87].

It is the logarithm of excitation energy gap rather than the energy gap
itself that maintains a scaling relation with the system size. Energy gap is thus
observed to decrease with increasing system size as an exponential function
instead of an algebraic dependence. This relation of 〈∆E〉 ∼ exp(−a

√
L) gives

z = ∞ since the inverse energy gap corresponds to the characteristic relaxation
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time of quantum tunnelling fluctuations, equivalent to the activation kinetics
in a classical spin glass [88, 89].

For 2D and 3D the numerical studies by quantum Monte Carlo simulations
agree with the scaling theory predictions of droplet model, where no broaden-
ing of the probability distribution in logarithmic scales with increasing system
size is confirmed, but χnl(ω = 0) is found to diverge at Γ = Γc and T → 0
quite strongly [90, 91] in sharp contrast to the experimental observations with
LiHoxY1−xF4 [79].

Although quantum phase transition in the infinite-range model of a trans-
verse Ising spin glass [92] gives a much weaker divergence in nonlinear sus-
ceptibiliy as compared with the short-range models, the contradiction still
remains between theory of transverse Ising spin glass and experiment which
yields the nonlinear susceptibility exponent γeff 
 0 at T < 25 mK [79].

This SK model in a transverse field exhibits a continuous spin glass tran-
sition with mean field exponents [81, 82, 83, 84, 93].

Quantum Ising spin glass in 1D, due to no frustration entering the 1D
random system, described by a random Ising spin chain in a transverse field

H = −
∑

ij

Jijσ
z
i σz

j −
∑

i

Γiσ
x
i

where Jij represents nearest neighbor coupling constraints and Γi the site-
dependent field strength, gives more interesting exotic results [76]:
(1) exponential scaling of relaxation time with

√
L, equivalent to a dynamic

scaling of τ ∼ Lz with z → ∞, where L represents system size,
(2) in the disorder phase of paramagnetic side, exponential decay of spin
correlation function as exp(−x/ξ) at a large distance with 〈ξ〉 = Aδ−ν , where
δ = 〈ln Jij〉 − 〈ln Γi〉 and ν = z.

This dynamic scaling can be shown to correspond to the energy gap scaling
with system size in the equivalent free fermion system conserving particle
numbers by mapping transformations of Jordan-Wigner and Bogoliubov [77].

One-dimensional characterisitics of the random quantum models, with
more distinctive effects from the Griffiths local criticality, was explored to
reconfirm by numerical studies [77]:

(1) unconventional dynamic scaling of an infinite dynamical exponent,
(2) broad probability distribution, and thus difference between the average

and the typical (most probable) value,
(3) divergent susceptibilitites inside the paramagnetic region as due to the

rare clustering fluctuations of the quenched random variables, which are
not found at all in the infinite-range model [74].

The T = 0 perspectives of quantum spin glass in realistic dimensions
(d = 2, 3) mostly concern with a diluted dipolar Ising magnet LiHox Y1−x F4

(TSG 
 0.13 K at x = 0.167, at x = 0.25 Tc → 0)

H̃Q = −
∑

i,j

Jijσ
z
i σz

j − Γ
∑

i

σx
i
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which can be transformed to, in the critical region,

HC = −
∑

i,j,τ

JijSi(τ)Sj(τ) −
∑

i,τ

Si(τ)Siτ (τ + 1)

where σi’s are Pauli spin matrices, Si’s are classical Ising spins, and the cou-
pling in the extra dimension of imaginary time is ferromagnetic [7, 74, 94].

The rare fluctuations of the random distribution {Jij} are closely related
to a perfect correlation of the Jij random bonds in the extra time dimension.

Thermodynamic limit of a quantum model in simulations corresponds to
a classical model of spatial dimension L → ∞ while the infinity limit of the
classical time dimension (Lτ → ∞) corresponds to the T → 0 limit of the
quantum model in the finite size scaling analysis [74].

Monte Carlo simulations of quantum Ising spin glass in 2D [90] and 3D [91]
both show a finite temperature spin glass transition and a power law dynamic
scaling with a finite z.

Rare fluctuations in 1D give a divergence of susceptibily in the paramag-
netic phase to cause the Griffiths singularities. Rare clusters of strong bonds
will be formed with probability of P (L) ∼ exp(−aLd), decreasing exponen-
tially with volume Ld but the correlation length along the time-like axis in-
creases exponentially as ξτ ∼ exp(bLd) as given by the classical mapping of
the original quantum system [74].

Simulation studies of 2D and 3D confirm the power law tails for the local
susceptibility distributions [95, 96] as implied by the power law relationship
between P (L), that is, the local susceptibility and ξτ .

The non-universality in quantum spin glass models may be generic due to
the rare-fluctuation dominant effects of Griffiths phase [74]. The rare fluctu-
ations affect dynamics more directly than statics so that they may be more
important in quantum systems [7, 74, 87, 97, 98]. For example, the point de-
fects of rare fluctuation clusters in d-dimensional quantum systems are trans-
formed as propagating in the time-like direction to the (d + 1)-dimensional
classical models, and thus act like the line defects which should give stronger
perturbations than the same d-dimensional classical cases [74].
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Appendix

Quantum annealing and optimizations are the two main themes of the present
workshop. Since the first observation of the spin glass phenomena [99], after
more than 30 years of continuing great concerns from the core community of
condensed matter physics, this spin glass physics is steering for a new exciting
field of zero temperature physics, where quantum annealing and its application
to optimization problems will be leading the central themes with the present
workshop marking the epoch.

Classical spin glass is also far reaching to continue to create new complex-
ities, such as chaotic size dependence, invariant metastates, etc. [10, 100].

Quantum annealing is a quantum mechanical way of annealing the system
from the local minimum traps to the global absolutely lowest minimum.

Fine tuning of the quantum fluctuations, that is, quantum tunneling re-
mains effective even at T = 0K when thermal annealing completely stops
working. Although macroscopic quatum annealing appears to be extrmely
rare, nature may have already hidden her success in quatum annealing and
optimization with electrons in atoms and molecules, bosonic condensates, or
even with black holes at quatum criticality.
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In this chapter, I will review the established theory of quantum systems cou-
pled to noisy condensed-phase environments, emphasising the central role
played by the spectral functions of the environmental fluctuations. I will show
how the application of the fluctuation-dissipation theorem to these functions
leads to important connections between the coherent couplings and incoherent
dynamics induced by the environment, and hence gives in-principle limits on
the entangling power of quantum gates. I will give examples of this connection
from condensed-matter and quantum-optical systems.

I will describe how such couplings may be expected to evolve under scaling
transformations. I will also describe how to tailor response functions in such
a way as to optimise the coherent evolution of the system, and describe a
novel proposal to exploit local optical excitation to control the evolution of
quantum states.

1 Qubits Coupled to a Bath

1.1 Quantum Operations

Conventionally in statistical mechanics we focus on the equilibrium properties
of a small system coupled to a large bath with which it can exchange energy
or particles. Now let us look instead at the dynamics in such a situation. If we
make some general unitary operation Û on the system and its environment,
what is its effect on the system? First suppose that the overall density operator
is initially a direct product ρ̂S ⊗ ρ̂E . (This is a significant approximation–we’ll
come back to it later.) Let {|ek〉} be an orthonormal basis for the environment,
and let ρ̂E = |e0〉〈e0| (i.e., suppose that the environment is in the pure state
|e0〉). This sounds like a further approximation, but in fact isn’t; suppose we
had an environmental density operator corresponding to the mixed state

ρ̂E =
∑

i

pi|ψi〉〈ψi| , (1)

A. Fisher: Decoherence and Quantum Couplings in a Noisy Environment, Lect. Notes Phys.
679, 131–155 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005



132 A. Fisher

where the N states {ψi} are not necessarily orthogonal but are normalized,
and

∑
i pi = 1. Then we can always introduce an additional ‘far environment’,

F , with an orthonormal set of at least N states {|fi〉}. The following pure state
of the combined E + F system,

|Ψ〉 =
∑

i

√
pi|ψi〉|fi〉 , (2)

has the property that its reduced density matrix in the original environment
is

TrF [|Ψ〉〈Ψ |] =
∑

ij

√
pipj |ψi〉〈ψj |TrF [|fi〉〈fj |] =

∑

i

pi|ψi〉〈ψi| = ρ̂E , (3)

and it is therefore indistinguishable (as far as any measurement within E
only is concerned) from the original density matrix ρ̂E . This is referred to as
a ‘purification’ of ρ̂E . For the moment we will suppose this has been done, and
the original environment E replaced by a new, bigger, environment (which we
will still, however label as E) in a pure state.

Now apply Û to

E(ρ̂S) = TrE [Û(ρ̂S ⊗ ρ̂E)Û†] (4)

=
∑

k

〈ek|Û(ρ̂S ⊗ |e0〉〈e0|)Û†|ek〉 (5)

=
∑

k

Êkρ̂SÊ†
k , (6)

where
Ek ≡ 〈ek|Û |e0〉 . (7)

Note that

TrS [E(ρ̂)] = TrS

[
∑

k

Ekρ̂E†
k

]
= TrS

[
∑

k

E†
kEkρ̂

]
= 1 (8)

for any ρ̂, so it follows that
∑

k

E†
kEk = 1̂S . (9)

What sort of thing is E? It is more general than an ordinary operator, because
it acts on density operators of the system, not on states of it. Hence it is called
a super-operator [1] or a quantum operation [2].

The Requirements for a Quantum Operation

It is clear from the way E was introduced that any quantum operation ought
generally to have certain properties.
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(a) It should preserve the normalization of the state:

Tr[E(ρ̂)] = 1 if Trρ̂ = 1 . (10)

(b) It should be linear:

E
(
∑

i

piρ̂i

)
=

∑

i

piE(ρ̂i) . (11)

(c) It is completely positive: if we choose any possible environment E and any
possible density joint density matrix ρ̂ of the system and environment,
then the result of the composite operation (I ⊗ E)ρ̂ is another positive
operator. (This requirement includes, but is more general than, the re-
quirement that E(ρ̂S) be positive for any system density matrix ρ̂S .)

Most generally, a quantum operation is simply defined as a map from density
operators to other density operators satisfying these conditions.

The Kraus Representation Theorem

It turns out that any quantum operation satisfying the conditions in Sect. 1.1
can be expressed in the form

E(ρ̂) =
∑

k

Êkρ̂Ê†
k , (12)

with ∑

k

E†
kEk = 1̂ . (13)

The formula (12) is known as the Kraus representation or operator-sum rep-
resentation of the quantum operation; the operators {Êk} are known as the
Kraus operator. For a proof see Sect. 3.3 of [1] or Sect. 8.2.4 of [2].

1.2 Examples

Unitary Evolution

Unitary evolution of the system by itself trivially has the form of a quantum
operation:

ρ̂S → ÛS ρ̂SÛ†
S , (14)

with
Û†

SÛS = 1̂S . (15)
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Probabilistic Unitary Evolution

Suppose our system remains isolated, but its Hamiltonian is uncertain because
of some (classical) random process. The result is that different Hamiltonians
may be applied with probabilities pi; the resulting evolution is

ρ̂ →
∑

i

piÛSiρ̂SÛ†
Si , (16)

where ÛSi is the unitary evolution associated with Hamiltonian i. This has
the form of a quantum operation with Kraus operators

√
piÛSi.

Von Neumann Measurements

Suppose we make a projective (von Neumann) measurement on our system. If
the operator we measure is Ô =

∑
m om|m〉〈m| ≡

∑
m omP̂m, then according

to the standard von Neumann measurement postulate, result om is measured
with probability pm = 〈m|ρ̂S |m〉 = TrS [P̂mρ̂S ]. In this event the state of the
system is replaced by P̂mρ̂SP̂ †

m/pm.
We can therefore regard the whole measurement process as that of replac-

ing

ρS →
∑

m

pm
P̂mρ̂SP̂ †

m

pm
=

∑

m

P̂mρ̂SP̂ †
m , (17)

where by construction
∑

m P̂mP̂ †
m =

∑
i P̂m = 1̂S . The von Neumann mea-

surement is therefore a special case of a quantum operation in which the Kraus
operators are the projection operators P̂m.

1.3 The Lindblad Equation

The theory of quantum operations supposes that things just ‘happen’ to the
system’s density matrix–we don’t ask why, or how fast. Now let’s start looking
at the dynamics, but let’s do so on a timescale δt that has to satisfy two
conditions.

• δt should be small compared with the characteristic timescale of the sys-
tem – so the system density matrix only evolves ‘a little bit’ in this time
interval (i.e. δt 
 τS).

• But δt should also be long compared with the time over which the envi-
ronment ‘forgets’ its information about the system (i.e. δt � τE).

Since we are beyond the timescale τE , we might hope that the evolution of
the system will depend only on the present system density matrix, and not on
anything that has happened in the past. In that case the evolution through
time δt should be described by a quantum operation on the current system
density matrix. Our presentation follows that of Preskill [1]; the idea is to
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look for a suitable quantum operation such that ρ̂S should be altered only to
order δt:

ρ̂S(δt) = E(ρ̂S(0)) =
∑

k

Êkρ̂S(0)Ê†
k = ρ̂S(0) + O(δt) . (18)

Thus it follows that one of the Kraus operators, Ê0 say, must be 1̂S + O(δt),
and the others must be O(

√
δt). So, let’s write

Ê0 = 1̂S +
(

K̂ − i
h̄

Ĥ

)
δt, (19)

Êk =
√

δtL̂k, k ≥ 1 . (20)

Here K̂ and Ĥ are Hermitian operators, but are otherwise arbitrary at this
stage; the operators L̂k are also arbitrary and are known as Lindblad oper-
ators (note that they need be neither unitary nor Hermitian). However, the
normalization condition on the Kraus operators requires

∑

k

Ê†
kÊk = 1̂S ⇒ 1̂S = 1̂S +

(
2K̂ +

∑

k

L̂†
kL̂k

)
δt + O(δt)2 . (21)

Hence
K̂ = −1

2

∑

k

L̂†
kL̂k , (22)

and therefore

ρ̂S(δt) =
[
1̂S + δt

(
K̂ − i

h̄
Ĥ

)]
ρ̂(0)

[
1̂S + δt

(
K̂ +

i
h̄

Ĥ

)]

+δt
∑

k

L̂kρ̂(0)L̂†
k (23)

= ρ̂S(0) −
{

i
h̄

[Ĥ, ρ̂S(0)] +
∑

k

[
L̂kρ̂S(0)L̂†

k − 1
2
{ρ̂S(0), L̂†

kL̂k}
]}

δt

+O(δt)2 , (24)

where {Â, B̂} represents the anti-commutator ÂB̂ + B̂Â. Taking the limit
δt → 0 we obtain the Lindblad master equation:

dρ̂S

dt
=

1
ih̄

[Ĥ, ρ̂S ] +
∑

k

[
L̂kρ̂S(0)L̂†

k − 1
2
{ρ̂S(0), L̂†

kL̂k}
]

. (25)

Note that:

• If there were no Lindblad operators (i.e., if there were only one Kraus oper-
ator in the decomposition (18), this formula would reduce to the quantum
Liouville equation for a closed system:
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dρ̂S

dt
=

1
ih̄

[Ĥ, ρ̂S ] . (26)

We would then identify Ĥ as the Hamiltonian of the (closed) system.
• However, there is in general to reason to suppose that the operator Ĥ

appearing in (25) is the Hamiltonian of the isolated system. Indeed, we
shall see later that there are (potentially important) corrections to it that
come from the interaction with the environment.

• Indeed, Ĥ is not even unique; the equation of motion remains invariant
under the changes

L̂k → L̂k + lk1̂S , Ĥ → Ĥ +
1
2ı

∑

k

(l∗kL̂k − lkL̂†
k) + b1̂S , (27)

where {lk} and b are arbitrary scalars. The equation of motion also remains
invariant under an arbitrary unitary transformation of the Lindblad oper-
ators:

L̂k →
∑

j

ukjL̂j . (28)

• The right-hand side of equation (25) is a linear functional of ρ̂S ; it defines
the Liouvillian super-operator L through

dρ̂S

dt
= L[ρ̂S ] . (29)

The formal solution to this can be written in the form of a time-evolution
super-operator:

ρ̂S(t) = V(T )ρ̂S(0) ≡ T̂← exp
[∫ t

0

L(s)ds

]
ρ̂S(0) . (30)

Here T̂← is the same entity we previously called T̂ : the time-ordering
operator that puts earliest times to the right and latest times to the left.
Provided the Liouvillian is time-independent, this can be simplified to

ρ̂S(t) = exp(Lt)ρ̂S(0) . (31)

Note however that this is not a recipe for efficient practical calculations; if
the dimension of the system’s Hilbert space is N , a matrix representation
for L would contain N4 = N2 × N2 elements; directly exponentiating it
would therefore require O(N12) operations.

• The term involving the Lindblad operators on the RHS of equation (25)
is known as the dissipator, written D[ρ̂]; thus we have

L[ρ̂S ] =
1
ih̄

[Ĥ, ρ̂S ] + D[ρ̂S ] (32)
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• This is all in the Schrödinger representation, where the wavefunction (or
density matrix) is time-dependent but operators are not. An alternative
way of representing the information is to transfer the time-dependence to
the operators: we then require that the expectation value of any (system)
operator Ô be the same in either picture.

TrS [Ôρ̂S(t)] = TrS [Ô(V ρ̂S(0))] = TrS [(V†(t)Ô)ρ̂S(0)] ≡ TrS [ÔH(t)ρ̂S(0)] ,
(33)

where V†(t) ≡ T̂→ exp[
∫ t

0
L†(s)ds], and the operator T̂→ orders in the

opposite sense to normal (i.e. earliest times to the left). Note that ÔH

obeys the equation of motion

dÔH

dt
= V†(t)L†(t)Ô . (34)

In the case of a time-independent Liouvillian things simplify once again,
and

ÔH(t) = exp[L†t]Ô,
dÔH

dt
= L†(t)ÔH(t) . (35)

1.4 The Markovian Weak-Coupling Limit

We start by addressing in the simplest case, where the system is coupled
weakly to the environment and so perturbation theory is applicable. We sup-
pose that the Hilbert space of the system and the environment form a direct
product.

The Redfield Equation

Write the Hamiltonian as

Ĥ = ĤS + ĤE + ĤI , (36)

where only ĤI involves both the system and environment degrees of freedom.
We work in the interation representation with ĤI as the perturbation (so
Ĥ0 = ĤS + ĤE corresponds to uncoupled system and environment). So the
equation of motion of the density matrix in the interaction representation is

dρ̂(t)
dt

=
1
ih̄

[ĤI(t), ρ̂(t)] . (37)

(All expressions will be in the interaction representation until further notice.)
This has formal solution

ρ̂(t) = ρ̂(0) +
1
ih̄

∫ t

0

ds [ĤI(s), ρ̂(s)] , (38)

which gives
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dρ̂(t)
dt

=
1
ih̄

[ĤI(t), ρ̂(0)] − 1
h̄2

∫ t

0

ds [ĤI(t), [ĤI(s), ρ̂(s)]] . (39)

Tracing over the environment gives

dρ̂S(t)
dt

=
1
ih̄

TrE [ĤI(t), ρ̂(0)] − 1
h̄2

∫ t

0

dsTrE [ĤI(t), [ĤI(s), ρ̂(s)]] . (40)

We now make

• Assumption 1. The first term on the RHS of (40) is zero. This is not
really an assumption: we can always absorb terms into the system Hamil-
tonian ĤS so as to ensure that the mean value of the interaction Hamil-
tonian, averaged over the density matrix of the environment, is zero:
TrE [ĤI(t)ρ̂(0)] = 0.

More importantly, we also make

• Assumption 2 (known as the Born Approximation in this literature).
We suppose that the density matrix factors approximately at all times
into ρ̂(t) = ρ̂S(t) ⊗ ρ̂E , where ρ̂E is independent of time. This assumes
weak system-environment coupling.

Assumptions 1 and 2 together enable us to write

dρ̂S(t)
dt

= − 1
h̄2

∫ t

0

dsTrE [ĤI(t), [ĤI(s), ρ̂S(s) ⊗ ρ̂E ]] . (41)

We now make

• Assumption 3 (Markovian approximation, first part). We suppose that
the timescales over which the ‘memory’ represented by the integral in
equation (41) is important are sufficiently short that the system density
matrix is hardly different from its current value, so we can replace ρ̂S(s) →
ρ̂S(t).

Hence
dρ̂S(t)

dt
= − 1

h̄2

∫ t

0

dsTrE [ĤI(t), [ĤI(s), ρ̂S(t) ⊗ ρ̂E ]] . (42)

This is known as the Redfield equation. It is time-local (only involves ρ̂S(t)),
but still contains an explicit reference to the ‘starting time’ at t = 0. This
dependence on the past can be made explicit by substituting s = t − s′, in
terms of which

dρ̂S(t)
dt

= − 1
h̄2

∫ t

0

ds′ TrE [ĤI(t), [ĤI(t − s′), ρ̂S(t) ⊗ ρ̂E ]] . (43)

Now we make further
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• Assumption 4 (Markovian approximation, second part). We suppose that
we can extend the integral on the RHS of equation (43) to infinity without
significantly altering the results.

Thus we have

dρ̂S(t)
dt

= − 1
h̄2

∫ ∞

0

ds′ TrE [ĤI(t), [ĤI(t − s′), ρ̂S(t) ⊗ ρ̂E ]] . (44)

This equation is fully Markovian in the sense that it depends only on the
current density matrix ρ̂S(t) and contains no explicit reference to any other
time.

Assumptions 3 and 4 correspond to requiring that the time be large com-
pared with the timescale of the environment’s memory of what the system
has done to it: t � τE .

Correlation Functions

To see what we’ve done, it helps to write equation (44) in terms of the corre-
lation functions of the environment. First decompose the interaction Hamil-
tonian into

ĤI(t) =
∑

α

Âα(t) ⊗ B̂α(t) , (45)

where Â is a system operator, and B̂ is an environment operator. Note that,
although it is not necessary for each individual Â and B̂ to be Hermitian, the
Hermitian conjugate of each operator must also appear in the sum, so we can
also write

ĤI(t) =
∑

α

Â†
α(t) ⊗ B̂†

α(t) , (46)

Now define the correlation function

Cαβ(s) ≡ TrE [B̂†
α(t)B̂β(t − s)ρ̂E ] = TrE [B̂†

α(s)B̂β(0)ρ̂E ] , (47)

where the second equality follows if the environment is stationary. (Note that,
viewed as a matrix, C is Hermitian.) Now we can rewrite equation (44) as

dρ̂S(t)
dt

=
1
h̄2

∫ ∞

0

ds′ TrE [ĤI(t − s′)ρ̂S(t) ⊗ ρ̂EĤI(t)

− ĤI(t)ĤI(t − s′)ρ̂S(t) ⊗ ρ̂E ] + h.c.

=
1
h̄2

∫ ∞

0

ds′
∑

αβ

Cαβ(s)[Âβ(t − s)ρ̂S(t)Â†
α(t)

− Â†
α(t)Âβ(t − s)ρ̂S(t)] + h.c. (48)

Now it’s clear exactly which environmental timescales have to be short: the
relevant τE is the time beyond which the correlation functions of the environ-
mental operators that couple to the system decay.
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To go further we need an explicit form for the time-dependence of the
system operators Â. It turns out that different approximations are useful in
the limit τS 
 τR (good qubits) and τS � τR (bad qubits).

1.5 Good Qubits – the Rotating Wave Approximation

If the system evolves very fast compared to any environmentally-induced re-
laxation, it makes sense to decompose the system operators into parts evolving
with definite frequencies. Hence we write

Âα(t) =
∑

ω

e−iωtÂα(ω) , (49)

where
Âα(ω) =

∑

ε,ε′ s.t. ε′−ε=h̄ω

Π(ε)ÂαΠ(ε′) , (50)

where Π(ε) projects onto the eigenstates of ĤS having eigenvalue ε. A typical
example would be for a spin-1/2 system in a magnetic field with Larmor
frequency ω0, where we could put

σx(t) = e−iω0tσ+ + eiω0tσ− . (51)

So, now we have

dρ̂S(t)
dt

=
1
h̄2

∑

ωω′

∫ ∞

0

dseiωs
∑

αβ

Cαβ(s)ei(ω′−ω)t[Âβ(ω)ρ̂S(t)Â†
α(ω′)

− Â†
α(ω′)Âβ(ω)ρ̂S(t)] + h.c.

=
1
h̄2

∑

ωω′

Γαβ(ω)ei(ω′−ω)t[Âβ(ω)ρ̂S(t)Â†
α(ω′) − Â†

α(ω′)Âβ(ω)ρ̂S(t)]

+ h.c. , (52)

where
Γαβ(ω) ≡

∫ ∞

0

ds eiωsCαβ(s) (53)

is the causal (since it only involves s > 0) Fourier transform of the correlation
function Cαβ . We now make

• Approximation 5 (the Rotating Wave Approximation–RWA). This cor-
responds to saying that any term like ei(ω−ω′)t averages to zero on the
timescales relevant to relaxation processes, so we only need to keep terms
with ω = ω′.

This assumption simplifies our expression to
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dρ̂S(t)
dt

=
1
h̄2

∑

ω

∑

αβ

Γαβ(ω)[Âβ(ω)ρ̂S(t)Â†
α(ω) − Â†

α(ω)Âβ(ω)ρ̂S(t)] + h.c.

(54)
Now we split up Γαβ as

Γαβ(ω) =
1
2
Jαβ(ω) + iSαβ(ω) , (55)

where Jαβ(ω) is the power spectrum of the correlations (i.e. the full Fourier
transform of the correlation functions)

Jαβ(ω) = Γαβ(ω) + Γ ∗
βα(ω) =

∫ ∞

−∞
ds eiωsCαβ(s) , (56)

and
Sαβ(ω) =

1
2ı

[Γαβ(ω) − Γ ∗
βα(ω)] . (57)

We then find

dρ̂S(t)
dt

=
1
h̄2

∑

ω

∑

αβ

{
−iSαβ(ω)[Â†

α(ω)Âβ(ω), ρ̂S(t)]

+ Jαβ(ω)
[
Âβ(ω)ρ̂S(t)Â†

α(ω) − 1
2
{Â†

α(ω)Âβ(ω), ρ̂S(t)}
]}

. (58)

This is almost of Lindblad form, with a Hamiltonian term

ĤLS =
1
h̄2

∑

ω

∑

αβ

Sαβ(ω)Â†
α(ω)Âβ(ω) . (59)

(The subscript LS shows that this Hamiltonian term plays a similar role to
the Lamb shift in atomic physics – it modifies the Hamiltonian of the system
as a result of the coupling from the bath. We shall return to the importance
of this term in Sect. 1.10 below.) The dissipator is

D(ρ̂s(t)) =
1
h̄2

∑

ω

∑

αβ

Jαβ(ω)
[
Âβ(ω)ρ̂S(t)Â†

α(ω) − 1
2
{Â†

α(ω)Âβ(ω), ρ̂S(t)}
]

(60)
and may be put into conventional Lindblad form by diagonalising the matrix
Jαβ(ω) = UΛU† (where Λ is real and diagonal and U is unitary–recall J is
Hermitian) for each response frequency ω. The result is that for each ω one
obtains a set of Lindblad operators

L̂µ =
∑

β

(Λµ)1/2UµβÂβ(ω) . (61)
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1.6 The Quantum Optical Master Equation

A classic case where this approach is valid is for an atom (the system) coupled
to electromagnetic field modes (the environment). In that case the environ-
ment is a set of harmonic oscillators:

ĤE =
∑

k

∑

λ

h̄ωk b̂†λ(k)b̂λ(k) , (62)

where λ labels one of the two transverse polarizations for wavevector k and
b̂λ(k) is an annihilation operator. The interaction Hamiltonian is (in the elec-
tric dipole approximation)

− D̂ · Ê = −iD̂ ·
∑

k

∑

λ

√
2πh̄ωk

V
eλ(k)[b̂λ(k) − b̂†λ(k)] , (63)

where V is a normalization volume for the field modes and eλ is a unit polar-
ization vector, We can decompose D̂ in the same manner as before:

D̂(t) =
∑

ω

e−iωtÂ(ω) . (64)

The spectral correlation tensor is now

Γij(ω) =
1
h̄2

∫ ∞

0

ds eiωs〈Êi(t)Êj(t − s)〉 . (65)

In thermal equilibrium (i.e. black-body radiation), we have

Γij(ω) = δij

[
1
2
J(ω) + iS(ω)

]
, (66)

with

J(ω) =
4ω3

3h̄c3
[1 + n(ω)];

S(ω) =
2

3πh̄c3
P
[∫ ∞

0

ω3
kdωk

(
1 + n(ωk)
ω − ωk

+
n(ωk)
ω + ωk

)]
, (67)

where P stands for a Cauchy principal value. Hence the Lamb shift Hamil-
tonian becomes

ĤLS =
∑

ω

h̄S(ω)Â†(ω)Â(ω) , (68)

and the dissipator is

D(ρ̂S) =
∑

ω>0

4ω3

3h̄c3
[1 + n(ω)]

(
Â(ω)ρ̂SÂ†(ω) − 1

2
{Â†(ω)Â(ω), ρ̂S}

)

+
∑

ω<0

4ω3

3h̄c3
n(ω)

(
Â†(ω)ρ̂SÂ(ω) − 1

2
{Â(ω)Â†(ω), ρ̂S}

)
, (69)
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Note that in both equations (68) and (69) the frequency sums go over the
(usually discrete) energy response of the system.

For a two-level atom with Hamiltonian

Ĥ = − h̄ω0

2
σz (70)

(where ω0 is the energy difference between the ground and excited states, and
the minus sign gives us the usual convention that | ↑〉 = |0〉 is the ground
state and | ↓〉 = |1〉 the excited state), and transition dipole d, where we can
write

D̂(t) = d(σ̂+e−iω0t + σ−e+iω0t) , (71)

we find that the dissipator contains two Lindblad operators:

L̂1 = |d|
√

4ω3
0

3h̄c3
[1 + n(ω0)]σ̂+; L̂2 = |d|

√
4ω3

0

3h̄c3
n(ω0)σ̂− . (72)

L̂1 produces decay from the excited state to the ground state, while L̂2 pro-
duces excitation. The rates of each process are precisely consistent with the
values of the Einstein A and B coefficients.

To see how this affects the dynamics consider the limit T → 0, where
only emission and not absorption occurs. Then the one remaining Lindblad
operator is

L̂1 =
√

Γ

(
0 1
0 0

)
with

√
Γ = |d|

√
4ω3

0

3h̄c3
. (73)

Thus

∂

∂t

(
ρ00 ρ01

ρ10 ρ11

)
= iω0

(
0 ρ01

−ρ10 0

)
+ Γ

(
ρ11 − 1

2ρ01

− 1
2ρ10 −ρ11

)
. (74)

The solutions are

ρ00(t) = ρ00(0) + ρ11(0)[1 − exp(−Γt)] ;
ρ11(t) = ρ11(0) exp(−Γt) ;
ρ01(t) = ρ01(0) exp[(iω0 − Γ/2)t] ;
ρ10(t) = ρ10(0) exp[(−iω0 − Γ/2)t] . (75)

Notice that the population in the excited state |1〉 decays exponentially with
a time constant T1 = 1/Γ , whereas the off-diagonal elements of the density
matrix (‘coherences’) decay with a longer time constant T2 = 2/Γ .

A very similar analysis can be made for the coupling to a phonon (rather
than photon) bath in magnetic resonance experiments.
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1.7 Bad Qubits–Quantum Brownian Motion

We now consider ‘bad’ qubits, where the system has very little chance to
evolve before the interaction with the environment takes effect – in other
words, where τS � τR.

First, we decompose the correlation functions in a different way to equation
(55), as:

Dαβ(τ) = i〈[B̂α(τ), B̂β(0)]〉 = i
(
Cαβ(τ)) − Cβ†α†(−τ)

)

(the ‘dissipation kernel’) ;

D
(1)
αβ (τ) = 〈{B̂α(τ), B̂β(0)}〉 =

(
Cαβ(τ)) + Cβ†α†(−τ)

)

(the ‘noise kernel’) . (76)

Here α† is the index labelling those operators Â and B̂ which are the Hermitian
conjugates of Âα and B̂α. Hence

Cαβ(τ) =
1
2
[D(1)

αβ (τ) − iDαβ(τ)]; (77)

Cβ†α†(−τ) = [Cα†β†(τ)]∗ =
1
2
[D(1)

αβ (τ) + iDαβ(τ)] . (78)

Note that if the operators are Hermitian, then α† = α, and both D and D(1)

are real:

Dαβ = i (Cαβ(τ) − (Cαβ(τ))∗) = −2�Cαβ(τ);

D
(1)
αβ (τ) = (Cαβ(τ)) + Cβα(−τ)) = 2�Cαβ(τ) . (79)

Substituting in equation (44), we find

dρ̂S(t)
dt

=
1
h̄2

∫ ∞

0

ds
∑

αβ

Cαβ(s)[Âβ(t − s)ρ̂S(t)Â†
α(t)

−Â†
α(t)Âβ(t − s)ρ̂S(t)+] + h.c.

=
1

2h̄2

∫ ∞

0

ds
∑

αβ

[
D

(1)
αβ (s)[Â†

α(t), [ρ̂S(t), Âβ(t − s)]]

+ iDαβ(s)[Â†
α(t), {ρ̂S(t), Âβ(t − s)}]

]
.

(80)

In order to go from the first line to the second, we have grouped together the
terms from operators αβ with those in the Hermitian conjugate part from
α†β†.

Now, rather than make the decomposition (49) and use Approximation 5,
we make instead
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• Approximation 5’: since the system evolves very little during the time
over which the environment influences it, we write

Âβ(t − s) ≈ Âβ(t) − s
˙̂
Aβ(t) , (81)

where
˙̂
Aβ(t) =

1
ih̄

[Âβ(t), ĤS(t)] (82)

(remember we are in the interaction representation).

Using this, we find

dρ̂S(t)
dt

=
1

2h̄2

∫ ∞

0

ds
∑

αβ

[
D

(1)
αβ (s)[Â†

α(t), [ρ̂S(t), Âβ(t)]]

+ iDαβ(s)[Â†
α(t), {ρ̂S(t), Âβ(t)}]

− sD
(1)
αβ (s)[Â†

α(t), [ρ̂S(t), ˙̂
Aβ(t)]]

− isDαβ(s)[Â†
α(t), {ρ̂S(t), ˙̂

Aβ(t)}]
]

. (83)

This gives us four integrals over s to perform.

1.8 Simplifications for a Harmonic Environment

To do this it’s helpful to write the correlation functions in the following way.
We suppose the environment is in thermal equilibrium: in that case the cor-
relation functions obey the conditions

Jαβ(−ω) = e−βh̄ω[Jα†β†(ω)]∗ . (84)

So, we lose no generality by writing

Jαβ(ω) = [n(|ω|) + 1]jαβ(|ω|) (ω > 0)
= n(|ω|)[jα†β†(|ω|)]∗ (ω < 0) , (85)

where n(ω) is the Bose occupation number

n(ω) =
1

1 − exp(−βh̄ω)
, (86)

which is real and satisfies

n(ω) = e−βh̄ω[n(ω) + 1] . (87)

The advantage of doing this is that in certain circumstances (notably when
the environment is harmonic) the function j(|ω|) is temperature-independent,
and all the temperature dependence is contained in the n(|ω|) factor. We
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have already seen an example of this in Sect. 1.6, where j(ω) = 4ω3/3h̄c3,
but in fact it is generally true whenever the environment is harmonic and the
coupling to the system is by some combination of the coordinates xq of the
different modes q:

B̂α =
∑

q

gαqx̂q ⇒ jαβ(ω) =
∑

q

g∗αqgβq

2Mqωq
δ(ω − ωq) . (88)

Note that this also means that at a particular temperature and within these
approximations, one can always find a linearly-coupled harmonic environment
that mimics the effect of the actual environment via equations (85) and (88).
However, if anharmonic terms are present this ‘effective harmonic environ-
ment’ will have a temperature-dependent spectral function.

Thus the dissipation kernel becomes

Dαβ(τ) = ı[Cαβ(τ) − Cβ†α†(−τ)]

= i
∫ ∞

−∞

dω

2π
(1 − e−βh̄ω)Jαβ(ω)e−iωτ = i

∫ ∞

−∞

dω

2π
sgn(ω)jαβ(ω)e−iωτ

= 2
∫ ∞

0

dω

2π
[�(jαβ) sin(ωτ) −�(jαβ) cos(ωτ)] . (89)

Similarly, the noise kernel is

D
(1)
αβ (τ) = [Cαβ(τ) + Cβ†α†(−τ)]

=
∫ ∞

−∞

dω

2π
(1 + e−βh̄ω)Jαβ(ω)e−iωτ

=
∫ ∞

−∞

dω

2π
sgn(ω) coth

(
βh̄ω

2

)
jαβ(ω)e−iωτ

= 2
∫ ∞

0

dω

2π
coth

(
βh̄ω

2

)
[�(jαβ) cos(ωτ) −�(jαβ) sin(ωτ)] . (90)

Note how, if j is temperature-independent, all the temperature-dependence is
contained in the noise kernel D(1)–hence the name.

Now back to those integrals. We can now do the time integrals using the
result

lim
ε→0+

∫ ∞

0

e(iω−ε)τ dτ = πδ(ω) + ıP
(

1
ω

)
, (91)

from which we get
∫ ∞

0

cos(ωτ) dτ = πδ(ω); (92)
∫ ∞

0

sin(ωτ) dτ = P
(

1
ω

)
; (93)

∫ ∞

0

τ sin(ωτ) dτ = − ∂

∂ω

∫ ∞

0

cos(ωτ) dτ = −πδ′(ω) . (94)
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If jαβ is real (as it is in all the examples we’ve seen so far), we get
∫ ∞

0

dsD
(1)
αβ (s) = −π

∫ ∞

0

dω jαβ(ω) coth
(

βh̄ω

2

)
δ(ω)

=
π

2
lim
ω→0

jαβ(ω) coth
(

βh̄ω

2

)
; (95)

∫ ∞

0

dsDαβ(s) = 2
∫ ∞

0

dω
jαβ(ω)

ω
; (96)

∫ ∞

0

ds sDαβ(s) = −π

∫ ∞

0

jαβ(ω)δ′(ω) = πj′αβ(0) . (97)

1.9 Brownian Motion with Ohmic Dissipation

The values of all these integrals depend critically on what happens to jαβ in
the limit ω → 0 (rather than as ω → ω0, as in the rotating wave approxima-
tion).

• If jαβ ∼ ωp with p < 1, the integrals diverge. We shall see later that this
is a symptom of the system’s behaviour being qualitatively changed by
its interaction with the environment; even the short-time propagation de-
scribed by equation (81) is not a good approximation to the true evolution
of the system.

• If jαβ ∼ ωp with p > 1, the first and last integrals vanish.

Hence the critical case (where the integrals neither vanish nor diverge) is
where jαβ ∝ ω. This is known as Ohmic dissipation.

Assuming Ohmic dissipation, it is conventional to write

jαβ(ω) =
2ηαβh̄

π
ω as ω → 0 . (98)

The parameter ηαβ will turn out to be closely related to a damping rate or
viscosity. We also assume that j(ω) → 0 for ω above some upper cutoff Ω; for
example, we could have

jαβ(ω) =
2ηαβh̄

π
ω

Ω2

ω2 + Ω2
. (99)

Thus
∫ ∞

0

dsD
(1)
αβ (s) =

π

2
lim
ω→0

jαβ(ω) coth
(

βh̄ω

2

)
=

2ηαβkBT

h̄
; (100)

∫ ∞

0

dsDαβ(s) = 2
∫ ∞

0

dω
jαβ(ω)

ω
; (101)

∫ ∞

0

ds sD(s) = −2π

∫ ∞

0

jαβ(ω)δ′(ω) = πj′αβ(0) = 2ηαβh̄ . (102)
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Finally, at high temperatures (i.e., such that kBT � h̄Ω), we have

D
(1)
αβ (τ) ≈ 4ηαβkBTΩe−Ωτ , (103)

so ∫ ∞

0

ds sD
(1)
αβ (s) =

4ηαβkBT

Ω
. (104)

Putting all this into (83), we get the following equation of motion in the
interaction representation:

dρ̂S(t)
dt

=
1
2h̄

∑

αβ

[
2ηαβkBT

h̄
[Â†

α(t), [ρ̂S(t), Âβ(t)]]

− 4ηαβkBT

Ω
[Â†

α(t), [ρ̂S(t), ˙̂
Aβ(t)]]

+ i
∫ ∞

0

dω
jαβ(ω)

ω
[Â†

α(t), {ρ̂S(t), Âβ(t)}]

− 2ηαβ i[Â†
α(t), {ρ̂S(t), ˙̂

Aβ(t)}]
]

. (105)

We can make several simplifications:

• The third term in fact represents a purely Hamiltonian evolution, because
the αβ and βα contributions can be combined to give

1
2
[Â†

α(t), {ρ̂S , Âβ}] +
1
2
[Âβ(t), {ρ̂S , Â†

α}] =
1
2
[{Â†

α, Âβ}, ρ̂] , (106)

so this term looks like
−i
h̄

[Ĥeff , ρ̂] with Ĥeff = −
∫ ∞

0

dω
jαβ(ω)

ω
{Â†

α, Âβ} . (107)

This term can be thought of as the energy contribution from all the normal
modes of the environment relaxing to their new equilibrium positions as
the system slowly evolves. It is sometimes absorbed into the definition of
the system Hamiltonian, but its importance for us is once again that it
can be non-local; it can couple different, spatially separated, parts of the
‘system’, and hence can generate coherent interactions among the qubits.

• Remembering that p ∼ mω0x, where ω0 is the system’s intrinsic frequency
scale, we see that the second term is of order ω0/Ω times the first. Since,
by assumption, ω0 
 Ω, we can neglect the second term.

This leaves us with the following master equation:

dρ̂S(t)
dt

=
−i
h̄

[Ĥeff , ρ̂] +
1
2h̄

∑

αβ

[
2ηαβkBT

h̄
[Â†

α(t), [ρ̂S(t), Âβ(t)]]

−2iηαβ [Â†
α(t), {ρ̂S(t), ˙̂

Aβ(t)}]
]

. (108)

This is the general form of the Caldiera-Leggett master equation [3].
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This can be further re-written if we notice that we can once again combine
the αβ and βα contributions, this time to the last term, to get

[Â†
α, {ρ̂S ,

˙̂
Aβ}] =

1
2
[{Â†

α,
˙̂
Aβ}, ρ̂S ] +

(
Â†

αρ̂S
˙̂
Aβ − 1

2
{ ˙̂
AβÂ†

α, ρ̂S}
)

−
(

˙̂
Aβ ρ̂SÂ†

α − 1
2
{Â†

α
˙̂
Aβ , ρ̂S}

)
(109)

Now let us simplify to the special case of a particle moving under a po-
tential V (x), so the system Hamiltonian is

ĤS =
p̂2

2m
+ V (x̂) , (110)

interacting with a bath of harmonic oscillators with angular frequencies ωq

through the linear coupling

ĤI = −x̂B̂ with B̂ =
∑

q

gqx̂q =
∑

q

gq

√
h̄

2Mqωq
(b̂q + b̂†q) . (111)

Hence the coupling is to a single environmental operator B̂, and there is a
single relevant correlation function, for which

j(ω) =
∑

q

h̄|gq|2
2Mqωq

δ(ω − ωq) . (112)

Then, coming back into the Schrödinger representation and looking at the full
time dependence of the density matrix, we find that equation (108) becomes

dρ̂S(t)
dt

= − i
h̄

[Ĥeff , ρ̂S ]− 2iγ
h̄

[x̂(t), {ρ̂S(t), p̂(t)}] + 2mγkBT

h̄2 [x̂(t), [ρ̂S(t), x̂(t)]]

(113)
This is the Caldeira-Legett master equation [3] for the density matrix of a
particle diffusing under the influence of a harmonic bath.

1.10 The Fluctuation-Dissipation Theorem and the Link
Between Coherent and Incoherent Evolution

In many circumstances, the qubits are localised objects (e.g. spins in bound
states) and the only connection between them comes via the environment. This
connection can, however, produce coherent dynamics, which (in a gate picture
of quantum computation) can produce an entangling two-qubit gate, or (in a
quantum annealing picture) can produce non-trivial quantum dynamics (such
as the propagation of a domain wall). We should then regard the ‘system’ as
consisting of the two qubits; the non-trivial coherent dynamics coupling them
comes from the Lamb shift term in equation (59). Note in particular that
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the part of ĤLS that couples both qubits is proportional to those Sαβ(ω) for
which one of the indices α and β comes from each qubit – it therefore depends
on the extent of correlation between fluctuations at the two qubit sites.

However, even in the ‘good-qubit’ limit described by the rotating wave ap-
proximation, this coherent dynamics is inevitably accompanied by incoherent
terms (corresponding to the dissiaptor in equation 60). Note that the incoher-
ent dynamics depends on the full spectral functions Jαβ(ω), which are related
to the Sαβ by the Hilbert transform

Sαβ(ω) =
1
π

∫ ∞

−∞

[Jαβ(ω′) + J∗
βα(ω′)]

ω − ω′ dω′ . (114)

Hence, if we trivially extend the definition of the Lindblad operators (61) to
arbitrary frequencies (not just the response frequencies of the system), we can
express the effective (‘Lamb-shift’) Hamiltonian induced by the environmental
coupling as

ĤLS =
∑

ω

∑

µ

∫ ∞

−∞

dω′

2π

[∑
µ L†

µ,ω′Lµ,ω′
]

ω − ω′ . (115)

This relation links the component of the effective Hamiltonian linking two
states of the our particular system separated by frequency ω, to the Lindblad
operators that would be appropriate for all possible different frequencies ω′,
provided that thw coupling to the environment is kept constant [4].

This relationship between the coherent and incoherent parts of the re-
sponse is reminiscent of that embodied in the fluctuation-dissipation theorem
between the real and imaginary parts of a dynamical susceptibility. Suppose
that we take the same environment as before and couple it at t = 0, not to a
quantum system, but to a time-dependent classical driving field:

Ĥ1,class = f(t)B̂α(t) . (116)

Then, as is well known, to first order in f the corresponding change in the
expectation value of B̂†

β(t) is

g(t) ≡ δ〈B̂†
β(t)〉 =

∫ t

0

φβα(t − t′)f(t′) dt′ , (117)

where
φβα(τ) = i〈[B̂†

β(t), B̂α(0)]〉 (118)

The corresponding response in the frequency domain involves the frequency-
dependent susceptibility:

g̃(ω) = χβα(ω)f̃(ω) , (119)

where
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χβα(ω) =
∫ ∞

−∞
dω′ (1 − e−βω′

)Jβα(ω′)
ω − ω′ . (120)

Note that, since both the applied field and the response are now real, classi-
cal quantities, and their Fourier transforms therefore contain both positive-
frequency and negative-frequency parts, so does χ. The negative-frequency
parts is suppressed by a factor e−βω. The real and imaginary parts of χ are
connected by dispersion relations, and hence the dissipative (out-of-phase,
hence imaginary) part of χ is directly connected to the fluctuation spectrum
by

�(χαβ(ω)) + �(χβα(ω)) = [Jαβ(ω)n(ω) + Jβα(−ω)n(−ω)] . (121)

In our case, where the environment is driven by quantum-mechanical sys-
tems, we have to distinguish between positive-frequency processes (environ-
ment transiently absorbs energy from system A or B) and negative-frequency
(environment transiently gives out energy) processes. Both contribute to the
effective Hamiltonian (59), but they correspond to different types of decoher-
ence (i.e., to different Lindblad operators in the decomposition (25)).

1.11 Irreducible Decoherence and Decoherence-Free Subspaces

One elegant approach to designing quantum gates is to select states |ψ〉 to
represent the quantum information which have the property that

Âα|ψ〉 = 0 ∀α , (122)

i.e. are annihilated by the interaction Hamiltonian with the bath. Such a set
of states is known as a decoherence-free subspace [5, 6], and has the property
that it states within it are not affected by the action of ĤI . Its evolution
is ‘decoherence-free’. However, it is apparent from equation (eq:lambshiftdft)
that it is also entanglement-free: assuming (as we have all along) that the
qubits are spatially separated, there is then no interaction in the system that
can entangle one qubit with another.

Hence, the decoherence-free subspace does not give any absolute protec-
tion from decoherence during the operation of an entangling gate. The best
it can do is to guide us in the choice of qubit states to eliminate the most im-
portant decohering interactions, while retaining enough coherent interaction
to produce the desired qubit-qubit entanglement.

2 Scaling Transformations
for Partially Coherent Dynamics

2.1 Scaling for Thermodynamic Properties

Scaling transformations for the description of equilibrium properties, espe-
cially in the context of critical phenomena, are well established (see, for
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example, [7]). The essential idea is very simple to state: one looks for a new
Hamiltonian Ĥ ′ that depends only on a reduced set of parameters {s′} but
which reproduces all the thermal averages of functions of {s′} that are com-
puted using the full Hamiltonian Ĥ:

Ĥ → Ĥ ′ s.t.
1
Z

Trs[f(s′) exp(−βĤ)] =
1
Z ′Trs′ [f(s′) exp(−βĤ ′)];

Z = Trs[exp(−βĤ)];
Z ′ = Trs′ [exp(−βĤ ′)];

F = − 1
β

log Z = ∆F − 1
β

log Z ′ . (123)

One then looks for fixed points of this scaling, which describe the long-
wavelength thermodynamic properties of the system (the most important usu-
ally being the high-temperature, low-temperature and critical fixed points).

2.2 Scaling the Liouvillian

Suppose we now ask a different question: we start with a Liouvillian which
generates the time evolution of a set of degrees of freedom s:

ρs(0) → ρs(t) = exp(Lt)ρs(0) . (124)

We now want to find a Liouvillian L′ that reproduce as much as possible of
the dynamics of some reduced set {s′} of the variables.

ρs′(0) → ρs′(t) = exp[L′t]ρs′(0) . (125)

Of course, if the original evolution L is purely Hamiltonian, i.e. if

L[ρ] =
1
ih̄

[Ĥ, ρ] , (126)

then we have already solved this problem (at least in the limit where the
variables {s′} are weakly coupled to the others); the solution is given by
equation (48). How does this solution change if our starting dynamics is itself
only partially coherent? We now want to find an L′ generating an evolution
such that

ρs′(t) = exp[L′t]ρs′(0) (127)

describes the same physics as

ρs′(t) = Trs[exp[Lt]ρs′(0)] . (128)

This is conveniently approached in the limit of the Time Convolutionless Pro-
jector Operator (TCL) method [8]. A full derivation will be presented else-
where and here we only describe the main result: the analysis leading to
equation (48) remains largely unaltered, but the correlation functions have
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to be evaluated in the presence of the dissipation already present in the en-
vironment. An study of the dynamics of the 1D disordered Heisenberg and
transverse-field Ising models by this approach is underway, and the results
will be reported elsewhere.

3 Quantum Gates via Optical Excitation

To conclude this chapter, we briefly set out the principles of a novel approach
to quantum information processing now being studied in a large project at our
laboratory at University College London (UCL). In a sense it is intermediate
between the conventional gate approach to quantum computing [2] and the
quantum annealing ideas being discussed in this volume, since – while formally
based on the a gate structure – it makes the maximum use of the intrinsic
dynamics of a quantum system.

3.1 Advantages of Localised States

The advantages of well localised states for the transmission of quantum infor-
mation can be seen from studying equation (115): if the environment has a
discrete spectrum (as is generally the case when bound states are involved),
the incoherent response occurs predominantly at a few isolated frequencies
which one can tune to be some distance away from the frequencies at which
the qubits themselves evolve, thereby suppressing the incoherent contribu-
tions to the dynamics. Indeed in such cases one can solve the time-evolution
equations more rapidly, without making the rotating wave approximation,
and can show that there are particular times when the environment is strictly
decoupled from the system. The environment is therefore capable of inducing
entangling interactions with very little decoherence of the qubits, provided
the energy scales and operation times are suitably chosen.

3.2 The UCL Project

In a major experimental and theoretical project underway at UCL, we are
working on realising a quantum gate whose principles are described in [9].
Simply stated, the idea is to take as qubits a set of electron spins bound at
a random array of defects, for example donors in a semiconductor such as
Si, and to switch exchange interactions between them by controlling optically
the orbital state of one or more additional ‘control electrons’. Although we
cannot hope to control the locations of individual dopants precisely on the
atomic scale, we can choose the overall dopant density so that the effective
exchange interaction is close to zero when the system is in its ground state,
but becomes appreciable (we estimate of order 1010 to 1011 Hz) when there
is orbital excitation.
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We have shown that, for spin-1/2 defects and a spin-1/2 control system,
the parameters can in principle be chosen so that the qubits are returned to a
pure state at the end of the gate operation, despite their correlation with the
gate’s operation during the process [10]. Although experimental work aimed at
demonstration of the control of exchange couplings in our own system is still
in progress, we were encouraged to see the observation of optically-induced
entanglement in a related system (multiple spins in a semiconductor quantum
well) [11].

4 Conclusions

The subjects of quantum annealing and more traditional gate-based quantum
information processing are converging, and there is a need for a common set
of theoretical tools to understand the evolution of quantum systems in noisy
thermal environments. We have seen how the existing frameworks enable us
to study the limits of both ‘good’ and ‘bad’ quantum evolution, and put
quite general bounds on the relationship between entangling interactions and
decohering ones. Finally we have seen that some of the new scaling ideas
in this field will allow is to extract the long-distance, long-time response of
interacting and disordered quantum systems.
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1 Introduction

The standard deterministic, gate-based computation paradigms underlying
modern digital computing are not those that nature uses to perform complex
tasks such as finding the lowest energy states of spin glasses or proteins. In-
stead, for such complex problems, natural processes achieve their optima by
trial and error, where the extent to which ‘errors’ are accepted is determined
by the system temperature. Optima then follow by slow cooling from a high-
temperature, annealed state. Nearly three decades ago, Kirkpatrick, Gelatt
and Vecchi [1] suggested that for certain complex computational problems,
including for example that of the travelling salesman, it may be more produc-
tive to simulate natural annealing and cooling on a computer, using standard
Monte Carlo routines, rather than attempting to use classical mathematical
algorithms to find solutions. The appeal of simulated annealing is not only
that it can be applied to essentially any new optimization problem, but also
that it provides a language, namely that of the thermodynamics of complex
statistical mechanical systems, for describing why and how optima can be
reached. Motivated by this early work, we asked[2] the question of whether
quantum rather than thermal fluctuations could be used to relax a system of
many interacting degrees of freedom. The reason why this seemed like a good
question to ask is illustrated in Fig. 1 – quantum tunnelling makes transitions
to regions of phase space possible that might be very difficult to access via
classical, thermal barrier hopping.

To carry out meaningful tests of quantum annealing protocols in real sys-
tem, it is necessary to do the following

1. Find a system with a complex free energy surface where quantum and
thermal fluctuations can be tuned independently.

2. Establish that tunneling, rather than simply underlying thermal attempt
frequencies, is being tuned.

G. Aeppli and T.F. Rosenbaum: Experiments on Quantum Annealing, Lect. Notes Phys. 679,
159–169 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005



160 G. Aeppli and T.F. Rosenbaum

Fig. 1. Schematic objective function (or free energy surface) for an optimization
problem as a function of a generalized configurational coordinate. From [2]

3. Try thermal and quantum annealing protocols to see if the results are
different.

The rest of this book chapter is devoted to the three components of the exper-
imental programme given above. We do not attempt to summarize the very
interesting theoretical developments (from [3, 4, 5, 6, 7] among others) in this
area which are described in great detail elsewhere in this volume.

2 System with a Complex Free Energy Surface
and Tuneable Quantum Fluctuations

Ising models with random interactions between spins display the full panoply
of complexity associated with spin glasses, and indeed hard optimization prob-
lems in general. Furthermore, in contrast to tunnelling quantum particles, for
which it is somewhat impractical to tune quantum fluctuations in a fixed
potential landscape as this would involve tuning their masses, an external
transverse field represents a useable tuning parameter. The corresponding
Hamiltonian is

H =
N∑

i,j

Jijσ
z
i σz

j + Γe

N∑

i

σx
i (1)

where the σ’s are Pauli spin matrices located at lattice sites i and j, the Jij ’s
are longitudinal couplings, and Γe is an effective transverse field, perpendicular
to the Ising axis. In the classical limit where Γe = 0, the commutator of H and
σ vanishes, that any spin configuration is dynamically stable as long as there
are no couplings to other degrees of freedom, such as phonons. As soon as
Γe becomes non-zero, the commutator also becomes non-zero, with the result
that Heisenberg’s equation of motion,

dσz
i

dt
= (2πh/i) [H, σz

i ] (2)

becomes non-trivial.
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A material which is a good realization of the transverse field Ising model
is the transparent ferromagnet LiHoF4 [8]. Figure 2 shows the underlying
face-centered tetragonal crystal structure. The magnetism is derived from the
incomplete 4f shells of the Ho3+ ions, and the primary interaction between the
ions, with their large moments and tightly bound f electrons is the magnetic
dipolar coupling. The crystal field imposes a strong Ising anisotropy, causing
the spins to prefer an orientation along the crystal z(tetragonal)-axis. It is the
fact that the dipolar interaction can be ferro- or antiferromagnetic, depending
on the angle between the displacement vector separating the two spins and
the Ising axis, that introduces frustration into the spin network upon dilution,
and eventually leads [9, 10, 11, 12] to a spin glass rather than a ferromagnetic
ground state as the Ho sites are partially populated by Y in the dilution series
LiHopY1−pF4.

Fig. 2. Pure and Ho-site diluted (with Y) Li(Ho, Y)F4, illustrating the mechanism
by which dilution of magnetic Ho by non-magnetic Y first introduces defects into the
underlying ferromagnetic state, and eventually cause ferromagnetism to be displaced
entirely by spin glass behaviour

Figure 3 represents the phase diagram as a function of the transverse field
and temperature [8]. There is a zero-field Curie temperature of TC = 1.53 K,
which is suppressed to zero at a quantum critical point occurring at Ht =
50kOe (the laboratory field responsible for Γe in (1)). The dashed line in
the figure is derived from mean field theory which takes account of only the
electron spins, while the solid line includes the nuclear spins as well [8, 13]. The
deviation of the solid from the dashed line below T = 0.5 K is due to the cross-
over from nuclear spins behaving as an incoherent bath for the electrons to
forming composite nuclear-electronic objects, whose interacting z-components
(i.e. along the Ising axis) are more stable with respect to the transverse field
than those of the electronic moments by themselves.
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Fig. 3. Phase diagram as a function of laboratory transverse field Ht and temper-
ature T from [8]

A quantum critical point at T = 0 is retained upon dilution of Ho with Y to
create first disordered ferromagnets and then the spin glasses [11, 12], although
the overall shape of the phase boundary is considerably altered, due probably
in some measure to the fact that there is no longer an extended incoherent
nuclear spin regime coexisting with electron spin ordering. Figure 4 shows the
important phase diagram [2] for our present purposes, namely that for the
disordered ferromagnet LiHo0.44Y0.56F4. The zero-field Curie temperature is
suppressed to a value given by the expected (according to mean field theory)
occupancy fraction p = 0.44 of the rare earth sites multiplied by TC(p = 1) =
1.53 K. The T = 0 quantum critical field HC is also reduced substantially.

However, simple scaling of HC with p at T = 0 is not expected to work
because of the influence of the nuclear spin interactions as well as the fact that
the effective transverse field Γe does not scale linearly with the external trans-
verse field, although it can be calculated with high accuracy from the known
crystal field Hamiltonian such that for low laboratory fields Ht, Γe ∼ H2

t [2].
Figure 5 demonstrates [14] that even though there are long time relaxation
phenomena associated with the glassy domain wall state labelled G in Fig. 4,
the system at low temperatures displays conventional hysteresis as a function
of small external longitudinal fields. What is very significant and interesting,
though, is that the extent to which the loops are closed, magnified in the dif-
ference curves of Fig. 5b, is larger for the higher transverse fields closer to the
quantum critical point. This means that the transverse field eases the motion
of the walls over pinning centres, something we address more quantitatively
in the next section.
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Fig. 4. Phase diagram for LiHo0.44Y0.56F4 as a function of temperature T and an
external (laboratory) transverse field Ht. The material behaves like a conventional
ferromagnet in the region labelled FM, and shows slow relaxation in the glassy
domain wall state labelled G. The lighter and the darker trajectories and points A,
B, C and D refer to the data in Fig. 9 below. (From 2)

3 Demonstration of Domain Wall Tunnelling
as the Dominant Mechanism
for Low Temperature Magnetic Relaxation

We have measured the relaxation spectrum for the ordered state in LiHo0.44

Y0.56F4 using ac susceptometry. Figure 6 shows data obtained for a variety
of fields for low temperature. From the semi-logarithmic plot, it is apparent
that χ ∼ ln f over a range extending through several decades of f for the
highest transverse field, Ht = 9.6 kG. The ln f dependence terminates at an
upper cutoff fo which we can use as a proxy for the entire dynamics of this
ferromagnetic domain wall glass. One thing that is immediately clear is that
raising Ht by less than a factor of two from 5.6 to 9.6 kG increases fo by
nearly two orders of magnitude, suggesting a very dramatic quantum-induced
speedup of the spin dynamics. To see whether this speedup is associated with
genuine quantum tunnelling or due to increase in the attempt frequency for
thermal barrier hopping, we have made the Arrhenius plots of Fig. 7 which
shows a clear cross-over from classical thermally activated behaviour at high
T (low 1/T ) to a T -independent rate at low T . The latter is of course precisely
what is expected for a quantum process, and indeed, its dependence on Ht

and T can be modelled by an expression including the incoherent addition of
thermal and quantum processes,
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Fig. 5. Frame (a) shows hysteresis loops for LiHo0.44Y0.56F4 (observed using InAs
Hall bars depicted in inset) as a function of longitudinal fields for fixed temperatures
and transverse fields as indicated. The lower frame (b) shows the difference curves
between upward and downward longitudinal field sweeps, revealing that the degree
of openness (amplitude of difference) can be reduced by either raising T for fixed Γ
or raising Γ at fixed low T . (From 14)

f = F0

[
exp (−∆Γ /T ) + exp

(
−2w0

√
2mΓ

h̄2 ∆Γ

)]
.

The observation of the Arrhenius law at high temperatures allows the
barrier height ∆Γ to be fixed, while the barrier width w0 can be set equal to
the mean distance between Ho ions. Finally, the underlying attempt frequency
F0, due to an underlying (quantum) bath, is assumed to be the same for the
Arrhenius and WKB processes. The low temperature speedup is then entirely
accounted for the effective mass mΓ of the tunnelling domain walls, which
we can extract from the data in absolute units. The solid lines on the left



Experiments on Quantum Annealing 165

Fig. 6. Frequency (f)-dependence of the real part of the magnetic susceptibility
for transverse fields indicated. Inset shows the magnetic susceptibility above the
high-frequency residual, scaled by the square root of the critical field to the applied
field, to be a universal function of the ratio of the measuring frequency to the cutoff
frequency. (From 2)

hand of Fig. 7 correspond to the very simple model as just described, and
Fig. 8 shows how mΓ varies with the effective transverse field Γe. As Γe is
increased, the walls become lighter, exactly as expected based on the theory
of the transverse field Ising model. It thus seems that the highly ramified
domain wall state in LiHo0.44Y0.56F4 relaxes via quantum tunnelling of wall
segments, which behave like simple quantum particles with tuneable masses!
We are able to obtain a quantitative estimate of the area of the tunnelling
segments simply by dividing the observed masses by those calculated for a
one-dimensional model with the same average ferromagnetic coupling, and
deduce that the tunnelling process involves a correlated flip of approximately
10 Ho moments.

4 Comparing Quantum and Thermal ‘Computations’

We are now in the position to check whether quantum annealing is an
interesting option for computation. The problem we pose is the optimal
(lowest energy) placement of domain walls in the disordered ferromagnet
LiHo0.44Y0.56F4. The program for the computation consists of the schedule
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Fig. 7. The main frame shows how the cutoff frequency fo for the ln f behaviour of
χ depends on T and effective transverse field Γe, expressed in Kelvin and calculated
from the known crystal field. The smaller right hand frame gives the effective domain
wall mass and pinning barrier height extracted from the analysis described in text.
(From 14)

Fig. 8. Analogy between quantum computation and quantum/thermal annealing
experiments on LiHo0.44Y0.56F4
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for thermal and quantum cooling steps, as illustrated by Fig. 8 which refers
to the phase space trajectories in Fig. 3. For quantum and thermal compu-
tations, we enter the ordered phase by reducing Ht at fixed T or reducing
T at fixed Ht, respectively. The read-out of the computation’s outcome, i.e.
the final state of the sample, is the bulk f -dependent susceptibility, and is
displayed for the various points in phase space also marked in Fig. 3. Figure
9 shows the experimental results. We note that as one might hope for, what
occurs above the quantum critical point at low T is independent of sample
history. On the other hand, there are progressively more dramatic differences
between quantum and thermal programs for phase space points in the ordered
state. Most dramatic is the appearance of much faster(by a decade and half)
dynamics for quantum rather than thermal cooling. What this means is that
the state which is reached via the quantum ‘computation’ has landed the sys-
tem in a different part of the free energy landscape, namely one where there is
intrinsically more ability to tunnel in and out of minima – i.e. where pinning
potentials are weaker. While we cannot make a rigorous statement that the
energy of this state is lower because we have not examined heat release, the

Fig. 9. Comparison between χ′(f) for thermal and quantum routes to states at
conditions labelled by letters A-D in Fig. 3. (From 2)
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odds are good that its entropy is higher. The other thing that can be said is
that the quantum ‘computation’ reveals the logarithmic nature of χ′(f) much
more clearly than the classical route, and so gives us much greater confidence
in establishing the marginally stable nature of the ferromagnetic domain wall
state of LiHo0.44Y0.56F4.

5 Conclusions

We have tested the hypothesis of whether quantum annealing can lead to
a different outcome in a highly complex optimization problem, namely that
of domain wall placement in a disordered ferromagnet, than thermal anneal-
ing. The hypothesis was indeed verified by experiments, which now raises
interesting questions for the future. Arguably the most fascinating concerns
the relation of our results to conventional quantum computation and con-
cepts such as entanglement [15]. We would argue, as sketched in Fig. 10, that
quantum annealing actually entails many genuine quantum computations on
scales of order the coherence volumes for the underlying domain wall tun-
nelling processes, but harnessed in parallel in an incoherent fashion over our
> mm scale sample to reveal something interesting about its preferred state.

Fig. 10. Schematic of how quantum annealing can be considered an incoherent par-
allelization of smaller coherent quantum computations, exemplified by the tunnelling
of domain walls illustrated at right (adapted from [14])
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1 Introduction

The idea of quantum annealing (QA) is a late offspring of the celebrated sim-
ulated thermal annealing by Kirkpatrick et al. [1]. In simulated annealing, the
problem of minimizing a certain cost (or energy) function in a large configu-
ration space is tackled by the introduction of a fictitious temperature, which
is slowly lowered in the course of a Monte Carlo or Molecular Dynamics sim-
ulation [1]. This device allows an exploration of the configuration space of the
problem at hand, effectively avoiding trapping at unfavorable local minima
through thermal hopping above energy barriers. It makes for a very robust
and effective minimization tool, often much more effective than standard,
gradient-based, minimization methods.

An elegant and fascinating alternative to such a classical simulated an-
nealing (CA) consists in helping the system escape the local minima through
quantum mechanics, by tunneling through the barriers rather than thermally
overcoming them [2, 3]. Experimental evidence in disordered Ising ferromag-
nets subject to transverse magnetic fields showed that this strategy is not
only feasible but presumably winning in certain cases [4]. These experimen-
tal results were confirmed by a Path-Integral Monte Carlo (PIMC) study of
an Ising glass model, were the crucial role played by Landau-Zener tunneling
events was also pointed out [5].

In essence, in quantum annealing one supplements the classical energy
function – let us denote it by Hcl – with a suitable time-dependent quantum
kinetic term, Hkin(t), which is initially very large, for t ≤ 0, then gradually
reduced to zero in a time τ . For the Ising glass case, for instance, Hcl =
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−
∑

〈ij〉 Jijσ
z
i σz

j represents an Edward-Anderson disordered Ising model, while
a very natural choice for Hkin, suggested by the experiment [4], is given by
the transverse field term Hkin(t) = −Γ (t)

∑
i σx

i . At zero temperature, the
quantum state of the system |Ψ(t)〉, initially prepared in the fully quantum
ground state |Ψ0〉 of H(t = 0) = Hcl + Hkin(0), evolves according to the
Scrödinger equation

ih̄
d

dt
|Ψ(t)〉 = [Hcl + Hkin(t)]|Ψ(t)〉 , (1)

to reach a final state |Ψ(t = τ)〉. A crucial basic question is then how the
residual energy εres(τ) = Efin(τ)−Eopt, decreases for increasing τ . Here Eopt

is the absolute minimum of Hcl, and Efin(τ) is the average energy attained
by the system after evolving for a time τ , so that

εres(τ) = Efin(τ) − Eopt =
〈Ψ(τ)|(Hcl − Eopt)|Ψ(τ)〉

〈Ψ(τ)|Ψ(τ)〉 . (2)

Generally speaking, this question has to do with the adiabaticity of the
quantum evolution, i.e., whether the system is able, for sufficiently slow
annealing (sufficiently long τ), to follow the instantaneous ground state of
H(t) = Hcl + Hkin(t), for a judiciously chosen Hkin(t). (The fictitious kinetic
energy Hkin(t) can be chosen quite freely, with the only requirement of being
reasonably easy to implement.) For this reason, this approach has also been
called Quantum Adiabatic Evolution [6].

At the level of practical implementations on an ordinary (classical) com-
puter, the task of following the time-dependent Schrödinger evolution in (1)
is clearly feasible only for toy models with a sufficiently manageable Hilbert
space [3, 6, 7]. Actual optimization problems of practical interest usually
involve astronomically large Hilbert spaces, a fact that calls for alternative
Quantum Monte Carlo (QMC) approaches. These QMC techniques, in turn,
are usually suitable to using imaginary time quantum evolution, where the
ih̄∂t in (1) is replaced by −h̄∂t. One of the questions we have recently ad-
dressed, in the context of simplified problems [7], is whether an imaginary-time
Schrödinger evolution changes the quantum adiabatic evolution approach in
any essential way. The answer to this question appears to be that, as far as
annealing is concerned, imaginary-time is essentially equivalent to real-time,
and, as a matter of fact, can be quantitatively better [7].

A number of recent studies have applied Path-Integral Monte Carlo
(PIMC) strategies to QA. A certain success has been obtained in a number of
optimization problems, such as the folding of off-lattice polymer models [8, 9],
the random Ising model ground state problem [5, 10] (see Sect. 4.2), and the
Traveling Salesman Problem [11] (see Sect. 4.2). On the other hand, for the
interesting case of Boolean Satisfiability – more precisely, a prototypical NP-
complete problem such as 3-SAT – a recent study of our group shows that
PIMC annealing performs definitely worse than simple CA [12] (see Sect. 4.2).
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In view of these results, it is fair to stress that it is a priori not obvious
or guaranteed that a QA approach should do better than, for instance, CA,
on a given problem. Evidently, the comparative performance of QA and CA
depends in detail on the energy landscape of the problem at hand, in particular
on the nature and type of barriers separating the different local minima, a
problem about which very little is known in many practical interesting cases
[13]. That in turn depends crucially on the type and effectiveness of the kinetic
energy chosen. Unfortunately, there is still no reliable theory predicting the
performance of a QA algorithm, in particular correlating it with the energy
landscape of the given optimization problem. Nevertheless, it is important to
stress that QA is not a universal key to hard NP problems: indeed, one can
think of trivial optimization problems, like the random Ising ferromagnet in
one-dimension [7], where QA (as well as CA) will be by necessity slow.

In order to gain understanding on these problems, we have moved, more
recently, one step back and concentrated attention on the simplest textbook
problems where the energy landscape is well under control: essentially, one-
dimensional potentials, starting from a double-well potential, the simplest
form of barrier. On these well controlled landscapes we have carried out a
detailed and exhaustive comparison between quantum adiabatic Schrödinger
evolution, both in real and in imaginary time, and its classical deterministic
counterpart, i.e., Fokker-Planck evolution [7]. This work will be illustrated in
Sect. 2.1. On the same double well-potential, we have also studied [14] the
performance of different stochastic approaches, both classical Monte Carlo
and Path Integral Monte Carlo. Some of this work, which turns out to be
quite instructive, is briefly presented in Sect. 4.4.

The rest of the Chapter is organized as follows: Sect. 2 illustrates the
deterministic annealing approaches applied to toy problems, essentially the
minimization of a function of a continuous coordinate. Section 3 discusses the
crucial role played by disorder and the issue of Landau-Zener tunneling in
QA. Section 4 introduces the Path-Integral Monte Carlo techniques, and il-
lustrates some of the recent applications, notably on the random Ising model,
on the Traveling Salesman Problem, and on Boolean Satisfiability problems.
Section 5 discusses alternative approaches to optimization, including a dis-
cussion of Green’s Function Monte Carlo QA, which seems to be a promising
tool for future QA studies. Section 6, finally, contains a brief summary of the
main points, and some concluding remarks.

2 Deterministic Approaches on the Continuum

Conceptually, one of the simplest problems to illustrate is that of finding
the global minimum of an ordinary function of several continuum variables
with many minima. Suppose the classical Hamiltonian Hcl mentioned in the
introduction is just a potential energy V (x), (with x a Cartesian vector of
arbitrary dimension), of which we need to determine the absolute minimum



174 Demian Battaglia et al.

(xopt, Eopt = V (xopt)). Assume, generally, a situation in which a steepest-
descent approach, i.e., the strategy of following the gradient of V , would lead
to trapping into one of the many local minima of V , and would thus not
work. Classically, as an obvious generalization of a steepest-descent approach,
one could imagine of performing a stochastic (Markov) dynamics in x-space
according to a Langevin’s equation:

ẋ = − 1
η(T )

∇V (x) + ξ(t) , (3)

where the strength of the noise term ξ is controlled by the squared correla-
tions ξi(t)ξj(t′) = 2D(T )δijδ(t − t′), with ξ̄ = 0. Both D(T ) and η(T ) – with
dimensions of a diffusion constant and of a friction coefficient and related,
respectively, to fluctuations and dissipation in the system – are temperature
dependent quantities which can be chosen, for the present optimization pur-
pose, with a certain freedom. The only obvious constraint is in fact that the
correct thermodynamical averages would be recovered from the Langevin dy-
namics only if η(T )D(T ) = kBT , an equality known as Einstein’s relation
[15]. Physically, D(T ) should be an increasing function of T , so as to lead
to increasing random forces as T increases, with D(T = 0) = 0, since noise
is turned off at T = 0. Classical annealing can in principle be performed
through this Langevin dynamics, by slowly decreasing the temperature T (t)
as a function of time, from some initially large value T0 down to zero. Instead
of working with the Langevin equation – a stochastic differential equation –
one might equivalently address the problem by studying the probability den-
sity P (x, t) of finding a particle at position x at time t. The probability density
is well known to obey a deterministic time-evolution equation given by the
Fokker-Planck (FP) equation [15]:

∂

∂t
P (x, t) =

1
η(T )

div (P∇V ) + D(T )∇2P . (4)

Here, the second term in the right-hand side represents the well known dif-
fusion term, proportional to the diffusion coefficient D(T ), whereas the first
term represents the effect of the drift force −∇V , inversely proportional to the
friction coefficient η(T ) = kBT/D(T ) [15]. Annealing can now be performed
by keeping the system for a long enough equilibration time at a large temper-
ature T0, and then gradually decreasing T to zero as a function of time, T (t),
in a given annealing time τ . We can model this by assuming T (t) = T0 f(t/τ),
where f(y) is some assigned monotonically decreasing function for y ∈ [0, 1],
with f(y ≤ 0) = 1 and f(1) = 0. In this manner the diffusion constant D in (4)
becomes a time-dependent quantity, Dt = D(T (t)). The FP equation should
then be solved with an initial condition given by the equilibrium Boltzmann
distribution at temperature T (t = 0) = T0, i.e., P (x, t = 0) = e−V (x)/kBT0 .
The final average potential energy after annealing, in excess of the true mini-
mum value, will then be simply given by:
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εres(τ) =
∫

dxV (x)P (x, t = τ) − Eopt ≥ 0 , (5)

where Eopt is the actual absolute minimum of the potential V .
In a completely analogous manner, we can conceive using Schrödinger’s

equation to perform a deterministic quantum annealing (QA) evolution of the
system, by introducing quantum fluctuations through a standard kinetic term
Hkin(t) = −(h̄2/2mt)∇2, with a fictitious time-dependent mass mt. We are
therefore led to studying the time-dependent Schrödinger problem:

ξh̄
∂

∂t
ψ(x, t) =

[
−Γ (t)∇2 + V (x)

]
ψ(x, t) , (6)

where ξ = i for a real-time (RT) evolution, while ξ = −1 for an imaginary-time
(IT) evolution. Here Γ (t) = h̄2/2mt will be our annealing parameter, playing
the role that the temperature T (t) had in classical annealing. Once again we
may take Γ (t) varying from some large value Γ0 at t ≤ 0 – corresponding
to a small mass of the particle, hence to large quantum fluctuations – down
to Γ (t = τ) = 0, corresponding to a particle of infinite mass, hence without
quantum fluctuations. Again, we can model this with Γ (t) = Γ0 f(t/τ), where
f is a preassigned monotonically decreasing function. A convenient initial
condition here will be ψ(x, t = 0) = ψ0(x), where ψ0(x) is the ground state
of the system at t ≤ 0, corresponding to the large value Γ (t) = Γ0 and
hence to large quantum fluctuations. For such a large Γ , the ground state
will be separated by a large energy gap from all excited states. The residual
energy after annealing will be similarly given by (5), where now, however, the
probability P (x, t = τ) should be interpreted, quantum mechanically, as:

P (x, t) =
|ψ(x, t)|2∫

dx′ |ψ(x′, t)|2 .

In general, the residual energy will be different for a RT or an IT Schrödinger
evolution. We will comment further on RT versus IT Schrödinger evolution
later on.

In the remaining part of this section, we will present some of the results
obtained along the previous lines on simple one-dimensional potential [7],
starting with the simplest example of a problem with two minima separated
by a barrier.

2.1 The Simplest Barrier: A Double-Well Potential

Consider, as a potential V (x) to be optimized, a slightly generalized double-
well potential in one-dimension

Vasym(x) =






V0
(x2−a2

+)2

a4
+

+ δx for x ≥ 0

V0
(x2−a2

−)2

a4
−

+ δx for x < 0
, (7)
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with, in general, a+ �= a−, both positive, V0, and δ real constants. (The
discontinuity in the second derivative at the origin is of no consequence in
our discussion.) In absence of the linear term (δ = 0), the potential has two
degenerate minima located at x− = −a− and x+ = a+, separated by a barrier
of height V0. When a small linear term δ > 0 is introduced , with δa± 
 V0,
the two degenerate minima are split by a quantity ∆V ≈ δ(a+ + a−), the
minimum at x ≈ −a− becoming slightly favored. For reasons that will be
clear in a moment, it is useful to consider the situation, which we will refer to
as “asymmetric double-well”, in which the two wells possess definitely distinct
curvatures at the minimum (i.e, their widths differ), realized by taking a+ �=
a−. (To lowest order in δ, we have: V ′′(x = x±) = 8V0/a2

±.) In particular, we
shall examine the case in which the metastable “valley” at x+ is “wider” than
the absolute minimum at x−, which is realized by chosing a+ > a−. This
will have a rather important effect on the quantum evolution, since, as we
shall see, for intermediate values of the mass of the particle, the wavefunction
of the system will be predominantly located on the metastable minimum.
Obviously, if we set a+ = a− = a, and δ = 0 we recover the standard double-
well potential.

We now present the results obtained by the annealing schemes introduced
in Sect. 2 above. The Fokker-Planck and the Schrödinger equation (both in RT
and in IT) were integrated numerically using a fourth-order adaptive Runge-
Kutta method, after discretizing the x variable in a sufficiently fine real space
grid [7]. For the FP classical annealing, the results shown are obtained with
a linear temperature schedule, T (t) = T0(1 − t/τ), and a diffusion coefficient
simply proportional to T (t), Dt = D0(1 − t/τ). (Consequently, the friction
coefficient is kept constant in t, ηt = kBT (t)/Dt = kBT0/D0.) Similarly, for
the Schrödinger quantum annealing we show results obtained with a coefficient
of the Laplacian Γ (t) vanishing linearly in a time τ , Γ (t) = Γ0(1 − t/τ).

Figure 1 shows the results obtained for the final annealed probability dis-
tribution P (x, t = τ) at different values of τ , for both the Fokker-Planck
(CA, panel (a)) and the Scrödinger imaginary-time case (IT, panel (b)), for
an “asymmetric” double-well potential Vasym(x), with V0 = 1 (our unit of
energy), a+ = 1.25, a− = 0.75, δ = 0.1. Figure 1(c) summarizes the results
obtained for the residual energy εres(τ) in 5.

We notice immediately that QA wins over CA for large enough value of
τ . The RT-QA, which behaves as its IT counterpart for a symmetric double-
well (a+ = a−, see [7]), shows a slightly different behavior from IT-QA in the
present asymmetric case (see below for comments). We discuss first the CA
data (panel (a) and (c) of Figs. 1). Starting from an initially broad Boltzmann
distribution at a high T = T0 = V0, P (x, t = 0) (solid line), the system quickly
sharpens the distribution P (x, t) into two well-defined and quite narrow peaks
located around the two minima x± of the potential. This agrees very well
with what a CA for an harmonic potential would do [7]. If we denote by p±
the integral of each of the two narrow peaks, with p− + p+ = 1, it is clear
that the problem has effectively been reduced to a discrete two-level system
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Fig. 1. (a,b): The annealed final probability distribution P (x, t = τ) at different
values of the annealing time τ , for both the Fokker-Planck classical annealing (CA,
panel (a)), and the Imaginary Time Schrödinger quantum annealing (IT-QA, panel
(b)). (c) Final residual energy εres(τ) versus annealing time τ for quantum anneal-
ing in Real Time (RT) and Imaginary Time (IT) compared to the Fokker-Planck
classical annealing (CA). The solid line in (c) is a fit of the CA data (see text). The
double well potential (dashed line in (a,b), inset of (c)) is here given by (7) with
a+ = 1.25, a− = 0.75
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problem. The time evolution of p±, therefore, obeys a discrete Master equation
which involves the thermal promotion of particles over the barrier V0, of the
form presented and discussed by Huse and Fisher in [16], where they show
that, apart from logarithmic corrections, the leading behavior of the residual
energy is of the form εres ∼ τ−∆V /B , with the power-law exponent controlled
by the ratio ∆V /B between the energy splitting of the two minima ∆V and
the barrier B = V0 − V (x+). As shown in Fig. 1(c) (solid lines through solid
circles), the asymptotic behavior anticipated by Huse and Fisher fits nicely our
CA residual energy data (solid circles), as long as the logarithmic corrections
are accounted for in the fitting procedure [7]. Obviously, we can make the
exponent as small as we wish by reducing the linear term coefficient δ, and
hence the ratio ∆V /B, leading to an exceedingly slow classical annealing.

The behavior of the QA evolution is remarkably different. Observe, as a
first point, that the final annealed wavefunctions only slowly narrows around
the minimum of the potential, although the residual energy asymptotics of
QA is clearly winning. The asymptotic behavior of the QA residual energy is
εres(τ) ∝ τ−1/3, indicated by the dashed line in Fig. 1(c): this rather strange
exponent turns out to be the appropriate one for the Schrödinger annealing
with a linear schedule Γ (t) within an harmonic potential (the lower minimum
valley, see [7] for details). Going back to Fig. 1(b), the initial wavefunction
squared |ψ(x, t = 0)|2 corresponds to a quite small mass (a large Γ0 = 0.5),
and is broad and delocalized over both minima (solid line). As we start an-
nealing, and if the annealing time τ is relatively short – that is, if τ < τc,
with a characteristic time τc which depends on which kind of annealing, RT
or IT, we perform – the final wavefunction becomes mostly concentrated on
the wrong minimum, roughly corresponding to the ground state with a still
relatively large Γ1 < Γ0 (see also Fig. 2 and accompaning discussion). The
larger width of the wrong valley is crucial, giving a smaller quantum kinetic
energy contribution, so that tunneling to the other (deeper) minimum does
not yet occur. By increasing τ , there is a crossover: the system finally recog-
nizes the presence of the other minimum, and effectively tunnels into it, with
a residual energy that, as previously mentioned, decays asymptotically as
εres(τ) ∝ τ−1/3 (dashed line in Fig. 1(c)). There is a characteristic annealing
time τc – different in the two Scrödinger cases, RT and IT – above which tun-
neling occurs, and this shows up as the clear crossover in the residual energy
behavior of both IT and RT, shown in Fig. 1(c).

These findings can be quite easily rationalized by looking at the in-
stantaneous (adiabatic) eigenvalues and eigenstates of the associated time-
independent Schrödinger problem, which we show in Fig. 2(a,b). Looking at
the instantaneous eigenvalues shown in Fig. 2(a) we note a clear avoided-
crossing occurring at Γ = ΓLZ ≈ 0.038, corresponding to a resonance con-
dition between the states in the two different valleys of the potential. For
Γ > ΓLZ the ground state wavefunction is predominantly concentrated in the
wider but metastable valley, while for Γ < ΓLZ it is mostly concentrated on
the deeper and narrower global minimum valley. In the full time-dependent RT
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Fig. 2. Instantaneous eigenvalues (a) and ground state wavefunctions (b) of the
Schrödinger problem Hψ = Eψ for different values of Γ , for the potential in (7)
with a+ = 1.25, a− = 0.75. Notice the clear Landau-Zener avoided crossing in (a),
indicated by the arrow and magnified in the inset

evolution, transfer to the lower valley is a Landau-Zener problem [17, 18]: the
characteristic time τc for the tunneling event is given by τLZ = h̄αΓ0/2π∆2,
where α is the relative slope of of the two crossing branches as a function of
Γ , 2∆ is the gap at the avoided-crossing point, and Γ0 is the initial value of
the annealing parameter. (For the case shown in Fig. 2, we have 2∆ = 0.0062,
α = 2.3, hence τLZ ≈ 18980, see rightmost arrow in Fig. 1(c).) The Landau-
Zener probability of jumping, during the evolution, from the ground state
onto the “wrong” (excited) state upon fast approaching of the avoided level
crossing is Pex = e−τ/τLZ , so that adiabaticity applies only if the annealing
is slow enough, τ > τLZ . Notice that the gap 2∆, and hence the probability
of following adiabatically the ground state, can be made arbitrarily small by
increasing the asymmetry of the two well, i.e., by making a+ � a−. The IT
characteristic time is smaller, in the present case, than the RT one. This point
is discussed in some detail in [7]. In a nutshell, the reason for this is the follow-
ing. After the system has jumped into the excited state, which occurs with a
probability Pex = e−τ/τLZ , the residual IT evolution will filter out the excited
state; this relaxation towards the ground state is controlled by the annealing
rate as well as by the average gap seen during the residual evolution. Numer-
ically, the characteristic time τc seen during the IT evolution is of the order
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of h̄/(2∆), see leftmost arrow in Fig. 1(c), rather than being proportional to
1/∆2 as τLZ would imply.

Obviously, instantaneous eigenvalues/eigenvectors can be studied for the
Fokker-Planck equation as well; their properties, however, are remarkably dif-
ferent from the Landau-Zener scenario just described for the Schrödinger case.
Figure 3(c) shows the first four low-lying eigenvalues of the FP equation as
a function of T , while Fig. 3(a,b) show the corresponding eigenstates for two
values of the temperature, T/V0 = 1 and T/V0 = 0.1 (the data refer to a
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Fig. 3. Instantaneous eigenvalues of the Fokker-Planck equation (panel (c), the
lowest eigenvalue E0 = 0 is not shown) as a function of temperature T , and the
corresponding eigenstates for two values of T (panels (a) and (b)). The potential
here is symmetric, i.e., Vasym in 7 with V0 = 1, a+ = a− = 1, δ = 0.1. Similar results
(not shown) are obtained for asymmetric choices of the double well potential
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symmetric choice of the potential, a+ = a− = 1, but the asymmetric poten-
tial results, not shown, are virtually identical.) The lowest eigenvalue E0 of
the FP operator is identically 0 and the corresponding eigenvector [15] is the
Boltzmann distribution e−V (x)/kBT , with roughly symmetric maxima on the
two valleys. The first excited state corresponds to a function peaked on the two
valley but with a node at the origin, and is separated from the ground state by
an exponential small Arrhenius-like gap e−B/kBT . Higher excited states are
separated by a very large gap, so that, effectively, only the two lowest lying
states dominate the dynamics at small temperature. The reduction of a con-
tinuum double-well FP classical dynamics onto a discrete effective two-level
system, previously noticed, is quite evident from this form of the spectrum.
On the contrary, the true quantum case does not allow a discrete two-level
system description to hold for small enough Γ . Indeed, when Γ < ΓLZ the
tower of oscillator states within the valley at x− is always very close in energy
to the actual ground state, and the quantum annealing evolution reduces ef-
fectively to a particle in a single harmonic well. This explains the rather large
width of the final distributions P (x, τ) observed in the quantum case.

Summarizing, we have found that QA and CA proceed in a remarkably
different way. CA is sensitive to the height of the barrier, more precisely to
the ratio ∆V /B between the energy offset ∆V of the two minima, and the
barrier height B. On the contrary, QA crucially depends on the tunneling
probability between the two valleys, which is reflected in a Landau-Zener
(avoided crossing) gap: a wide tunneling barrier is obviously bad for QA.

2.2 Other Simple One-Dimensional Potentials with Many Minima

Moving on to multi-minima problems, we would like to mention one interest-
ing one-dimensional potential (see [7] for details) which shows a remarkably
different behaviour of CA and QA. The problem was proposed and solved,
for CA, by Shinomoto and Kabashima in [19], and consists in a paraboli-
cally shaped washboard potential. This example will display a logarithmically
slow classical annealing, showing that CA may run into trouble even in simple
models with no complexity whatsoever, whereas quantum mechanics can do
much better in this case. The problem consists in a wiggly one-dimensional
potential with barriers of individual height ≈ B separating different local min-
ima, regularly located a distance a apart one from each other, i.e., at positions
xi = ai, i = 0,±1,±2, . . .. The ith-local minimum is at energy εi = ka2i2/2,
so that the resulting envelope is parabolic. By writing the appropriate Mas-
ter equation governing the probability Pi(t) that the particle is found in the
ith-valley at time t, and taking the continuum limit a → 0, Shinomoto and
Kabashima [19] showed that the equation governing the evolution of P (x, t)
turns out to be a Fokker-Planck (FP) equation, (4), with an effective diffusion
constant of the form

Deff(T ) = γa2e−B/kBT , (8)
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η(T ) = kBT/Deff(T ), and an effective drift potential V (x) = kx2/2 given by
the macroscopic parabolic envelope potential. This exponentially activated
Deff(T ) makes the annealing behavior of the P (x, t) exceedingly slow. In fact,
the surprising result of this exercise [19] is that the optimal annealing schedule
T (t) is logarithmic and the residual energy converges to 0 at best as εres(t) ∼
log(t)−1. The physical reason behind such a slow CA annealing is that the
relaxation time trelax = kBT/(2γka2)eB/kBT for the system to termalize at
any temperature T diverges exponentially at low T . As a result, the system
will never be able to follow the decreasing T till the end of the annealing, by
maintaining roughly the equilibrium value εpot = kBT/2. Indeed, if we assume
for instance T (t) = T0(1 − t/τ), the relaxation of the systems will cease to
be effective – i.e., the system will fall out of equilibrium – at a time t∗, and
temperature T ∗ = T (t∗), at which trelax ≈ τ , i.e., when kBT ∗ ≈ B/ log γτ .
The residual energy at this point cannot be smaller then the equipartition
value kBT ∗/2, hence εres ≈ B/ log γτ as well. This freezing and falling out of
equilibrium for classical systems with barriers seems to provide an ubiquitous
source of logarithms in classical annealing [16].

The quantum mechanical approach to the same problem has been illus-
trated in [7]. In essence, starting from a tight-binding description in which the
on-site energies εi are supplemented by a time-dependent nearest-neighbor
hopping term which contains the inverse mass Γ = h̄2/2m in the typical
semi-classical (WKB) form ∼ e−

√
Vh/Γ (Vh being an energy related to the de-

tails of the barrier), one can take, once again, the continuum limit a → 0.
The dynamics for the ψ(x, t) reduces, in strict analogy with the classical
case, to an effective Schrödinger equation for a particle moving in the par-
abolic envelop potential V (x) = kx2/2, with an effective Laplacian coefficient
Γeff(t) ∝ e−

√
Vh/Γ (t), which plays here the role that the effective diffusion con-

stant in 8 played in the FP case. Contrary to the classical case, however, where
an exponentially activated behavior of the diffusion constant Deff was strongly
detrimental to the annealing (turning a power-law into a logarithm), here the
exponential WKB-like behavior of Γeff does no harm at all: surprisingly, it
improves the annealing. Indeed, as shown in [7], the power-law exponent ΩQA

determining the decrease of the residual energy for a particle in a harmonic
well, εres(τ) ∝ τ−ΩQA , increases as one switches-off the Laplacian coefficient
more and more rapidly, tending to the value ΩQA → 1 for an infinitely fast
switching-off.

We believe that one of the important points that makes QA so differ-
ent from CA in the present case is that the spectrum of the instantaneous
eigenvalues of the quantum problem does not show any dangerous Landau-
Zener avoided-crossing, and, correspondingly, the ground state wavefunction
is always more peaked in the central valley (the minimum at xi = 0) than
elsewhere. As in the two-level case, a disorder in the width of the different
valleys would drastically change this result.
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3 Role of Disorder, and Landau-Zener Tunneling

Despite their disarming simplicity, the cases illustrated above turn out to be
extremely informative in qualifying the profound difference of QA from CA,
and their surprising consequences. Of course, the cases studied, although in-
structive, do not possess the real ingredient which makes annealing difficult,
both in CA and QA, i.e., some form of disorder in the distribution of the min-
ima. We argued [7], for instance, that even an irregular landscape with many
minima, as the double-cosine potential V (x) = V1 cos (2πx) + V2 cos (2πrx)
(with r an irrational number) would already change drastically the behav-
ior of QA (very likely, from a power-law to a logarithm). On quite general
grounds, Anderson’s localization [20] would predict that wavefunctions are
localized for a genuinely disordered potential and for large enough mass (i.e.,
small enough kinetic energy bandwidth) in any D > 2 (this localization occurs
for all values of the mass in D = 1, 2). Therefore, quantum annealing should
always, via a cascade of Landau-Zener events [5], end up into some localized
state which has, a priori, nothing to do with our search of the actual potential
minimum.

A very simple illustration of the crucial role of disorder is given by the
D = 1 disordered Ising ferromagnet :

H = −
∑

i

Jiσ
z
i σz

j − Γ
∑

i

σx
i , (9)

where Ji ≥ 0 are non-negative random variables in the interval [0, 1], and Γ
is the transverse field inducing quantum fluctuations. Obviously, the ground
state is the ferromagnetic state with all spins aligned up (or down). However,
arbitrarily weak values of the Ji can pin domain walls between up and down
ferromagnetic regions, with a very small energy cost 2Ji. For a finite system
with periodic boundary conditions, domain walls appear in pairs, and separate
sections of the system with alternating ↑ and ↓ ferromagnetic ground states.
Given two domain walls, pinned at weak Ji points a distance L � 1 apart,
healing the system via single spin flip moves requires flipping L spins, which
can be a formidable barrier to tunnel through. The system will have a very
slow annealing (quantum, as well as classical) while showing, at the same
time, no complexity whatsoever: simple disorder is enough.

The simple case of a site-disordered Anderson model, where the goal is
the trivial one of finding the minimal on-site energy εi, and the QA is carried
by switching off, as a function of time, the nearest-neighbor hopping integral,
illustrates very clearly the complications introduced by disorder. Figure 4
shows the instantaneous eigenvalues of a disordered three-dimensional Ander-
son model, on a lattice of size 10×10×10, as a function of the nearest-neighbor
hopping integral Γ . In the process of reducing Γ , the ground state encounters
several “identity crisis” associated to tunneling from one region of the lattice
to another. Some of these tunneling amplitudes can be tremendously small,
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Fig. 4. Instantaneous low-lying eigenvalues of a three-dimensional disordered An-
derson model, on a lattice of size 10×10×10, as a function of the hopping integral Γ .
Notice the Landau-Zener avoided crossings, particularly the one occurring at smaller
Γ , which can have a tremendously small gap 2∆. The inset shows a schematic of
the Landau-Zener process

so that one has to wait for an astronomically large Landau-Zener character-
istic time τL−Z (see Sect. 2.1) in order for the probability of “adiabatically
following the Ground State” to be non-negligeable.

4 Path Integral Monte Carlo Quantum Annealing

In order to move from toy problems with a manageable Hilbert space to real
optimization problems, stochastic approaches are mandatory. As discussed in
the Introduction, imaginary-time stochastic approaches are perfectly suitable
to the goal: there is no gain in doing, on a classical computer, a Schrödinger
evolution in real time [7].

A very simple Quantum Monte Carlo approach, suitable to the proposed
goal, is the Path-Integral Monte Carlo (PIMC) approach. We briefly sketch
the idea of the approach with two introductory examples: the Ising case, as
representative of discrete optimization problems, and the particle in a poten-
tial, as representative of continuum problems.

4.1 Path Integral Monte Carlo: Introduction

The first, crucial, observation is that PIMC is intended to simulate the equi-
librium behaviour of a system at finite temperature T . Both these features are
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potential limitations of the method. To clarify this point, consider, for in-
stance, the Edward-Anderson Ising glass in a transverse field: H = Hcl +
Hkin = −

∑
〈ij〉 Jijσ

z
i σz

j − Γ (t)
∑

i σx
i . Strictly speaking, in the quantum an-

nealing context, this is a time-dependent Hamiltonian, of which we would like
to follow the low-lying states (ideally, the ground state) as a function of time,
by turning off the transverse field Γ (t). PIMC allows you to simulate the
thermodynamics (at fixed strictly positive temperature T ) for a fixed value of
Γ (t), by an approximate sampling of the quantum partition function

Z(T, Γ ) = Tre−β(Hcl+Hkin) =
∑

s1

〈s1|e−β(Hcl+Hkin)|s1〉 , (10)

where s1 denotes a generic configuration of all the N spins. The idea behind
the Path-Integral is to reduce 10 to a classical partition function which is
than sampled in the usual way using, for instance, a Metropolis Monte Carlo.
In order to do that, one needs to split the exponential of the Hamiltonian,
appearing in 10, into products of exponentials. This is allowed by the Trotter
theorem, stating that

e−β(Hcl+Hkin) = lim
P→∞

(
e−

β
P Hcle−

β
P Hkin

)P

. (11)

Using this relationship, and inserting identities between the various exponen-
tials, we get:

Z(T, Γ ) = lim
P→∞

∑

s1...sP

e−
β
P

∑P

k=1
Hcl(s

k)〈s1|e−
β
P Hkin |s2〉 . . . 〈sP |e−

β
P Hkin |s1〉 .

(12)
The various configurations sk (k = 1 · · ·P ) are often referred to as Trot-
ter replicas of the original configuration s1. The next thing one needs to
do, is to calculate explicitly the relevant exponential of the kinetic term,
〈sk|e−Hkin/PT |sk+1〉, between two generic configurations. This is sometimes
very easy to do – like in the Ising transverse field case, or in the Laplacian
case (see below) – but can be also very difficult, for other choices of Hkin (see
Sect. 4.2). In the Ising case, the problem factorizes into N indipendent sites,
each of which involves a simple Pauli matrix expectation value, yielding:

〈sk|e−
β
P Hkin |sk+1〉 = CNe

β
P J⊥

∑
i
sk

i sk+1
i , (13)

where the transverse coupling J⊥ is given by:

J⊥ = − P

2β
ln (tanhβΓ/P ) > 0 (14)

(the constant C is not relevant for our discussion). This kinetic term has a very
transparent interpretation: the J⊥ gives a ferromagnetic Ising-like coupling
between nearest-neighbor (k and k + 1) Trotter replicas of the same spin.
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In order to implement this approach numerically, a finite number of Trotter
replicas P is mandatory. This leads to an approximation, the error of which
is proportional to the square of the Trotter break-up time, O((β/P )2)[21].
(Better Trotter break-ups, for given finite values of P , can lead to smaller
errors, see Sect. 4.4, but we will concentrate here on the basic form proposed
above.) For the full partition function we thus finally get, in the Ising case:

Z(T, Γ ) ≈ CNP
∑

s1

. . .
∑

sP

e−
β
P SD+1 (15)

SD+1 = −
P∑

k=1




∑

〈ij〉
Jijs

k
i sk

j + J⊥
∑

i

sk
i sk+1

i



 , (16)

which represents the partition function of a classical (D + 1)-dimensional
anisotropic Ising system at temperature P/β = PT . The system has couplings
Jij along the original D-dimensional lattice bonds (same for all Trotter slices),
and J⊥ (same for all sites i) along the extra Trotter dimension where the
system has a finite length P .

Similar expressions hold, for instance, for the problem of a particle in a
potential V (x), where Hcl = V (x), Hkin = −Γ∇2, and sums over configura-
tions

∑
sk transform into integrals over the variables xk. Similarly, the kinetic

term contribution

〈xk|e−Hkin/PT |xk+1〉 =
(

K⊥

2πPT

)D/2

e−
1

P T
K⊥
2 (xk−xk+1)2 , (17)

where D is the dimension of the x-space and K⊥ = (PT )2/(2Γ ), admits
a perfectly transparent interpretation: the transverse coupling K⊥ between
different Trotter replicas has the form of a spring coupling neighboring con-
figurations xk and xk+1.

In all cases, QA, in the present context, consists in externally controlling,
during the PIMC dynamics, the value of the transverse field Γ – leaving T
untouched –, in much the same way as one externally controls T in classical
simulated annealing [1]. This approach, which we will refer to as PIMC-QA,
does not lead, therefore, to the simulation of a true quantum mechanical
annealing dynamics, of the type implied by 1, but only to a MC annealing
dynamics. We now move on to describe some of the results obtained so far
with this technique.

4.2 PIMC-QA Applied to Combinatorial Optimization Problems

In a quite general way, one could define a combinatorial optimization problem
as the algorithmic task of minimizing any given cost function which depends
on the configuration of variables assuming discrete values [22]. Further clas-
sifications are of course possible, but they somehow hide the fundamental
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fact that it is straightforward to map such problems over the search for the
ground state of some Hamiltonian depending on Potts (or Ising) spin degrees
of freedom [23, 24]. This is the case, for instance, of the Traveling Sales-
man Problem [25, 26, 27, 28], Number Partitioning [31], Boolean Satisfiability
[29, 30], Vertex Covering [32], Graph Coloring [33] and many others.

Random problem instances are of particular interest, because they can
be investigated resorting to powerful techniques developed in the context of
disordered statistical mechanics systems [34]. The physical approach to com-
binatorial optimization have often allowed the derivation of phase diagrams,
telling us in which range of some control parameters hard instances are ex-
pected to be found [23, 24]. These analyses provide insight about the typical-
case complexity of problem solving, in contrast with the more rigorous but
less informative worst-case complexity theory, which constitutes one of the
corner-stones of theoretical computer science [35]. The basic distinction be-
tween the P and NP complexity classes (that is, between problems for which
a polynomial algorithm able to solve worst-case instances is or is not known)
can sometimes be misleading. Easy instances of NP-complete problems (the
hardest of all the NP problems, [36]) can easily be found (see e.g. [37]), while
sometimes the optimization of instances of problems in P can take an expo-
nential time using local search techniques (see e.g. [38]).

In the following, we shall briefly illustrate three specific problems which
we have recently addressed using PIMC-Quantum Annealing.

Ising Spin Glass

Determining the ground state of a simple model like the Ising Spin Glass can
be an extraordinarily difficult task.

To get the big picture, it is enough to think that the number of possible
configurations of a very small 32×32 square lattice Ising model is of order
10308, while the number of electrons in the universe is “just” of the order
1080.1 It can be rigorously shown that, in the 3D lattice and in the diluted
case, the ground state determination belongs to the NP-complete complexity
class [39], but here we shall report results on the simpler 2D lattice case,
where EGS can be calculated up to sufficiently large lattice sizes [40]. The
Hamiltonian of an Ising spin glass has been already discussed in Sect. 4.1 and
it is given by equation (9).

For a given 2D lattice size L × L, (L up to 80) and for various quenched
realizations of the random couplings Jij , drawn from a flat distribution in
the interval (−2, 2), we carried out several repeated classical and quantum
annealings (for more details, see [5, 10]). At the end of both QA and CA,
the system remains generally trapped at energy Efinal = EGS + εres and the

1 Other funny examples of this kind can be found in the appendices of D.J.C
MacKay, Information Theory, Inference and Learning Algorithms, Cambridge
University Press, Cambridge MA (2003).
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efficiency of each protocol is monitored by considering the average residual
energy εres(τ) as a function of τ .

The annealing parameters T (CA) or Γ (QA) were decreased linearly from
the initial value of T0 = 3 or Γ0 = 2.5 down to zero, with a total of τ
MC steps per spin. In QA we used fixed values of Tq = PT = 1, 1.5, 2 at
several P values and prepared the initial state (same for all replicas) by a
classical pre-annealing stage. The computational cost scales linearly with P ,
but increasing P beyond a certain characteristic length (see inset in Fig. 5)
does not produce any further improvement. The choice of P = 20 was found
to be optimal. The moves proposed in both CA and QA are single-spin flip
moves, but QA also attempts slightly more “global moves” by proposing a
spin-flip for the spins sk

i , k = 1 · · ·P of all the Trotter replicas of a given site
i. Figure 5 shows that QA is definitely superior to CA in the case of the Ising
spin glass. This numerical evidence is in agreement with the experimental
observation of significantly faster frequency-dependent relaxations during QA
of the disordered magnet [4].

Traveling Salesman Problem

Given N cities and their tabulated inter-distances dij , TSP consists in finding
the shortest path connecting them, visiting each city only once and returning
to the starting point. An account of the vast literature about algorithms for

Fig. 5. Residual energy per site for an 80× 80 disordered 2D Ising model after CA
and QA. We show the QA data for the optimal value of PT = 1, with T = 0.05
and P = 20 Trotter replicas. The actual inverse annealing rate τ used in the QA
has been rescaled (multiplied by P ) for fair comparison with CA. Still, QA is faster
than CA
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TSP can be found e.g. in [41], while three classical papers analysing physics
approaches to the problem are [26, 27, 28].

As a fist step to a QA optimization we have to chose a representation for
the classical potential energy Hpot of a given configuration (in our case, the
length of a tour), and, most crucially, a suitable source of quantum fluctuations
Hkin. TSP can be mapped to a highly constrained Ising-like model – in a
way similar to [25, 3] – in which each configuration of the system (a valid
tour) is associated to a N × N 0/1-matrix T̂ . For every ordered sequence of
cities, T̂i,j = 1 if the tour visits city i immediately after city j, and T̂i,j = 0
otherwise. For the symmetric TSP problem we want to consider (a TSP with
symmetric distance matrix dij = dji), the directed tour represented by a T̂ ,
and the reversed tour, represented by the transposed matrix T̂ t, have exactly
the same length. It is then convenient to introduce the symmetric matrix
Û = T̂ + T̂ t as representative of undirected tours. The length of a tour can
now be written:

Hpot(Û) =
1
2

∑

(ij)

dijÛi,j =
∑

〈ij〉
dijÛi,j , (18)

where 〈ij〉 signifies counting each link only once. Hkin should be chosen in
order to induce fluctuations generating the important elementary “moves” of
the problem. Deciding which configurations are to become direct neighbors
of a given configuration is indeed a crucial step, because it determines the
problem’s effective landscape [42]. A very important move that is often used
in heuristic TSP algorithms is the so-called 2-opt move, which consists in
eliminating two links in the current tour, (c1 → c2) and (c1′ → c2′), and
rebuilding a new tour in which the connections are exchanged, (c1 → c1′)
and (c2 → c2′) (see Fig. 6). Associating a spin variable +1 (−1) to each
entry 1 (0), the whole 2-opt move, when working with Û matrices, can be
represented by just four spin-flip operators:

S+
〈c1′ ,c1〉S

+
〈c2′ ,c2〉S

−
〈c2,c1〉S

−
〈c2′ ,c1′ 〉

,

where, by definition, each S±
〈i,j〉 flips an Ising spin variable (defined as Sz

〈i,j〉 =

(2Ûi,j − 1) = ±1) at position (i, j) and at the symmetric position (j, i), i.e.,
S±
〈i,j〉 = S±

i,jS
±
j,i. However, this kinetic Hamiltonian does not allow for an

obvious Trotter discretization of the Path Integral (see discussion in Sect. 4),
and the PIMC scheme cannot deal with it (for this purpose, Green’s function
MC methods, that do not use a Trotter break-up, should be more effective,
see Sect. 5.1). We introduce then a drastic simplification to our kinetic energy
term, replacing it altogether with a standard transverse Ising form, arriving
finally at the Hamiltonian:

H̃TSP =
∑

〈ij〉
dij

(
Sz
〈i,j〉 + 1

)

2
− Γ (t)

∑

〈ij〉
[S+

〈j,i〉 + H.c.] , (19)
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Fig. 6. Left: Representation of an 8-city tour, with the corresponding matrix T̂in

and Ûin = T̂in + T̂ t
in. Right: The final tour obtained when a 2-opt move is performed,

with a whole section reversed (dotted line). The matrices T̂fin and Ûfin are shown,
the circles indicating the entries that have been switched (0 ↔ 1) by the 2-opt move.
The dotted circles in T̂fin are entries related to the trivial reversal of a section of the
tour

This simplified form of kinetic energy no longer fulfills the constraint to take
a valid tour to another valid tour, but this problem is avoided by proposing
exclusively 2-opt moves in the MC algorithm [11].

We tested our QA algorithm against CA [11] on a standard bench-
mark TSP problem, namely the printed circuit board instance pr1002 of the
TSPLIB [43]. It is a structured TSP problem with N = 1002 cities whose op-
timal tour length Lopt is known exactly. For CA, we chose an optimal initial
temperature T0 by first performing several CA with various short cooling times
τ and starting from sufficiently high temperatures. The point where the cool-
ing curves for different τ ’s start to differ identifies an approximate “dynamical
temperature” Tdyn. For pr1002, we obtained Tdyn ∼ 100. As expected [41],
the optimal T0 for CA approximately coincides with Tdyn. Not surprisingly,
for QA the same choice PT ∼ Tdyn yields the optimal results, together with
the choice Γ0 = 300. Figure 7 shows the results obtained [11] for the average
percentage best-tour excess length εexc(τ) = (L̄best(τ)−Lopt)/Lopt, both with
CA (filled squares) and with QA (open circles). As a reference, the best out
of 1000 runs of the Lin-Kernighan algorithm (one of the standard local-search
algorithms for TSP [41]) is also plotted (dashed line in Fig. 7). The results
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Fig. 7. Average residual excess length found after CA and QA for a total time
τ (in MC steps), for the N = 1002 instance pr1002 of the TSPLIB. The dashed
horizontal line represents the best out of 1000 runs of the Lin-Kernighan algorithm
(see text). QA is once again faster than CA

show that, once again, QA anneals more efficiently, even accounting for the
extra factor P in the total CPU time (rightmost open circles), reducing the
error at a much steeper rate than CA.

Random Boolean Satisfiability

In order to state the problem, consider a set of N boolean variables z1, . . . , zN ,
where zi = 1 or 0 (‘True’ or ‘False’). Denoting by ζi the variable zi or its
negation z̄i, one then considers the disjunction (logical OR) of 3 variables C =
(ζi∨ζj∨ζk), which is called a 3- clause. The random 3-SAT problem consists in
deciding if the conjunction (logical AND) of M different clauses C1 ∧C2 · · · ∧
CM – each clause being formed by 3 variables extracted at random among the
N variables, and appearing negated or directed with uniform probability – can
be simultaneously satisfied by a truth value assignment {zi}. If we associate
an Ising spin variable Si = (−1)zi to each Boolean variable zi, we can assign
to any clause Ca involving three variables zi, zj , zk an energy Ea given by:

Ea =
(1 + Ja,iSi) (1 + Ja,jSj) (1 + Ja,kSk)

8
, (20)

where the coupling Ja,i assumes the value −1 if the variable zi appears negated
in clause a, +1 otherwise. Evidently, Ea = 0 if the corresponding clause is
satisfied, Ea = 1 otherwise.

As in the case of TSP, archives of hard structured instances exist[44].
In addition, statistical mechanics techniques can be used to determine the
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phase diagram of the Random 3-SAT problem [24, 29, 30]. The main parame-
ter determining the hardness of a formula is the ratio α = M/N between the
number, M , of clauses and the number, N , of variables. For α < αc 
 4.26 it
is typically possible to find satisfying assignments, but instances particularly
hard to solve are expected to be found if α > αG 
 4.15 [45]. It is expected
that, due to the proliferation of an exponential number of metastable states
acting as dynamical traps, local search gets trapped at an energy close to
some finite threshold level, lower bounded by the so-called Gardner energy
[46]. The trapping effect induced by the threshold states cannot be neglected
when the instance-size is large (N ≥ 10000) and large statistical fluctuations
become sufficiently rare [45]. Smaller random formulas are, on the other hand,
often easily solvable by classical simulated annealing and cannot be used as
significant benchmarks.

We performed a first set of annealings over a single hard 3-SAT random
instance with N = 104 and α = 4.24 [12]. The kinetic term was given by a
simple transverse field inducing single-spin-flip fluctuations, like in the Ising
case, since no clever sets of moves are known for 3-SAT, unlike the TSP
case [47]. Using an efficient ad-hoc algorithm (that will be shortly described
in Sect. 5.2 and is presented in [45]), we verified that the chosen formula
was actually satisfiable, as expected from theory for α < αc. As in the case
of the TSP optimization, we set both T0 for CA and PT for QA equal to
Tdyn = 0.3. The optimal field-ramp range was found to be between Γ0 = 0.7
and Γf 
 10−3.

A comparison between the performance of the optimal CA and the optimal
QA at P = 50, both with and without global (i.e., all sk

i , k = 1 · · ·P are
flipped) moves [12], is shown in Fig. 8. For each point, an average has been
taken over 50 different realizations of the same experiment; in the case of QA,
a second average was performed among the energies of the P replicas, which
are in general different. It can be seen that the linear-schedule CA always
performs better than the linear-schedule QA. No further improvement can be
obtained for P ≥ 100, see inset of Fig. 8 – a much larger value than in the case
of the Ising Spin Glass and the TSP instance – but we chose P = 50 in order
to extend as much as possible the simulation time. The asymptotic slope of
the linear-schedule QA curves seems indeed to be definitely less steep than
that of CA, independently of the number of replicas involved in the simulation
and of the use of global moves.

4.3 PIMC-QA and 3-SAT: Lessons from a Hard Case

The substantial failure of PIMC-QA for the 3-SAT optimization calls for a
deeper understanding of the peculiar way in which it explores the energy
landscape of the problem. In the following subsections, we shall analyze in
detail several features of the method.
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Fig. 8. Comparison between optimal linear-schedule Classical (CA) and Quantum
Annealing (QA) for a 3-SAT problem with N = 104 and α = M/N = 4.24. CA
always performs better than QA simulated with P = 50 Trotter replicas. The average
performance of linear QA is worse than that of CA, even if an improvement in the
results can be obtained by introducing global moves (G) and by increasing P (in
the inset the final average energy found by QA after 2000 iterations for increasing
P is plotted and compared with the average result of a CA of the same length,
dashed line). The solid triangles are the data obtained by the field-cycling QA hybrid
strategy described in Sect. 4.3

Target Selection and Field-Cycling

We denote by 〈〈E〉〉 the configuration energy averaged over different experi-
ments and Trotter replicas (this is the energy reported everywhere in Fig. 8);
the average among different experiments of the best replica energy will be, on
the other hand, denoted by 〈E〉. In Fig. 9, the Monte Carlo “time” evolution
profiles of 〈〈E〉〉 and 〈E〉 are shown for a linear-schedule QA (2000 iterations
long). The strength of the transverse field, and hence of the quantum coupling
JΓ given by (14) (see inset of Fig. 9), determines the relative importance of the
classical and quantum terms in the Hamiltonian and its variation determines
the transition between three regimes [12].

First (Γ ≈ Γ0 
 0.7, JΓ 
 0), the system is quenched at temperature Tq

in presence of a strong external transverse field. The system enters an inco-
herent mixture of states, and, from the point of view of the PIMC simulation,
when the coupling JΓ is small, each replica behaves as if roughly independent
from the others. After the abrupt out-of-equilibrium quenching phase, with
increasing coupling strength, the fluctuations of the different replicas become
correlated. Several spin flips that would have been unlikely in absence of the
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Fig. 9. Energy evolution during Quantum Annealing, compared to Simulated An-
nealing. The variation of the averages 〈E〉 (average best replica) and 〈〈E〉〉 (average
of the average replica) is shown as a function of the simulation time, for a set of
experiments with P = 50 and 2000 annealing iterations. The inset shows the time-
dependent value of the coupling JΓ . Three different regimes can be distinguished,
which will be called quenching, search (driven by quantum fluctuations) and target
selection

the kinetic term can in this regime be accepted, and configurations generally
not visited by typical CA trajectories are produced (quantum search phase).
Finally, when the transverse field vanishes, quantum fluctuations are gradually
switched off. and the system collapses completely into some selected target
state. In this fundamentally classical regime, JΓ becomes so strong that local
spin flips can be accepted only at sites where the spins of two neighboring
replicas are not aligned. If global moves are allowed, small-range classical os-
cillations induce a further energy reduction of quite small entity.

Considering this three-piece scenario (that will be confirmed by the auto-
correlation and geometrical analysis of Sect. 4.3), the simulated QA could be
described as a very basic kind of evolutionary search [48, 49]. The P repli-
cas can be seen as a population of individuals, the spin configuration of each
replica as its genotype, and the classical Hamiltonian (20) as a fitness func-
tion. Contiguous replicas can “mate”, exchanging sequences of their geno-
type thanks to the duplicating action of the transverse coupling, that spreads
around low-energy-inducing spin patterns (the so-called Holland schemata
[50]). Suppose now that a new individual with exceptional fitness is gener-
ated when JΓ is already considerably large. Its peculiar “genes” would be
overwritten with high probability by the corresponding spin sequences in the
most widespread configuration. The population must then collapse toward a
group of “identical twins” and global moves cannot affect significantly this
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picture, because they do not cure the problem of the lack of genetic diversity,
which is constantly renewed by crossover, in standard evolutionary search.

However, in PIMC-QA, the mutation rate can be increased again by
switching on the quantum fluctuations. In Fig. 10, we present the results
of an experiment in which, after each linear descending ramp from Γ0 
 0.7
to Γf 
 0.001, the coupling is raised smoothly to the initial value JΓ0 and
then back again to JΓf

(for details of the schedule, see [12]). Many such field-
cycles can be chained one after the other, slightly reducing the temperature Tq

so as to avoid a complete re-initialization (related with memory effects [51]),
and realizing thus a hybrid strategy (a linear-schedule CA, superposed with
linear-schedule QA cycles over a shorter time-scale).

After each ascending ramp and a short transient phase, a new quantum
search phase is initiated, starting from plateaus that lie at a distance pro-
gressively larger from the quenching level corresponding to the present tem-
perature (see the arrows in Fig. 10). Over short time scales (number of MC
iterations approximately smaller than 200000, when taking P = 50), this
hybrid field-cycling strategy outperform the pure linear CA. Furthermore, a
classical experiment with the same temperature schedule has been repeated in
absence of the transverse magnetic field, with the same number of now com-
pletely decoupled Trotter replicas. We observed that 〈〈E〉〉hybrid stays clearly
below 〈E〉classical, indicating that quantum effects give access to states that
are hard to reach even by rare large classical fluctuations. One could say that
quantum restarts are more effective than classical restarts [52], at least when
short schedules are considered.

Longer field-cycling schedules are obtained by rescaling with a constant
factor the duration of all the ramps in a shorter schedule. For larger total
annealing times, the asymptotic slope of the field-cycling cooling curve sat-
urates to a value remarkably similar to the other QA cases. If the reduction
of temperature allows the system to explore the landscape at different length
scales [51] and to find better target configurations, lower energy regions remain
nevertheless fundamentally inaccessible.

Autocorrelation Analysis and Landscape Probing

Let us denote by {Si(t)} the instantaneous spin configuration of the sample
3-SAT formula at time t. An autocorrelation function K(t, τ) can be defined
as:

K(t, τ) =

〈
1
N

N∑

i=1

Si(t)Si(t − τ)

〉
, (21)

where the average is performed over different dynamical realizations (and over
replicas, in the quantum case). The autocorrelation function K(t, τ) allows us
to visualize in a compact way the typical behavior of the overlap between
two spin assignments at different evolution instants [12]. In Fig. 11 K(t, τ) is
plotted as a function of the autocorrelation time τ for several fixed values t∗
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Fig. 10. Energy evolution during a field-cycling hybrid strategy. The strength of the
transverse coupling JΓ is varied cyclically between the values 0.001 and 5, by adjust-
ing the value of the magnetic field. The effective temperature Tq is kept constant
during each field ramp, but is reduced in a stepwise way among different ramps,
from the initial value of 0.3 down to 0.05. Each ascending field-ramp unfreezes the
system from a previously reached target state, and after a short transient regime, a
new search phase is entered. The starting plateaus have energy values increasingly
smaller than the quenching level at the new simulation temperature (the arrows in
the graphs indicates the quenching level and the hybrid strategy plateau at a given
value of the temperature). Each new target state has a better energy than the pre-
ceding one, and the final average energy is better than the value reachable by large
classical fluctuations
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Fig. 11. Autocorrelation function K(t, τ) for CA (Left) and QA (Right). The dif-
ferent curves represent several fixed-simulation-time t = t∗ snapshots of the auto-
correlation function, with t∗ varying at fixed intervals between 200 and 2000, from
bottom to top. For QA, both the results with (QA+G, solid lines) and without (QA,
dashed lines) global moves (see text) are shown

of the simulation time t, for both the CA (Left panel) and QA (Right panel)
dynamics. The results shown are averaged over 500 different runs, each con-
sisting of 2000 annealing iterations (and over P = 50 replicas, in the case of
QA). A K(t∗, τ) which decays fast with τ indicates that at time t∗ the con-
figuration is still rapidly evolving, and that at every time-step a large number
of spins is being flipped; when a local stability is reached, on the other hand,
K(t∗, τ) assumes a flat (or periodic) profile, indicating that the system has
entered into some attracting configuration (or limit cycle). For CA, the self-
overlap between {Si(t∗)} and {Si(t∗ − τ)} grows constantly with t∗, until
when a periodic behavior of K(t∗, τ) gradually develops. In the final part of
the classical relaxation, about 20% of the variables appear to be free to flip at
each iteration, even if the average energy is no longer changing. The strongly
regular oscillations of K(t∗, τ), as well as the non-vanishing asymptotic spin
flip acceptance ratio, suggest that the system gets trapped into a very small
portion of the phase space, and that a fraction of the variables is still allowed
to fluctuate, but only cyclically repeating a limited amount of sequences of
flips. The observation of the neighborhood geometry during the dynamics con-
firms this hypothesis. In Fig. 12 (dashed line), the fractions of downhill, flat
and uphill directions (considering single spin-flip moves) are plotted against
the energy of the visited configurations. One sees then that the number of
downhill directions falls to zero when the lowest energies are approached (the
number of remaining flat directions is compatible with the observed oscillation
amplitude). For QA, the self-overlap increase becomes faster upon reducing
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Fig. 12. The local geometry of the visited regions of the phase space is probed by
counting the fraction of directions in which the energy variation is negative, null or
positive. Although both CA (dashed line) and QA (solid line) get trapped in a local
minimum, the quantum evolution tends to visit “valleys” that, at the same energies
than CA, are more flat and with a larger number of downhill directions

the transverse magnetic field, because the pseudo-evolutionary replication of
the “good” spin patterns, operated by the coupling in (14), has also a stabi-
lizing effect on them. No trace of asymptotic periodic behavior is found, and
all the replica configurations reach continuously a full overlap with a single
final configuration. The introduction of global moves causes damped classical-
like oscillations to set in, but target selection is not eliminated, as previously
discussed. Figure 12 shows (solid line) that the target states are once again
very close to local minima, with an extremely small number of downhill di-
rections as in the CA case. Nevertheless, the phase space regions explored by
the two algorithms are quite different. At the same value of the energy, the
quantum system is visiting configurations with a significantly larger fraction
of downhill and flat directions. One could say that the CA follows narrow
canyons, while the QA prefers to explore the edges of mid-altitude plateaus.
This phenomenon, which seems to be a genuinely quantum effect captured by
the PIMC simulation, is strongly reminiscent of what happens in continuous
space, where the choice of broader potential wells allows the system to reduce
the kinetic contribution to the total energy. Furthermore, the various Trotter
replicas differ in a number of spins comparable to the number of flat direc-
tions. All the configurations simultaneously taken by the quantum system
belong then to a single broad landscape valley, which is nevertheless explored
in all its wideness by the quantum system.
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For vanishing field, the system “wants to become classical”, and the num-
ber of uphill directions increases abruptly, approaching the classical curve.
The dynamical collapse is then paralleled by a change in the local landscape
topology. The poor performance of QA in the present 3-SAT case could be
then explained by the existence of broad basins of attraction strewn with de-
ceptive and highly attractive sinks, that, unlike the cleavages preferred from
the very beginning by the CA, prevent access to lower energy sectors.

4.4 PIMC-QA of a Double-Well: Lessons from a Simple Case

We would like to finish our discussion about Path-Integral Monte Carlo based
QA by mentioning recent results on a very simple case from which one can
learn much about the limitations of the method [14]. Suppose we want to per-
form a QA optimization of the simple double-well potential which was inves-
tigated in Sect. 2.1 using PIMC. One is then lead to simulate the behaviour of
a closed polymer made up of P Trotter replicas {xk} (k = 1 · · ·P ) of the origi-
nal particle, held at temperature β/P and moving in the potential Vasym with
a nearest-neighbor spring coupling, as shown in 17. One can actually be more
sophysticated than that, and perform a higher order Trotter break-up, cor-
rect to O(β/P )4 instead of O(β/P )2, using, for instance, the Takahashi-Imada
approximation [53]. Moreover, instead of performing single-bead moves, i.e.,
moves involving a single xk at a time, one can reconstruct, during the move,
entire sections of the polymer, using the bisection method [54]. We have ap-
plied this rather sophysticated PIMC to our double-well problem , working
with a temperature T = 0.03V0, a number of Trotter slices up to P = 160, and
a bisection of level up to 4, i.e., involving up to 24+1 replicas xk at each move.
The initial temperature value of Γ = h̄2/2m was taken to be Γ0 = 0.5, and
its value was reduced linearly to 0 in a certain total number τ of Monte Carlo
moves. The results, shown in Fig. 13 by solid circles, are rather disappointing:
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Fig. 13. Comparison between the Imaginary-Time Schrödinger annealing data of
Fig. 1, solid triangles, and different types of PIMC-QA, on the double-well potential
of Sect. 2.1
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the data barely start to go below the level εres ≈ 2δ = 0.2, which corresponds
to the metastable minimum of the potential, for the largest values of τ sim-
ulated. This means that the system had no occasion, up to these values of
τ , of realizing that there was another minimum available through tunneling.
Moreover, the overall slope of the data is definitely less steep than what the
direct Schrödinger annealing predicts, shown for comparison by solid triangles
in Fig. 13. (The absolute values of τ are not comparable between the two sets
of data, because they refer to different quantities: a Schrödinger dynamics ver-
sus a Monte Carlo dynamics.) The situation improves substantially (see solid
squares in Fig. 13) if we propose, as candidate Monte Carlo moves, also the
so-called instanton moves, i.e., basically classical trajectories that move from
one minimum to the other (plus fluctuations) [55]. This is, however, not a fair
game: we have substantially exploited a crucial information on the landscape
which is generally not available for a complicated optimization problem!

One other lesson we can learn, in the present context, is the role of the
kinetic energy operator Hkin on which the quantum fluctuations are based.
Up to now, we were using as Hkin the usual non-relativistic kinetic energy
Hkin = p2/2m, and annealed the system by increasing the mass m of the
particle. (The propagator of this kinetic term is just the Gaussian, as shown
in 17.) Imagine now we pretend that the particle has a relativistic ‘photon-like’
dispersion:

Hkin = Γ |p| → 〈xk|e−
β
P Hkin |xk+1〉 =

1
π

h̄Γβ/P

(xk − xk+1)2 + (h̄Γβ/P )2
, (22)

and that we anneal the system by reducing to 0 the velocity Γ of the disper-
sion. The bisection method can be generalized for this kind of kinetic energy,
and the results obtained are shown by solid diamonds in Fig. 13. As one
notices, the residual energy versus τ is now considerably lower than in the
non-relativistic (Gaussian) case, and even levels-off, for large τ , to the ther-
mal limit kBT/2 = 0.015 set by our finite temperature T . This example shows
the important role played by the choice of the kinetic energy Hkin (as well as
the limitations imposed by the unavoidable finite temperature T ).

Summarizing, PIMC-QA suffers evidently of a number of problems: i) It
is only a fake Monte Carlo annealing dynamics, in principle not fully repre-
sentative of the true imaginary-time Schrödinger dynamics; ii) The sampling
of relevant “action” might be highly inefficient (recall the instanton prob-
lem above) and the cure for that might not be obvious at all; iii) The finite
temperature T imposes a lower thermal limit for the residual energy εres(τ)
below which we can never possibly go; iv) The calculation of the propagator
of e−Hkin/PT might be very difficult for a kinetic term which we would like to
implement (see Sect. 2.1). These various problems clearly call for an alterna-
tive to PIMC in order to implement a stochastic QA approach: we believe that
the usuful alternative is given by a Green’s function Monte Carlo (GFMC)
method.
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5 Beyond Naive Local Search

Where simple local search strategies fail, other techniques have been or can
be employed in order to improve the optimization performance. Here we shall
briefly discuss the important feature of focusing, and the potential benefits
of GFMC, as well as alternative message-passing approaches to the 3-SAT
optimization.

5.1 Focusing in 3-SAT and GFMC Quantum Annealing

One of the most popular and most effective local search algorithms for sat-
isfiability problems is WalkSAT [56]. This heuristic approach implements a
feature – called focusing – which is common to other successful heuristics for
SAT [57, 58]: the algorithm alternates “greedy moves” (i.e., steepest descent)
with completely random bit flips, the latter, however, being only applied (fo-
cused) to variables appearing in unsatisfied clauses (according to the rule of
thumb, “if it’s not broken don’t fix it”). The good results achieved by Walk-
SAT make the implementation of the focusing very appealing for other local
search algorithms too, including more sophisticated QA approaches. This is
where Green’s Function Monte Carlo (GFMC) seems to be the appropriate
method. As a further advantage, GFMC is free from most of the problems
which plague PIMC (see discussion at the end of Sect. 4.1), and is therefore,
in principle, a very promising tool for QA.

GFMC is a projection technique which implements in a stochastic way an
imaginary time evolution of the type

|ψ(t + ∆t)〉 = e−∆t(Hcl+Hkin(t))|ψ(t)〉 , (23)

or any other similar evolution which aims at filtering out the ground state
of Hcl + Hkin (hence, the method works intrinsically at T = 0). This can be
done without having to really calculate the exponential of the Hamiltonian, or
having to use a Trotter break-up [59]. Moreover, the Hamiltonian itself does
not really need to be an “Hermitean” operator for GFMC to be applicable:
non-symmetric operators can be dealt with as well [60]. For a QA application,
one has to perform many applications of 23 with a step-wise decreasing value
of the coupling Γ (t) appearing in Hkin(t). One crucial ingredient of GFMC is,
however, a reasonable guiding function which allows to perform the so-called
importance sampling [59]: this is in principle the only big limitation of GFMC,
but one can try to deal with this issue with a Variational Monte Carlo (VMC)
approach.

Coming back to the issue of focusing in 3-SAT, we now show how to exploit
the large freedom in the choice of Hkin to implement some form of focusing
using GFMC. The crucial idea is that we do not want to turn a spin if it
appears only in satisfied clauses. Denote by Ei the energy of a given spin,
defined as the sum of the clause energies Ea, 20, for all the clauses in which
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i appears: Ei =
∑

a|i∈a Ea. Hence Ei simply counts the number of UNSAT
clauses in which i appears, and vanishes for bits appearing only in SAT clauses.
Consider now, as a kinetic term inducing quantum fluctuations, a transverse
field locally weighted with Ei:

HSAT
kyn,non−herm = −Γ

N∑

i=1

σx
i Ei , (24)

which is intrinsically non-Hermitean, since Ei does not commute with σx
i .

HSAT
kinnon−herm correctly implements the focusing strategy of leaving untouched

the variables appearing only in SAT clauses (i.e., with Ei = 0). If we insist in
using a Hermitean kinetic term, then a faithful focusing is in general impos-
sible: the best we can do is to consider the symmetrized version of (24):

H
(SAT )
kyn,herm = −Γ

N∑

i=1

(σx
i Ei + Eiσ

x
i ) , (25)

which still allows, via the second term, transitions were a spin flip leads to
Ei > 0. Combinations of Hkin in Eqs. 24 and 25 are also possible. As for the
guiding function [59], the simplest possible choice would be:

ψ(S) = exp
{
− βE

(SAT )
pot (S)

}
, (26)

where β is a variational parameter, to be optimized at each value of the trans-
verse field Γ . Research is currently in progress, in our group, on applications
of GFMC as a QA tool for optimization.

5.2 Message-Passing Optimization

In recent years, the cavity-method analysis [61, 34] of constraint satisfaction
problems like the random 3-SAT has allowed to derive a new class of Survey-
Propagation-based algorithms [29, 30, 62, 45, 63], similar in spirit to the better
known belief-propagation algorithm [64], but able to deal efficiently with the
clustering scenario sketched in Sect. 4.2.

A graphical representation of a 3-SAT instance can be given, in which every
variable is represented by a node of type A and each clause by a node of type B
[65]. A variable node is connected to a clause node if the corresponding variable
is involved in the corresponding clause. In such a way, tree-like bipartite graphs
can be associated to every instance. Messages are exchanged between the
nodes. Let V (i) be the set of the clauses neighboring a variable i, V (a) the
set of variables neighboring a clause a and let V (i) \ a and V (a) \ i denote
the two sets deprived, respectively, of the elements i and a. Every variable i
sends a message hi→a to a clause a ∈ V (a) telling if and how much the clauses
b ∈ V (i) \ a are forcing it to orient itself in the positive or in the negative
direction. On the other hand, if the tendencies of all the variables in V (a) \ i



Deterministic and Stochastic Quantum Annealing Approaches 203

are such that a would not be already satisfied by this partial assignment, a
must send a message ua→i to the only left variable i, telling: “Please, orient
yourself in order to satisfy me!”.

To every cluster of solutions corresponds univocally a single set of messages
defined over all the edges of the bipartite graph associated to the instance [62].
Since many clusters are present, one can associate to every edge the probability
distribution, called survey, of observing a specific value of the messages h’s or
u’s. Such probability distributions can be computed in linear time thanks to
a recursive self-consistent procedure, and this information can be exploited in
order to determine an assignment for the most biased variables and simplify
accordingly the original problem instance. The interested reader is referred to
[45] for more details on the method.

Message-passing techniques are by far the most effective for the optimiza-
tion of hard random SAT instances. In the hard SAT region, they allow the
determination of an exponential number of complete solutions [63], but even
in the UNSAT region they are able of retrieving assignments with an energy
closer to the predicted ground state than to the Gardner energy, and, any-
way, definitely below the lower bound for the glassy thresholds [45]. Such
performance is inaccessible to classical local search techniques and even to
specialized algorithms like WalkSAT or fRRT[56, 57]. Unfortunately, they
cannot be applied to the optimization of structured instances associated to a
non tree-like bipartite graph and the issue of devising new heuristic methods
of universal application, like CA and QA, remains still an open problem of
considerable practical relevance.

6 Summary and Conclusions

We have illustrated several applications of Quantum Annealing strategies to
a range of problems going from textbook toy-models (displaying in a clear
way the crucial differences between classical and quantum annealing), all
the way to challenging hard optimization problems (Random Ising model,
TSP, 3-SAT). The techniques used to implement QA are either deterministic
Schrödinger’s evolutions, for the toy models, or Path Integral Monte Carlo
(PIMC) approaches, for the hard optimization problems.

As a way of summary, we would like to stress some of the major points
touched upon:

1. Is Quantum really better? Although, in the examples illustrated, QA often
wins over CA, sometimes it doesn’t, and this results is a priori not guar-
anteed, the outcome of the battle being strongly related to the landscape
of the problem one deals with (the negative result for the 3-SAT case is
particularly instructive in this respect);

2. Limitations of PIMC. PIMC-QA suffers from several limitations (finite
temperature T , sampling problems for the action, difficulties with the
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Trotter break-up) which suggest investigating in the future other Quan-
tum Monte Carlo approaches to QA, like Green’s Function Monte Carlo.

3. Role of kinetic energy. The choice of the kinetic energy is clearly all im-
portant in QA: Sect. 4.4, illustrating the improvements in annealing a
double-well potential upon using a relativistic kinetic energy, is particu-
larly instructive.

In conclusion, it is quite clear that quantum annealing, although poten-
tially useful and sometimes more convenient than classical annealing, is not
capable, in general, of finding solutions of NP-complete problems in polyno-
mial time. Nevertheless, understanding when and how quantum mechanics
can quantitatively improve on the solution of hard optimization problems is
still an open and timely issue.
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5. G. Santoro, R. Martoňák, E. Tosatti, R. Car: Science 295, 2427 (2002). 171, 172, 183, 187
6. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda: Science

292, 472 (2001). 172
7. L. Stella, G. E. Santoro, and E.Tosatti: to appear on Phys. Rev. B; preprint

cond-mat/0502129 172, 173, 175, 176, 178, 179, 181, 182, 183, 184
8. Y.H. Lee, B.J. Berne: J. Phys. Chem. A 104, 86 (2000). 172
9. Y.H. Lee, B.J. Berne: J. Phys. Chem. A 105, 459 (2001). 172
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1 Introduction

It has been revealed during the last few decades that approaches originating
from the physics succeeds in solving combinatorial optimization problems[1].
The simulated thermal annealing method created such a close relation be-
tween physics and optimization problems. The quantum annealing method
was born as an analogue of conventional thermal annealing[2, 3]. In spite of
its origin, the mechanism and formulation of quantum annealing are funda-
mentally different from those of simulated thermal annealing. The former is
based on the dynamics in quantum mechanics, while the latter is on the clas-
sical dynamics. Furthermore the quantum annealing is basically formulated
for zero temperature in contrast to finite temperature simulation of thermal
annealing. Because of these differences, the quantum annealing is expected
as a novel efficient method for optimization problems. In practice, an exper-
iment using spin-glass material has shown the superiority of the quantum
annealing over the thermal annealing [4]. Simulations by means of the path-
integral quantum Monte-Carlo have also shown that an optimization in the
spin-glass model is achieved in a less time by the quantum annealing than by
the thermal annealing [5]. However study on quantum annealing is insufficient
for establishing this method as an effective optimization method. We focus in
this paper on some basic features and a new method for implementation of
the simulated quantum annealing.

A combinatorial optimization problem is a big subject relating with a va-
riety of topics in sciences. It is classified mathematically into some classes
according to the hardness. The class of easy problems is called P class. The
problem in P class is a decision problem, whose solution is given by “Yes”
or “No”, and can be solved by deterministic processes in time of polyno-
mial order of the problem size. The decision problem which can be solved
by processes of the non-deterministic Turing machine in a polynomial time
constructs the class NP . The NP class contains the P class by definition.

S. Suzuki and M. Okada: Simulated Quantum Annealing by the Real-time Evolution, Lect. Notes
Phys. 679, 207–238 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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The class of hardest decision problems is referred to as NP -hard class. The
solution of an NP -hard problem derives the solution of any NP problem by a
polynomial time of deterministic processes. In principle, the number of combi-
nations in the combinatorial problem increases exponentially with increasing
the problem size. No deterministic algorithm, by which an NP -hard problem
is solved in a polynomial time of processes, has been discovered so far. Hence
it takes exponentially long time to obtain the solution of NP -hard problems.
It is an important work to find efficient algorithms, including deterministic
polynomial-time algorithm if it exists, for NP -hard problems.

The combinatorial optimization problem can be formulated as the mini-
mization problem of a cost function. One can first consider that the descend-
ing method may be valid for the minimization. However one of remarkable
properties of the problem is that the cost function has a large number of lo-
cal minima. Hence the ordinary descending method is useless. The simulated
thermal annealing was proposed for the minimization of such complicated
cost functions from the statistical mechanical standpoint. In terms of physics,
the cost function is replaced by a classical Hamiltonian represented by ran-
domly coupled Ising spin variables. Usually the classical Hamiltonian of the
optimization problem is written as

H0 = −
∑

i

JiS
z
i −

∑

ij

JijS
z
i Sz

j −
∑

ijk

JijkSz
i Sz

j Sz
k − · · · , (1)

where Sz
i is the Ising spin variable, and Ji, Jij , Jijk, · · · are disordered cou-

pling constant. The minimization of the cost function corresponds to finding
the ground state of the Hamiltonian (1). In order to obtain the ground state,
the Boltzmann distribution at a finite temperature is considered in the sim-
ulated thermal annealing. It is supposed that the finite temperature distri-
bution of Ising spin configuration is generated by means of the Metropolis
Monte-Carlo algorithm[6]. If the temperature is fixed below the energy bar-
rier between local minima, the distribution of thermal equilibrium is hard to
obtain. This is because the distribution at a configuration corresponding to
a local minimum is overestimated. On the other hand large thermal fluctu-
ations overcome energy barriers if the temperature is sufficiently high. The
distribution of equilibrium is easy to obtain in this case. The thermal anneal-
ing method produces the correct distribution at a low temperature through a
dynamical process from high temperature to low temperature. A distribution
at high temperature is changed gradually toward that at low temperature
with lowering temperature. The annealing speed is crucial here. It has been
known that the optimum annealing schedule is T ∝ 1/ ln t[7]. Hence, if the
temperature is lowered slower than the inverse of logarithm of the time, the
ground state is obtained in the infinite time limit in principle.

In contrast to thermal fluctuations in the thermal annealing, quantum
fluctuations are exploited in the quantum annealing[8]. Quantum fluctuations
are induced by the transverse field for the Ising spin system. The transverse
field plays the role similar to the temperature. The ground state of random
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Ising models corresponding to the solution of optimization problems is typi-
cally characterized by the replica symmetry breaking[9]. Thermal fluctuations
causes the restoration of replica symmetry. Quantum fluctuations also drives
the state into a phase in which the replica symmetry is preserved. The temper-
ature and transverse field are both parameters which control strength of fluc-
tuations. It is remarkable here that the restoration of replica symmetry of the
infinite-range random Ising (Sherrington-Kirkpatric[10]) model takes place at
the infinitesimal transverse field, though it does at a finite temperature[11, 12].
Hence it is inferred that the random Ising system is more sensitive to quantum
fluctuations than thermal fluctuations.

In the quantum annealing method, a quantum spin system composed of a
random Ising Hamiltonian and the Zeeman energy accompanying transverse
field is considered. The system with zero transverse field is identical to the
classical system which is to be solved. If the transverse field is sufficiently large
compared to the typical value of coupling constants in Ising Hamiltonian, all
of the spins in the ground state are parallel with the transverse field. In the
procedure of quantum annealing, the transverse field is decreased gradually
toward zero field. The spin state changes dynamically with time according to
the Schrödinger equation. If the change in the total Hamiltonian is sufficiently
slow and the energy levels of ground and first excited states do not cross during
the process, the spin state goes to the ground state of the classical Hamiltonian
finally. It should be noted here that the dynamical process in the quantum
annealing is governed by the Schrödinger equation in principle, different from
the stochastic Markovian process in thermal annealing. Therefore we need not
to be bound by the schedule of the thermal annealing. We mention the time
schedule in the quantum annealing in detail in the next section.

Although any method provides the exact solution in the infinite time, we
have to terminate the simulation in a finite time in actual. Then the obtained
solution contains an error. The magnitude of the error for a wasted time
indicates the efficiency of the used method. The residual energy is appropriate
to the estimation of the error. It is defined by the energy difference between
the obtained solution and the exact one. In case of the thermal annealing, the
residual energy has been known to decrease with annealing time as[13, 14]

ETA
res ∼ A

(ln τ)ζ
, 1 ≤ ζ ≤ 2 (2)

for long annealing time, where ETA
res and τ stand for the residual energy and

the annealing time respectively, and A is a constant. It has been shown by
quantum Monte-Carlo calculation that the residual energy after quantum an-
nealing is smaller than that after thermal annealing[5]. The authors of [5]
have also predicted the asymptotic behavior of the residual energy similar
to (2). However this prediction has not been confirmed, since the quantum
Monte-Carlo method does not have accuracy enough. One of the purposes of
this article is to clarify the asymptotic feature of the residual energy after the
quantum annealing[15].
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One of important aspects of the quantum annealing method is that this
method provides a quantum algorithm for combinatorial optimization prob-
lems. Since Shor’s discovery of quantum algorithm for factorization[16], quan-
tum computation has attracted a lot of attentions in physics and computer
science. Although there exists no rigorous proof that shows the NP -complete
problem is reduced to a P problem, a numerical study for small-sized exact-
cover problems using quantum annealing algorithm has suggested polynomial
scaling of the process time by the problem size[17]. Furthermore, an elemen-
tary experiment of quantum computation using quantum annealing algorithm
for a combinatorial optimization problem has been carried out[18, 19]. The
quantum computation may open great possibilities for quantum annealing
algorithm in the future.

Our interest in this paper lies in the use of quantum annealing method in
the conventional computer. In order to explore fundamental features of quan-
tum annealing algorithm and also to apply this algorithm to several prob-
lems, developments in simulations are demanded. The quantum Monte-Carlo
method has been already applied for simulated quantum annealing[20, 21].
Large-sized problems can be handled by this method. However the dynamics
of quantum annealing process is replaced in quantum Monte-Carlo by a sto-
chastic dynamics. It is not clear whether the mechanism of quantum anneal-
ing method works correctly in stochastic dynamics. Other methods which in-
volves real-time quantum dynamics are necessary for computation with strict
grounds. In the present article, we propose application of the density matrix
renormalization group method to simulated quantum annealing.

We organize this article as follows. In the next section, we formulate the
quantum annealing method and explain the mechanism behind the algorithm.
We review the theory on adiabatic evolution in the quantum mechanics in
this section. The Sect. 3 is devoted to study on residual energy after quantum
annealing. We discuss a new way of simulation for quantum annealing in Sect.
4. The article is concluded in Sect. 5.

2 Formulation and Mechanism of Quantum Annealing

2.1 Formulation of Quantum Annealing

The quantum annealing method brings about a solution of the classical prob-
lem through the dynamical process in quantum mechanics. Let us consider
a classical Hamiltonian H0. We suppose that H0 has only diagonal elements
for a basis. A typical example of H0 is an Ising Hamiltonian. The problem
is to find the ground state of H0. For this classical problem, we introduce a
quantum tunneling Hamiltonian HT . It is assumed that HT has off-diagonal
elements and the ground state of HT is obtained easily. If H0 is an Ising Hamil-
tonian, HT is introduced by an interaction between the spin and transverse
magnetic field. Then we consider the following time-dependent Hamiltonian
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composed of H0 and HT .

H(t) = f(t)HT + g(t)H0 .

The time dependence of H(t) is represented by f(t) and g(t). These functions
of time are monotonic and satisfy f(0) � g(0), f(t → ∞) → 0, and g(t →
∞) → 1. The Hamiltonian H(t) is dominated by HT at initial time (t = 0),
while it becomes H0 at last. The change in H(t) is continuous.

The evolution of quantum state is essential in the quantum annealing
method. According to the principle of the quantum mechanics, the real-time
evolution of the state vector |Ψ(t)〉 is governed by the Schrödinger equation.

i
d

dt
|Ψ(t)〉 = H(t)|Ψ(t)〉 . (3)

We impose the initial condition given by

H(0)|Ψ(0)〉 = εg(0)|Ψ(0)〉 , (4)

where εg(0) stands for the ground eigenenergy of the initial Hamiltonian H(0).
Namely the initial state is assumed to be the ground state of the initial Hamil-
tonian.

The quantum annealing means gradual reduction of quantum fluctuations.
Quantum fluctuations are represented by the tunneling Hamiltonian. The
process of quantum annealing is realized by lowering the ratio of the tun-
neling Hamiltonian in the total Hamiltonian. If the change in Hamiltonian
with time is sufficiently slow, the state initially at the ground state of the
Hamiltonian evolves adiabatically. Then, when quantum fluctuations vanish
after quantum annealing, the state becomes the approximate ground state of
the classical Hamiltonian as far as the instantaneous ground state of H(t)
does not degenerate at any time. This is an outline of the quantum annealing
method.

If the instantaneous ground state happens to degenerate at a time, the
state does not always evolve as the ground state. However the classical Hamil-
tonian of the problem is usually complicated. Hence we may suppose that the
time-dependent Hamiltonian has no accidental symmetry which gives rise to
degeneracy of the ground state.

The adiabatic evolution of the quantum state is influenced by the way of
time-dependence of the Hamiltonian. Although there are many choices of f(t)
and g(t), inappropriate choice causes unexpected non-adiabatic transitions
to excited states. Kadowaki and Nishimori have studied several schedules for
quantum annealing in literature[3], and found that the state does not converge
on the true ground state for fast decaying f(t) (= 1/t for instance) when g(t) =
1. In the present article, we employ the following time-dependent Hamiltonian.

H(t) =
(

1 − t

τ

)
HT +

t

τ
H0, (5)
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where τ is a parameter which stands for the annealing time. We define this
Hamiltonian only in the time period from t = 0 to t = τ . The Hamiltonian is
identical with the tunneling Hamiltonian at the initial time, i.e., H(0) = HT .
It changes linearly in the time and becomes the classical Hamiltonian exactly
at the final time, H(τ) = H0. Merits of this Hamiltonian lie in the following
two facts. The first is that the initial state is exactly given by the ground
state of HT . Construction of HT whose ground state is obvious is usually
easy. For precise calculations, it is necessary to give the initial state by the
exact ground state. If the initial Hamiltonian contains both HT and H0, it
is difficult to obtain the exact ground state. The second is that the adiabatic
theorem in the quantum mechanics guarantees the final state to converge on
the exact ground state of the classical Hamiltonian for τ → ∞, if there is no
degeneracy in the instantaneous ground state of the Hamiltonian at any time.
We mention the adiabatic theorem in the next subsection in detail. For other
schedule of quantum annealing, f(t) = 1/t and g(t) = 1 for instance, there
has been no proof that promises the convergence on the true solution.

We comment on the form of the Hamiltonian. The Hamiltonian (5) looks
unphysical since the classical term grows from nothing with time. However the
aim is in obtaining the ground state of the classical Hamiltonian as a result
of quantum annealing. Therefore there is no physical need for the form of the
Hamiltonian on the way to the final form.

2.2 Adiabatic Evolution of Quantum States

It has been known that the adiabatic theorem in the quantum mechanics
accounts for the property of adiabatic evolution of quantum states when the
change in the time-dependent Hamiltonian is sufficiently slow. We review the
adiabatic theorem in the quantum mechanics in the next small section. On the
other hand, the Landau-Zener theory has been known to describe the non-
adiabatic transition when the change in the Hamiltonian is not sufficiently
slow. We also review the Landau-Zener theory in the small section after the
next one. The subsequent arguments follow [22] for the adiabatic theorem and
[24] for the Landau-Zener theory.

Adiabatic Theorem

The adiabatic theorem in quantum mechanics accounts for the adiabatic time-
evolution of quantum state. The deviation of an evolved state from the simul-
taneous eigenstate of the Hamiltonian is estimated, and the condition for
adiabatic evolution is derived in the following.

We consider the time-dependent Hamiltonian,

Hτ (t) =
(

1 − t

τ

)
HA +

t

τ
HB = (1 − s)HA + sHB

= H̃(s) ,
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where τ is a parameter which means the time period of the evolution and
s = t/τ is the dimensionless time. We assume that instantaneous eigenstates
of the time-dependent Hamiltonian do not degenerate at any time. Denoting
the state vector at the time s by |ψτ (s)〉, we introduce the time-evolution
operator.

|ψτ (s)〉 = Uτ (s)|ψτ (0)〉 .

The Schrödinger equation is written in terms of the dimensionless time as

i
d

ds
|ψτ (s)〉 = τH̃(s)|ψτ (s)〉 .

The equation of motion of Uτ (s) is given by

i
d

ds
Uτ (s) = τH̃(s)Uτ (s) . (6)

Next we introduce the projection operator, Pj(s), of state vectors on instan-
taneous eigenstate of H̃(s). Writing the instantaneous eigenenergy of H̃(s) by
εj(s), the projection operator satisfies

H̃(s)Pj(s)|φ〉 = εj(s)Pj(s)|φ〉, Pj(s)Pk(s) = δjkPj(s),
∑

j

Pj(s) = 1 ,

where |φ〉 is an arbitrary state and δjk is the Kronecker’s delta. The Hamil-
tonian is written in terms of the projection operator by

H̃(s) =
∑

j

εj(s)Pj(s) . (7)

We define the axis-rotation operator A(s) by

Pj(s) = A(s)Pj(0)A†(s) . (8)

The axis-rotation operator rotates the axis of the projection space from that
of the initial time to that of the time s. A(s) is a unitary operator which
satisfies A(s)A†(s) = A†(s)A(s) = 1. Using the axis-rotation operator, we
moreover define an hermite operator K(s)

i
d

ds
A(s) = K(s)A(s), − i

d

ds
A†(s) = A†(s)K(s) . (9)

The equation of motion of Pj(s) is written in terms of K(s) by

d

ds
Pj(s) = −i [K(s), Pj(s)] . (10)

This equation is the condition of necessity and sufficiency of (8). The reason
is shown as follows.
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proof of necessity
We assume Pj(s) = A(s)Pj(0)A†(s).

d

ds
Pj(s) =

d

ds

(
A(s)Pj(0)A†(s)

)

=
dA(s)

ds
Pj(0)A†(s) + A(s)Pj(0)

dA†(s)
ds

= −i [K(s), Pj(s)] .

proof of sufficiency
We assume d

dsPj(s) = −i [K(s), Pj(s)].

d

ds

(
A†(s)Pj(s)A(s)

)

=
dA†(s)

ds
Pj(s)A(s) + A†(s)

dPj(s)
ds

A(s) + A†(s)Pj(s)
dA(s)

ds

= iA†(s)
(
K(s)Pj(s) − [K(s), Pj(s)] − Pj(s)K(s)

)
A(s)

= 0 .

Since A(0) = A†(0) = 1, we obtain

A†(s)Pj(s)A(s) = A†(0)Pj(0)A(0) = Pj(0) .

This yields
Pj(s) = A(s)Pj(0)A†(s) .

There is an ambiguity in the equation of motion of Pj(s), since the right
hand side of (10) is not affected by a transformation of K(s) → K(s) +∑

k Pk(s)Ok(s)Pk(s) for an arbitrary hermite operator Oj(s). This ambiguity
comes from the fact that the diagonal elements of K(s) is not determined by
the series of (8), (9), and (10). In order to settle the diagonal element, we
impose the following condition.

Pj(s)K(s)Pj(s) = 0 (j = 1, 2, · · ·) . (11)

Now we introduce the axis-rotation representation of operators by

H̃A(s) = A†(s)H̃(s)A(s) =
∑

j

εj(s)A†(s)Pj(s)A(s) =
∑

j

εj(s)Pj(0) (12)

UA
τ (s) = A†(s)Uτ (s)

UA
τ (s) obeys the following equation of motion.

i
d

ds
UA

τ (s) = i
dA†(s)

ds
Uτ (s) + iA†(s)

dUτ (s)
ds

=
(
τH̃A(s) − KA(s)

)
UA

τ (s) ,
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where (9) and (6) are used for arrangements. Since H̃A(s) and KA(s) are
independent of τ , the first term dominates the right hand side of the above
equation in infinite limit of τ . Namely the equation of UA

τ (s) for τ → ∞
should be

i
d

ds
UA

τ (s) ∼= τH̃A(s)UA
τ (s) .

We consider an operator V A
τ (s) which obeys

i
d

ds
V A

τ (s) = τH̃A(s)V A
τ (s) .

The operator V A
τ (s) is expanded using the projection operator at the initial

time as
V A

τ (s) =
∑

j

ητj(s)Pj(0) .

By substitution of (12) in the equation of V A
τ (s), it is found that coefficients

of expansion satisfy

i
d

ds
ητj(s) = τεj(s)ητj(s) .

Integration of this equation yields

ητj(s) = exp [−iτφj(s)] , φj(s) ≡
∫ s

0

dσεj(σ) .

Hence we obtain
V A

τ (s) =
∑

j

e−iτφj(s)Pj(0) .

Comparing the equations of UA
τ (s) and V A

τ (s), it is conjectured that UA
τ (s) ∼=

V A
τ (s), i.e., Uτ (s) ∼= A(s)V A

τ (s) for τ → ∞.
We define an operator corresponding to the overlap between UA

τ (s) and
V A

τ (s) by
W (s) = V A†

τ (s)UA
τ (s) = V A†

τ (s)A†(s)Uτ (s) .

The equation of motion of W (s) is given by

i
d

ds
W (s) = i

d

ds
V A†

τ (s)UA
τ (s) + iV A†

τ (s)
d

ds
UA

τ (s)

= −V A†
τ (s)KA(s)UA

τ (s)

= −
∑

jk

eiτ(φj(s)−φk(s))Pj(0)KA(s)Pk(0)W (s)

= −
∑

jk

eiτ(φj(s)−φk(s))KA
jk(s)W (s) ,

where the matrix element of KA(s) is defined by
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KA
jk(s) = Pj(0)KA(s)Pk(0) = Pj(0)A†(s)K(s)A(s)Pk(0)

= A†(s)Pj(s)K(s)Pk(s)A(s) .

The diagonal element of KA(s) vanishes because of the condition (11) imposed
on K(s). We define an integral,

Fτjk(s) =
∫ s

0

dσeiτ(φj(σ)−φk(σ))KA
jk(σ) (13)

=
1
iτ

[
eiτ(φj(σ)−φk(σ))

KA
jk(σ)

εj(σ) − εk(σ)

∣∣∣
s

0

−
∫ s

0

dσeiτ(φj(σ)−φk(σ)) d

dσ

[
KA

jk(σ)
εj(σ) − εk(σ)

]]
,

where we note that d
dσ (φj(σ) − φk(σ)) = εj(σ) − εk(σ). Same as KA(s),

Fτ (s) has no non-zero diagonal element. For off-diagonal elements, the second
term is negligible. This is because φj(σ) − φk(σ) is a monotonic function of
σ and thus the integrand highly oscillates for τ much larger than inverse of
the minimum of εj(s) − εk(s). The first term has a finite upper bound, since
the eigenenergies of states j and k differ from each other. Hence we find that
Fτjk(s) takes a value of the order of 1/τ for large τ ,

Fτjk(s) ∼= O

(
1
τ

)
. (14)

Now the equation of W (s) is arranged in an integral equation.

W (s) = 1 + i
∑

jk

∫ s

0

dσeiτ(φj(σ)−φk(σ))KA
jk(σ)W (σ)

Taking (13) into account, this equation is expanded perturbatively as follows.

W (s) = 1 + i
∑

jk

Fτjk(s) +
i2

2!




∑

jk

Fτjk(s)




2

+ · · ·

Due to (14), we obtain an approximation formula of W (s) for infinite τ up to
the order of 1/τ .

W (s) ∼= 1 + i
∑

jk

Fτjk
∼= 1 + O

(
1
τ

)
. (15)

Thus time-evolution operator is written as

Uτ (s) ∼ A(s)V A
τ (s)



1 + i
∑

j,k

Fτjk(s)



 .
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The deviation of an evolved state from the eigenstate is estimated as fol-
lows. We assume that the initial state is the ground eigenstate of the initial
Hamiltonian. We denote the instantaneous eigenstate of the time-dependent
Hamiltonian by |n(s)〉. The eigenstate at a time t = τs is related to that
at the time t = 0 by |n(s)〉 = A(s)V A

τ (s)|n(0)〉. The initial state is written
as |ψτ (0)〉 = |0(0)〉. Then the deviation of the state at the time t from the
instantaneous eigenstate is represented by

η =
∑

n�=0

|〈n(s)|Uτ (s)|0(0)〉|2

=
∑

n�=0

〈0(0)|U†
τ (s)A(s)V A

τ (s)|n(0)〉〈n(0)|V A†
τ (s)A†(s)Uτ (s)|0(0)〉

=
∑

n�=0

〈0(0)|W †(s)|n(0)〉〈n(0)|W (s)|0(0)〉 . (16)

Substituting (15), η is written as

η ∼=
∑

n�=0

〈0(0)|F ∗
τ0n(s)|n(0)〉〈n(0)|Fτn0(s)|0(0)〉 .

Here we recall the definition of Fτ , i.e., (13). Substituting the definition of
KA and taking (8) and (9) into account, Fτn0 is written as follows.

〈n(0)|Fτn0(s)|0(0)〉

= 〈n(0)|
∫ s

0

ds′e
iτ
∫ s′

0
ds0(εn(s0)−ε0(s0))Pn(0)A†(s′)K(s′)A(s′)P0(0)|0(0)〉

=
∫ s

0

ds′e
iτ
∫ s′

0
ds0(εn(s0)−ε0(s0))〈n(0)|A†(s′)i

∑

j

dPj(s′)
ds′

Pj(s′)A(s′)|0(0)〉

= i

∫ s

0

ds′e
iτ
∫ s′

0
ds0(εn(s0)−ε0(s0))〈n(0)|A†(s′)

∑

j

dPj(s′)
ds′

A(s′)Pj(0)|0(0)〉

= i

∫ s

0

ds′e
iτ
∫ s′

0
ds0(εn(s0)−ε0(s0))〈n(0)|A†(s′)

dP0(s′)
ds′

A(s′)|0(0)〉 (17)

where we used a relation between K(s) and Pj(s) which is derived by (10)
and (11).

i
∑

j

dPj(s)
ds

Pj(s) =
∑

j

(
K(s)Pj(s)2 − Pj(s)K(s)Pj(s)

)
= K(s) . (18)

In order to arrange the matrix element of Fτ further, it is convenient to utilize
a similar equation.

− i
∑

j

Pj(s)
dPj(s)

ds
= −

∑

j

(
Pj(s)K(s)Pj(s) − Pj(s)2K(s)

)
= K(s) (19)
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These equations lead to

Pj(s)K(s)Pk(s) = i
∑

l

Pj(s)
dPl(s)

ds
Pl(s)Pk(s) = iPj(s)

dPk(s)
ds

Pk(s) (20)

= −i
∑

l

Pj(s)Pl(s)
dPl(s)

ds
Pk(s) = −iPj(s)

dPj(s)
ds

Pk(s) . (21)

Hence we obtain

Pj(s)
dPk(s)

ds
Pk(s) = −Pj(s)

dPj(s)
ds

Pk(s) .

By the way, the Hamiltonian is given in terms of the projection operator by
(7). Then the derivative of the Hamiltonian is written as

dH(s)
ds

=
∑

j

εj(s)
(

dPj(s)
ds

Pj(s) + Pj(s)
dPj(s)

ds

)
+
∑

j

dεj(s)
ds

Pj(s) ,

where we note that Pj(s) = Pj(s)2. Using (20) and (21), the equation for the
matrix element of the derivative of the Hamiltonian is obtained as follows.

Pj(s)
dH(s)

ds
Pk(s) =

∑

l

εl(s)Pj(s)
(

dPl(s)
ds

Pl(s) + Pl(s)
dPl(s)

ds

)
Pk(s)

+
∑

l

εl(s)
ds

Pj(s)Pl(s)Pk(s)

= εk(s)Pj(s)
dPk

ds
Pk(s) + εj(s)Pj(s)

dPj(s)
ds

Pk(s)

+δjk
dεj(s)

ds

= (εk(s) − εj(s))Pj(s)
dPk(s)

ds
Pk(s) + δjk

dεj(s)
ds

.

From this equation, the matrix element in the right hand side of (17) is written
as

Γn0(s) =
〈

n(0)|A†(s)
dP0(s)

ds
A(s)|0(0)

〉
=
〈

n(s)|Pn(s)
dP0(s)

ds
P0(s)|0(s)

〉

=
〈

n(s)|
(

−1
εn(s) − ε0(s)

Pn(s)
dH(s)

ds
P0(s) − δn0

dε0(s)
ds

P0(s)
)
|0(s)

〉

=
−1

εn(s) − ε0(s)

〈
n(s)|dH(s)

ds
|0(s)

〉
,

Defining ωn0(s) = εn(s) − ε0(s), (17) is reduced to

〈n(0)|Fτn0(s)|0(0)〉 =
∫ s

0

ds′e
iτ
∫ s′

0
ds0ωn0(s0) −1

ωn0(s′)

〈
n(s′)

∣∣∣∣
dH(s′)

ds′

∣∣∣∣0(s′)
〉

.
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If ωn0(s) and the matrix element of dH(s)/ds do not depend on the time, the
above integration is carried out and yields

|〈n(0)|Fτn0(s)|0(0)〉|2 =
1
τ2

1
ω4

n0

∣∣∣〈n(s)|dH(s)
ds

|0(s)〉
∣∣∣
2

2 (1 − cos ωn0τs) .

When ωn0(s) and the matrix element of dH(s)/ds varies with time, the inte-
gral is estimated by the minimum of ωn0(s) and the maximum of the matrix
element as far as the variation is moderate.

|〈n(0)|Fτn0(s)|0(0)〉|2 <∼
1
τ2

1
min[ωn0(s)]4

max
[∣∣∣〈n(s)|dH(s)

ds
|0(s)〉

∣∣∣
]2

.

This formula provides the transition probability from the ground state to
an excited state resulting from the time-evolution. This is derived using the
adiabatic approximation represented by (15). As far as the value of right
hand side is much smaller than the unity, the result is consistent with the
adiabatic approximation. Namely the criterion on the validity of adiabatic
approximation is given by the smallness of transition probability from the
ground state to the first excited state. It is represented by

τ �
max

[∣∣〈1(s)|dH(s)
ds |0(s)〉

∣∣
]

min [ω10(s)]
2 . (22)

Landau-Zener Theory

Two energy levels moving with time are considered in the Landau-Zener the-
ory. These levels, separated widely at first, approach each other with time and
part away again at last. When the levels are separated sufficiently, each energy
eigenstate preserves an individual character. On the other hand, these charac-
ters mixes due to an interaction between two states when the energy levels are
close to each other. If the interaction is absent, the energy levels degenerate
at crossing point. However the level crossing is avoided in the presence of the
interaction. Figure 1 shows the energy levels considered in the Landau-Zener
theory. We consider the time-evolution of quantum state in this model. We
suppose the energy levels are widely separated initially and the initial state is
the ground state. If the change in the Hamiltonian is slow, the state evolves
adiabatically during the entire time. However, if the change is not slow, a
non-adiabatic transition takes place when the energy levels become close. The
Landau-Zener theory derives the probability of non-adiabatic transition from
the ground state to the excited state.

We consider the following non-interacting time-dependent Hamiltonian.

H0(t) = ε1(t)|1(t)〉〈1(t)| + ε2(t)|2(t)〉〈2(t)| ,

where εj(t) and |j(t)〉 (j = 1, 2) denote the instantaneous eigenenergy and
eigenstate respectively. We impose the condition for eigenenergies.
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Fig. 1. Energy levels of the Landau-Zener Hamiltonian

ε1(t) − ε2(t) = αt ,

namely linear time-dependence of energy level spacing is assumed. α stands
for the gradient of the level spacing with respective to the time. We assume
α positive. Mixing between two states is introduced by the following Hamil-
tonian.

Hint = ∆ (|1(t)〉〈2(t)| + |2(t)〉〈1(t)|) .

We assume that ∆ has no time-dependence. The total Hamiltonian is given
by

H(t) = H0(t) + Hint . (23)

In this Hamiltonian, the level-cross avoiding takes place at t = 0, and the
energy gap shows the minimum value given by 2∆ at the same time. We
depict the eigenenergies of the Landau-Zener Hamiltonian (23) in Fig. 1.

We solve the Schrödinger equation for the Hamiltonian (23). We express
the state vector as

|ψ(t)〉 = C̃1(t)|1(t)〉 + C̃2(t)|2(t)〉

The Schrödinger equation (3) gives a series of equations for C̃1(t) and C̃2(t).

i
d

dt
C̃1(t) = ε1(t)C̃1(t) + ∆C̃2(t)

i
d

dt
C̃2(t) = ε2(t)C̃2(t) + ∆C̃1(t)

The following transformation is introduced.

C̃1(t) = C1(t)e
−i
∫ t

−∞
dt′ε1(t

′)
, C̃2(t) = C2(t)e

−i
∫ t

−∞
dt′ε2(t

′)
.

The series of equations are simplified as follows.
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i
d

dt
C1(t) = ∆C2(t)e

i
∫ t

−∞
dt′(ε1(t

′)−ε2(t
′))

, (24)

i
d

dt
C2(t) = ∆C1(t)e

−i
∫ t

−∞
dt′(ε1(t

′)−ε2(t
′))

. (25)

Now as the boundary condition, we assume the state is at |1(t)〉 when t = −∞.
This is, in other words, written by

|C1(−∞)| = 1, C2(−∞) = 0 ,

where we note the normalization condition |C1(t)|2+|C2(t)|2 = 1. Eliminating
C1(t) in (24) and (25), an equation of C2(t) is obtained.

d2

dt2
C2(t) + i(ε1(t) − ε2(t))

d

dt
C2(t) + ∆2C2(t) = 0 ,

where we took d∆/dt = 0 into account. We here introduce a transformation.

C2(t) = exp
[
− i

2

∫ t

∞
dt′(ε1(t′) − ε2(t′))

]
U(t) .

Derivatives of C2(t) are expressed by U(t) as follows.

d

dt
C2(t) = e

− i
2

∫ t

∞
dt′(ε1(t

′)−ε2(t
′))
[
− i

2
(ε1(t) − ε2(t))U(t) +

d

dt
U(t)

]
(26)

d2

dt2
C2(t) = e

− i
2

∫ t

∞
dt′(ε1(t

′)−ε2(t
′))
[(

− i

2
α − α2t2

4

)
U(t)

−i(ε1(t) − ε2(t))
d

dt
U(t) +

d2

dt2
U(t)

]
(27)

Substitution of (26) and (27) yields an equation of U(t).

d2

dt2
U(t) +

(
∆2 − i

2
α +

α2

4
t2
)

U(t) = 0 .

Performing the variable transformation,

z = e−
π
4 iα

1
2 t , (28)

we obtain
d2

dz2
Ũ(z) +

(
n +

1
2
− 1

4
z2

)
Ũ(z) = 0, (29)

where we denote U(t) = U(e
π
4 iα− 1

2 z) by Ũ(z), and define n = i∆2/α. This
equation is known as the Weber’s differential equation. The boundary con-
dition for Ũ(z) is Ũ(z = Re

3
4 πi) = 0 for α > 0 when R = ∞. The Weber

functions D−n−1(−iz), the particular solution of Weber’s equation, vanishes
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for z = Re
1
4 πi and z = Re

3
4 πi with R = ∞. This is suitable for the present

boundary condition. Hence the solution including the normalization factor A
is written as

Ũ(z) = AD−n−1(−iz)

We remark that the axis in z plane which corresponds to t-axis is along e
3
4 πi

(t < 0) or e−
1
4 πi (t > 0).

The normalization factor is determined by the asymptotic value of C1(−∞).
We first write down the asymptotic expansion of D−n−1(iz) along e−

1
4 πi.

D−n−1(iRe−
1
4 πi) ∼= e−

π
4 (n+1)ie−iR2/4R−n−1 .

Then the derivative is written as

d

dR
D−n−1(iRe−

1
4 πi) ∼= e−

π
4 (n+1)i

(
− iR

2

)
e−iR2/4R−n−1 ,

where terms of higher order in 1/R are neglected. From (24), the asymptotic
form of C1(t) for t → −∞ is obtained as follows.

C1(t) =
i

∆
e

i
∫ t

−∞
dt′(ε1(t

′)−ε2(t
′)) d

dt
C2(t) =

1
∆

(
1
2
αtU(t) + i

d

dt
U(t)

)

=
1
∆

A

(
−1

2
α

1
2 RD−n−1(iRe−

π
4 i) − iα

1
2

d

dR
D−n−1(ie−R π

4 i)
)

∼= −1
∆

A
√

αe−
π
4 (n+1)ie−iR2/4R−n

where t relates with R by
√

αt = −
√
|α||t| = −R. The boundary condition of

C1(t) yields

1 = |C1(−∞)| =
√

α

∆
|A+|e−

π
4 (i ∆2

α )i =
√

α

∆
|A+|e

π
4

∆2
α ,

where we substituted n = i∆2/α. Hence we obtain

|A| = γ1/2e−πγ/4 ,

where we defined γ = ∆2/|α|.
Now we examine the value of the solution in infinite limit of t. We first

note that t → ∞ corresponds to z = Re−
1
4 πi with R → ∞.

lim
t→∞

e
i
2

∫ t

−∞
dt′(ε1(t

′)−ε2(t
′))

C2(t) = lim
t→∞

U(t) = lim
t→∞

Ũ(e−
1
4 πiα

1
2 t)

= γ1/2e−πγ/4 lim
R→∞

D−n−1(iRe
3
4 πi)

The asymptotic expansion of Dλ(z) for infinite z along the axes ie
3
4 πi = e−

3
4 πi

tells
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lim
R→∞

D−n−1(iRe
3
4 πi) ∼= e−iR2/4e

3
4 π(n+1)iR−n−1 +

√
2π

Γ (n + 1)
eiR2/4e

π
4 niRn,

Since n is a pure imaginary number, the first term in right hand sides is
negligible. Substituting n = iγ, we obtain

|C2(+∞)|2 = γe−πγ/2 2π

|Γ (iγ + 1)|2 e−
π
2 γ

=
2πγe−πγ

γ2|Γ (iγ)|2 = 1 − e−2πγ ,

where we used the identity on the gamma function, |Γ (ix)|−2 = x
2π (eπx −

e−πx).
The initial condition is |C1(−∞)|2 = 1. The adiabatic evolution corre-

sponds to the motion from |1(−∞)〉 to |2(+∞)〉. The probability of adiabatic
evolution is given by Pad = |C2(+∞)|2. On the other hand, the non-adiabatic
transition takes place during the evolution from |1(−∞)〉 to |1(+∞)〉. Its
probability is given by Pnon−ad = |C1(+∞)|2 = 1 − |C2(+∞)|2. Thus we
obtain

Pnon−ad = e−2πγ , (30)

γ =
∆2

|α| =
∆2

| d
dt (ε1(t) − ε2(t))|

. (31)

3 Residual Energies

We investigate the residual energy after quantum annealing. The residual
energy is defined by the energy difference between the solution obtained by
a method and the exact one. It is significant to study problems whose exact
solution is available, in order to reveal properties of the method. After an
explanation on problems and the way of simulations, we first show results of
numerical simulations for small-sized problems. Then we discuss the property
of the residual energy after slow quantum annealing analytically.

3.1 Simulations for Small-Sized Problems

Way of Simulations

In order to carry out simulated quantum annealing, we need to pursue the
real-time evolution of quantum states. The way of numerical calculation for a
dynamical process in quantum mechanics has not been developed sufficiently
so far, when the size of the problem is large. The difficulty lies in exponential
increase in the number of bases with the size. We then study only small-sized
problems, for which the number of bases is up to thousands. The real-time
evolution of states is computed using Runge-Kutta algorithm.
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Let us denote a basis by |n〉. Supposing that M is the number of bases,
n runs from 1 to M . We assume that |n〉 is the eigenstate of a classical
Hamiltonian H0.

H0|n〉 = εn|n〉 ,

where εn is the eigenenergy of H0. A tunneling Hamiltonian HT has off-
diagonal elements with respect to the basis |n〉. We denote the matrix element
by

〈m|HT |n〉 = HTmn .

The time-dependent Hamiltonian is composed of H0 and HT and given by
(5). The state vector is expanded by the basis |n〉.

|Ψ(t)〉 =
M∑

n=1

Cn(t)|n〉 .

The equation of motion of Cn(t) is derived from the Schrödinger equation (3)
as

i
d

dt
Cm(t) =

M∑

n=1

((
1 − t

τ

)
HTmn +

t

τ
δmnεm

)
Cn(t) .

Note that Cn(t) is a complex number. Denoting the real and imaginary parts
of Cn(t) by Cre

n (t) and Cim
n (t) respectively, Cn(t) = Cre

n (t) + iCim
n (t), we

obtain a series of equations for real functions of time.

− d

dt
Cim

m (t) =
M∑

n=1

((
1 − t

τ

)
HTmn +

t

τ
δmnεm

)
Cre

n (t), (32)

d

dt
Cre

m (t) =
M∑

n=1

((
1 − t

τ

)
HTmn +

t

τ
δmnεm

)
Cim

n (t). (33)

By the procedure of the quantum annealing method, the initial condition for
the state vector is specified by the ground state of HT . The series of equations
(32) and (33) is solved numerically using fourth order Runge-Kutta algorithm.

The residual energy is defined by the difference between the energy ex-
pectation value of the final state and the ground eigenenergy of the classical
Hamiltonian.

Eres = 〈Ψ(τ)|H0|Ψ(τ)〉 − Eg

=
M∑

n=1

εn|Cn(τ)|2 − Eg, (34)

where Eg is given by the lowest energy in εn (n = 1, 2, . . . , M). It is not hard
to obtain Eg in the models studied in this section.
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Model

We study two models which stand for optimization problems. The first is
the tight-binding model. We consider a single particle in the one-dimensional
lattice. The particle feels a potential energy at each lattice point. The potential
energies are different at different lattice points. The classical Hamiltonian is
given by

H0 =
M∑

j=1

Vj |j〉〈j| , (35)

where |j〉 denotes the single particle state at site j, and Vj is the potential en-
ergy on the same site. The tunneling Hamiltonian is given by hopping between
nearest neighbor sites. It is written as

HT = −α

M−1∑

j=1

(|j〉〈j + 1| + |j + 1〉〈j|) , (36)

where α indicates the strength of tunneling. The initial state, namely the
ground state of HT , is given by

|Ψ(0)〉 =
M∑

j=1

|j〉 .

The second model is the random Ising model. The classical Hamiltonian
of the random Ising model is written as

H0 = −
∑

<i,j>

JijS
z
i Sz

j − h
∑

i

Sz
i , (37)

where Sz
i is the z-component of the spin operator. The geometry of the system

is assumed to be two-dimensional simple square lattice. The coupling constant
Jij takes the value of +1 or −1. We assume the nearest neighbor interaction.
A longitudinal magnetic field is taken into account to remove trivial degener-
acy of the ground state. The tunneling Hamiltonian in the present system is
brought by the interaction with transverse magnetic field. It is written as

HT = −α
∑

i

Sx
i , (38)

where Sx
i denotes the x-component of the spin operator. α is a parameter

which determines the strength of the transverse field. All spins are aligned
along x-direction in the ground state of HT . This state determines the initial
condition of the state vector. It is expressed by

|Ψ(0)〉 =
⊗

i

[
| ↑〉i + | ↓〉i√

2

]
, (39)

where | ↑〉i and | ↓〉i indicate the eigenstate of Sz
i with eigenvalues 1

2 and − 1
2

respectively.
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Results of Simulations

We first studied the two-site tight-binding model as the simplest case, namely
M = 2 in eqs.(35) and (36). The potential energies on the sites j = 1 and
j = 2 are set as V1 = 1

2 and V2 = 1−δ
2 with δ = 0.05191685. These values

are not essential in the result. Since V2 is smaller than V1, the wave function
initially being the symmetric state between two sites should result in the
localized state at the site 2 after slow quantum annealing. Figure 2(a) shows
the time-evolution of the probability of finding the particle in the site 2,
P2(t) = |〈2|Ψ(t)〉|2, for the annealing time τ = 10000. Because the initial
state is the symmetric state, the probability is equal to 0.5 at t = 0. P2(t)
increases with time and reaches almost unity at t = τ finally. We performed
the simulation for several values of the tunneling strength α. For a fixed t,
P2(t) becomes larger for smaller α. This is because the component of the
tunneling Hamiltonian in the total Hamiltonian becomes smaller and thus
the total Hamiltonian gets closer to the classical Hamiltonian for smaller α.
Figure 2(b) shows the annealing-time dependence of the residual energy. The
residual energy decreases with increasing the annealing time. It is remarkable
that the curve in the figure is almost straight in long τ region. Since the scales
of both axes are logarithmic, the straight line means that the residual energy
decreases by τ−ζ for long τ . By an estimation of the gradient, we obtain
ζ ∼ 2.

We have carried out the simulation for larger systems of tight-binding
model. We show results on the system with twenty sites (M = 20) in Fig. 3.
The potential energies on the sites are randomly generated and shown in
Fig. 3(a). The potential energy on the site 17 is the lowest. Hence the ground
energy is given by V17. The change of the residual energy with annealing time

α=1.0
α=0.8
α=0.6

α=0.4
α=0.2
α=0.1

P
2

 

t/τ

τ = 10000

(a)

τ
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(b)

Fig. 2. Results of simulations for the two-site tight-binding model. The potentials
on the sites are V1 = 1

2
and V2 = 1−δ

2
with a positive δ less than 1. Simulations

are performed for several values of α. Figure (a) shows the time-evolution of the
probability that the particle is found at the site 2. Figure (b) shows the annealing-
time dependence of the residual energy. Both axes in Fig. (b) are in logarithmic
scale
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Fig. 3. Results of simulations for multi-site tight-binding model. We studied the
system composed of twenty sites. Figure (a) shows the potential energy on each
site. These energies are generated randomly between 0 and 1. Figure (b) shows
the annealing-time dependence of the residual energy. A straight line stands for a
function proportional to 1/τ2. Comparing curves of the residual energy with the
straight line, we find the residual energy decreases almost as 1/τ2 for long τ

is shown in Fig. 3(b). Simulations have been performed for several values of α.
Large α lifts energy gap above the instantaneous ground eigenstate of H(t) for
t 
= τ . Since large energy gap is appropriate for the adiabatic evolution, large
α is preferable to quantum annealing. On the other hand, small α makes the
change in H(t) with time slow and slow change is preferable for the adiabatic
evolution. Therefore there is an optimum value in α. In Fig. 3(b), α = 0.6
seems optimum, because the residual energy for α = 0.6 is the lowest in long
τ region. We see that curve is almost straight for long τ , neglecting small
oscillations. A function proportional to 1/τ2 is also plotted in the figure.
Comparing results of simulation with the line of 1/τ2, we find the residual
energy decreases as 1/τ2 for long τ .

We show results on the random Ising model in Fig. 4. Different from tight-
binding model, the random Ising model is a many-body problem. Hence the
hardness of this problem is qualitatively different from previous two problems.
We studied the 3 × 3 two-dimensional simple square lattice. The value of
coupling constant Jij , chosen from +1 and −1, is depicted in Fig. 4(a). Figure
4(b) shows the annealing-time dependence of the residual energy for several
α’s. A line of a function proportional to 1/τ2 is also shown for comparison.
In spite of the qualitative difference in problems, results of simulations on the
random Ising model is quite similar to those on the tight-binding model. First
we see that there is an optimum α which lowers the residual energy. Next, it
is clear that the curve of the residual energy becomes almost straight for long
τ . Therefore the residual energy decreases with the annealing time as 1/τ ζ .
The exponent is estimated at ζ ∼ 2 from the comparison with the straight
line in the same figure.

Results for different models studied here show that the residual energy
decreases with the annealing time as



228 S. Suzuki and M. Okada

J = +1

J = -1

(a)

R
es

id
ua

l E
ne

rg
y

2

(b)

Fig. 4. Results of simulations for the random Ising model. We studied two-
dimensional simple square lattice composed of nine sites. Figure (a) shows the value
of coupling constant Jij . Figure (b) shows the annealing-time dependence of the
residual energy for several strength of transverse field. A function proportional to
1/τ2 is also shown. It is clearly seen that the residual energy behaves as 1/τ2 for
long τ

Eres ∝
1
τ2

(40)

for long τ limit. It is remarkable that this property is independent of the
model. We naturally infer that the power law of the residual energy with
respect to the annealing time is a universal feature in the quantum annealing
method.

3.2 Analytic Considerations

The asymptotic behavior of the solution on the annealing time should be
characterized by the adiabatic theorem in the quantum mechanics for infi-
nite annealing time limit, since the solution by quantum annealing method is
brought by the adiabatic evolution of quantum state. We derive a feature on
residual energy on the ground of the adiabatic theorem.

Let us denote the eigenstate and eigenenergy of the classical Hamiltonian
H0 by |n(1)〉 and εn(1), where n = 0 indicates the ground level, n = 1 the
first excited level, and so on. Moreover, we denote the final state |Ψ(τ)〉 after
the time-evolution by |Ψτ (1)〉. These notations are consistent with those in
Sect. 2.2. Then the residual energy, (34), is represented by

Eres = 〈Ψτ (1)|H0|Ψτ (1)〉 − ε0(1)

=
∑

n≥0

εn(1)
∣∣〈n(1)|Ψτ (1)〉

∣∣2 − ε0(1)
∑

n≥0

∣∣〈n(1)|Ψτ (1)〉
∣∣2

=
∑

n≥1

(εn(1) − ε0(1))
∣∣〈n(1)|Ψτ (1)〉

∣∣2 .

Using the notation in Sect.2.2 (see (16)), we obtain for n 
= 0
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∣∣〈n(1)|Ψτ (1)〉
∣∣2 = 〈0(0)|W †(1)|n(0)〉〈n(0)|W (1)|0(0)〉

= 〈0(0)|F ∗
τ0n(1)|n(0)〉〈n(0)|Fτn0(1)|0(0)〉 ,

where we substituted (15), namely the perturbation formula up to 1/τ , for
W (s). Hence the residual energy is written as

Eres =
∑

n≥1

(εn(1) − ε0(1))
∣∣〈n(0)|Fτn0(1)|0(0)〉

∣∣2 .

Fτn0(1) is of the order of 1/τ for long τ . Then each term in the right hand side
of above equation is of the order of 1/τ2. Since the first excited state makes
the largest contribution to the summation, we may neglect contribution from
higher excited states. Thus it is shown that the residual energy is of the order
of 1/τ2.

Eres ∼ (ε1(1) − ε0(1)) O

(
1
τ2

)
. (41)

We consider varying τ with other parameters fixed. It follows from (41)
that the residual energy decreases by 1/τ2 for long limit of τ , since the term
of 1/τ2 dominates the residual energy. This behavior of the residual energy
is nothing but the result of numerical simulations previously. The power law
of the residual energy for long annealing time is a universal feature which has
the ground in the adiabatic theorem in the quantum mechanics.

3.3 Discussion

It is significant to clarify when the residual energy obeys the power law. Since
the power law originates in the adiabatic theorem in the quantum mechanics,
the condition for the power law corresponds to the criterion for the adiabatic
theorem. We have shown that the criterion for the adiabatic theorem is given
by (22). Therefore the condition for the power law is also given by

τ � τC , τC =
max

[∣∣〈1(s)|dH̃(s)
ds |0(s)〉

∣∣
]

min [ε1(s) − ε0(s)]
2 , (42)

where we denote the time-dependent Hamiltonian H(t) ((5)) by H̃(s) using
normalized time s = t/τ . |n(s)〉 and εn(s) represent the instantaneous eigen-
state and eigenenergy of H(t) = H̃(s). The adiabatic theorem accounts for
the property of the state after a successful adiabatic evolution. Hence the
observed power law implies that the adiabatic evolution results almost in suc-
cess. The characteristic annealing time τC indicates hardness of the adiabatic
evolution or efficiency of the quantum annealing method. A long annealing
time is needed for a long τC .

It is natural to ask how the residual energy is scaled by τ around τ ∼ τC .
The Landau-Zener theory is validated in this region of τ . To see this, we
consider the following time-dependent Hamiltonian.
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HLZ(t) = −
(

1
2
− t

τ

)
hSz − αSx . (43)

We define this Hamiltonian for the time period 0 ≤ t ≤ τ . The Hamiltonian
(43) differs from the general form of the time-dependent Hamiltonian defined
by (5) for quantum annealing. However it is instructive to investigate the
time-evolution of quantum state for this Hamiltonian. The eigenenergies of
HLZ is shown in Fig. 5(a). Since the system represented by the Hamiltonian
(43) consists of a single spin, only two levels specify the system. We denote
the instantaneous eigenenergies of HLZ(t) by ε0(t/τ) and ε1(t/τ).

The Landau-Zener theory is applicable to the Hamiltonian (43). We sup-
pose that the initial state at t = 0 is the ground state of HLZ(0), same as the
quantum annealing method. Applying the Landau-Zener formula, (30) and
(31), the probability of the non-adiabatic transition from the ground state to
the excited state is given by

P1 = exp
[
−2πα2τ

h

]
. (44)

This formula immediately leads to the following expression of the residual
energy.

Eres = ε1(1)P1 + ε0(1)P0 − ε0(1) = (ε1(1) − ε0(1)) P1

= (ε1(1) − ε0(1)) exp
[
−π

2
τ

τC

]
, (45)

τC =
h

4α2
(46)

where P0 denotes the probability of finding the ground state of H(τ) in the
finial state and it satisfies P0 + P1 = 1 due to the conservation of the prob-
ability. τC indicates the characteristic time for the adiabatic evolution of the
present model. The definition by (42) yields the above expression of τC . The
exponential behavior of (45) is in contrast to the power law behavior, (41),
from the adiabatic theorem. In order to see the change between these two char-
acters, we performed a numerical simulation on the time-evolution of quantum
state using the method described in Sect. 3.1. Figure 5(b) shows the result on
residual energy. Dots combined by line are obtained from time-evolution of the
state. The analytic results from the Landau-Zener theory and the adiabatic
theorem, (45) and (41), are also shown for comparison. The residual energy
manifests different features in two regimes governed by the Landau-Zener the-
ory and the adiabatic theorem. Since the present model is well described by
the Landau-Zener theory, the residual energy is well fitted by (45) for around
τ ∼ τC . We note that τC = 25 is given from parameters used for numerical
calculation. On the other hand, the residual energy decreases by 1/τ2 basi-
cally for τ � τC . It is remarkable that the change between two features is
drastic.
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Fig. 5. (a) Instantaneous eigenenergies of the time-dependent Hamiltonian (43), and
(b) residual energy after time-evolution. Parameters in the Hamiltonian is settled
as h = 4 and α = 0.2

We ask ourselves how the residual energy behaves in large-sized problems.
It is expected in large-sized problems that level-cross avoidings take place
sequentially and the characteristic time τC becomes small. Nevertheless, the
adiabatic theorem is validated for τ � τC . Hence the power law should be ob-
served for long τ limit. On the other hand, multiple non-adiabatic transitions
should be taken into account for τ ∼ τC . Santoro et al. have predicted the log-
arithmic behavior, Eres ∼ A/(ln τ)6, on the basis of a cascade of Landau-Zener
non-adiabatic transitions[5]. If this is true, a transition between logarithmic
law and power law may be observed. By now the logarithmic behavior of the
residual energy has not been confirmed numerically. Methods of simulation for
large-sized problems is needed to reveal the behavior of the residual energy
for τ ∼ τC .

4 A method of Simulation for Large-Sized Problems

For an application of the quantum annealing method, numerical simulation
for large-sized problems is indispensable. To implement the simulated quan-
tum annealing, we have to realize the time-evolution of quantum spin states.
Numerical simulations on dynamics of quantum systems involve difficulties
in the capacity of memory in computers, since the quantity of information
needed to represent a quantum state increases exponentially with the size
of the problem. The quantum Monte-Carlo method provides a possibility of
simulating dynamical processes of a quantum system. In the quantum Monte-
Carlo method, a D-dimensional quantum system in a finite temperature is
mapped into a classical system of (D + 1)-dimension. The Markovian Monte-
Carlo process is substituted for the dynamical process of the classical system.
Therefore the dynamics produced in the quantum Monte-Carlo method is dif-
ferent from the real-time dynamics in the quantum mechanics. Nevertheless
the quantum Monte-Carlo method sometimes succeeds in obtaining a good
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solution. We however propose in this article another method of simulation
using the density matrix renormalization group (DMRG) technique. DMRG
method has been developed recently for use in simulating the real-time dy-
namics of quantum system at zero temperature[25]. The use of DMRG enables
us to carry out quantum annealing by real-time evolution for large systems.
We explain the method in next subsection and present some results of simula-
tions after that. The applicability of DMRG for models including long-range
interaction is discussed at last.

4.1 Real-Time Evolution by Means of DMRG

We consider the time-evolution of a quantum state |Ψ(t)〉. We denote the
Hamiltonian of the system by H(t). We assume that the Hamiltonian varies
with time. The time-evolution of the state is governed by the Schrödinger
equation. In particular, an evolution during a short time ∆t is written using
the time-evolution operator e−iH(t)∆t as

|Ψ(t + ∆t)〉 ∼= e−iH(t)∆t|Ψ(t)〉 .

If we consider a time period from t = 0 to t = τ , the final state is given by

|Ψ(τ)〉 ∼= e−iH((Nt−1)∆t)∆t · · · e−iH(∆t)∆te−iH(0)∆t|Ψ(0)〉, (47)

where the Trotter number Nt satisfies Nt∆t = τ . Subsequently we are con-
cerned with a single time-evolution operator.

We assume a spin system whose Hamiltonian consists of pair interactions
in addition to on-site spin-field interactions. The total time-dependent Hamil-
tonian is divided into pair Hamiltonians.

H(t) = H1(t) + H2(t) + · · · .

We suppose here that Hj(t) contains only one pair interaction term and spin-
field terms. Denoting the number of pairs by M , the total Hamiltonian is
expressed by M pair Hamiltonians. The time-evolution operator is decom-
posed symmetrically into products of time-evolution operators with respect
to pair Hamiltonians[26].

e−iH(t)∆t ∼= (48)

e−iH1(t)
∆t
2 · · · e−iHM−1(t)

∆t
2 e−iHM (t)∆te−iHM−1(t)

∆t
2 · · · e−iH1(t)

∆t
2 .

We consider the one-dimensional lattice with nearest neighbor interaction
for simplicity. We pay attention to a site j and j + 1. In DMRG method, the
one-dimensional lattice is divided into four blocks. Two blocks consist of single
site, j or j + 1. The other two blocks, named left and right blocks, contain
remaining spins. The state vector is represented using bases of four blocks by

|φ〉 =
∑

a,b,k,l

φa,b,k,l|a〉L|k〉j |l〉j+1|b〉R ,
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where |a〉L and |b〉R are the basis of left and right blocks, while |k〉j and |l〉j+1

are the basis of the j and j + 1 sites respectively. We suppose that e−iHj(t)∆t

contains the spin operators of site j and j + 1. Denoting the matrix element
of e−iHj(t)∆t by

[
e−iHj(t)∆t

]
kl;k′l′

, we obtain

e−iHj(t)∆t|φ〉 =
∑

a,b,k,l

φ̃a,b,k,l|a〉L|k〉j |l〉j+1|b〉R ,

where
φ̃a,b,k,l =

∑

k′,l′

[
e−iHj(t)∆t

]

kl;k′l′
φa,b,k′,l′ .

We define the density matrix by

ρak;a′k′ =
∑

b,l

φ̃a,b,k,lφ̃
∗
a′,b,k′,l .

The density matrix is diagonalized as follow.

ρak;a′k′ =
∑

λ

uak,λdλ(u†)λ,a′k′ ,

where uak,λ is a unitary matrix and dλ is the eigenvalue of the density matrix.
The basis of the left block and the site j is represented by the eigenstate of
the density matrix.

|a〉L|k〉j =
∑

a′

(u†)a′,ak|a′〉 .

We employ |a〉 = |a〉L′ as the basis of the new left block composed of the old
left block and the site j. The right block is divided into one spin of the left
side and new right block. Then the basis of old right block is written using
new bases as

|b〉R =
∑

l,b′

vb,lb′ |l〉j+2|b′〉R′ ,

where vb,lb′ is a unitary matrix which diagonalizes the density matrix with
respect to the site (j + 2) and the right block R′. vb,lb′ is supposed to have
been obtained in the previous left-ward sweep. We remark that the number of
spins in |b′〉R′ in the right hand side is less than that in |b〉R in the left hand
side by one. Using the new bases, |a〉L′ , |k〉j+1, |l〉j+2, and |b〉R′ , we express
the state vector as

∑

a,b,k,l

φ̃a,b,k,l|a〉L|k〉j |l〉j+1|b〉R

=
∑

a,b,k,l

φ̃a,b,k,l

∑

a′,b′,l′

(u†)a′,akvb,l′b′ |a′〉L′ |l〉j+1|l′〉j+2|b′〉R′

=
∑

a,b,k,l

φ′
a,b,k,l|a〉L′ |k〉j+1|l〉j+2|b〉R′ ,
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φ′
a,b,k,l =

∑

a′,b′,k′

φ̃a′,b′,k′,k(u†)a,a′k′vb′,lb .

The norm of the state vector is written in terms of the eigenvalue of the
density matrix. ∑

a,b,k,l

φa,b,k,lφ
∗
a,b,k,l =

∑

a

da .

The eigenvalue da is a positive number. If da is negligibly small, the norm of
the state vector is not affected by the absence of the state |a〉L′ . The procedure
of density matrix renormalization is to remove bases with small eigenvalue so
as to preserve the norm[27]. As far as the number of dominant eigenvalues is
kept small, it is allowed to keep the number of bases to a certain small number.
Thus we transform the basis and move to next operation of e−Hj+1(t)∆t. The
operation of one time-evolution operator (48) is accomplished by the right-
ward sweep followed by the left-ward sweep.

4.2 Results of Simulation

For a pilot study of quantum annealing using DMRG, we consider the one-
dimensional random Ising model with periodic boundary condition. The clas-
sical Hamiltonian is given by

H0 = −
N−1∑

j=1

Jjj+1S
z
j Sz

j+1 − JN1S
z
NSz

1 − h
N∑

j=1

Sz
j .

The coupling constant Jjj+1 is randomly generated. The spin on the site
N interacts with the spin on the site 1. We decide the sign of the coupling
constant JN1 so as to induce a frustration into the system. If the magnetic
field is absent, namely h = 0, the ground states are degenerated. Their spin
configurations are determined by the sign of the coupling constant, except
that the pair with the weakest coupling constant is devoted to unfavorable
configuration. However, in the presence of the magnetic field, the state which
lowers the interaction energy the most can raise the potential energy due to
the magnetic field. To search the ground state which is favorable to both
interaction and potential energies is a non-trivial problem.

The time-dependent Hamiltonian for quantum annealing is given by

H(t) =
(

1 − t

τ

)
(−α)

N∑

j=1

Sx
j +

t

τ
H0 . (49)

We performed numerical simulation of quantum annealing using DMRG for
several sizes. We have confirmed that the solution obtained after quantum
annealing using DMRG converges to the exact solution for systems with spins
less than N = 32. The DMRG method for real-time evolution involves two
parameters. The one is the width of time step ∆t. The final state expressed by
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Eres=A/τ2(b)

Fig. 6. Results of simulated quantum annealing using DMRG for one-dimensional
random Ising model with periodic boundary condition. The width of time slice and
the number of bases kept in density matrix renormalization are settled as ∆t = 0.2
and m = 22. The longitudinal and transverse fields are set to h = 0.1 and α = 1
respectively. Figure (a) shows the expectation value of spin at each site for annealing
time τ = 30, 300, and 3000. Figure (b) shows the residual energy vs annealing time

(47) contains an error of the order of Nt
dH(t)

dt ∆t2 ∼ ∆t for the time-dependent
Hamiltonian given by (49). Although we have tested several ∆t’s from 0.2 to
0.05, even ∆t = 0.2 seems to produce accurate results. The other parameter
is the number of bases kept by the density matrix renormalization. For the
model studied here, if we keep m = 22 bases, the 23rd eigenvalue of the
density matrix is about 10−15. Hence it is expected that the m = 22 bases
are sufficient for precise calculations. Indeed, we have observed no meaningful
difference in results for m = 16, 22, and 40.

Figures 6 shows results of simulated quantum annealing using DMRG. The
system with N = 80 spins was studied. We gave parameters for DMRG as
∆t = 0.2 and m = 22. The longitudinal and transverse field was settled as
h = 0.1 and α = 1.0 respectively. Figure 6(a) shows the expectation value of
each spin in the final state for annealing time τ = 30, 300, and 3000. It is
clear that the spin state approaches a unique classical state from a quantum
superposition of classical states with increasing τ . For this system with 80
spins, the exact ground state is not available by means of the examination of
all configurations. However it is reasonable to think the asymptotic classical
state obtained by quantum annealing to be the true solution. Figure 6(b)
shows the annealing time dependence of the residual energy. We substituted
the energy of the asymptotic classical state obtained by quantum annealing for
the true ground energy. The residual energy decreases as 1/τ2 for long τ . We
emphasize that the system size is much larger than those studied in previous
section. This result strongly supports the result in the previous section that
the residual energy for long τ obeys the power law. However the result is
insufficient to clarify the scaling behavior of residual energy for τ ∼ 100.
Further study is needed to reveal the feature in the Landau-Zener regime.
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4.3 Comments

It has been known that the DMRG method is not usually appropriate for
study of models including long-range interactions. Systems in high-dimension
or those with periodic boundary condition are reduced to one-dimensional
models including long-range interactions. The cause of failure in DMRG cal-
culation comes from the existence of exchange interactions. The DMRG yields
correct results for models with small or no exchange interaction even if long-
range interactions are present. Now we consider the time-dependent Hamil-
tonian given by (5). Typically, the classical Hamiltonian is expressed by Ising
spin operators, while the tunneling Hamiltonian is given by on-site poten-
tials due to transverse fields. Fortunately the total Hamiltonian contains no
exchange interaction. Hence it is probable that the quantum annealing using
DMRG succeeds in producing a correct result even for models with long-range
interactions. Furthermore we have applied this method to one-dimensional
model with periodic boundary condition and obtained correct results. Success
for a model with periodic boundary is one of the evidences which indicate
simulated quantum annealing with DMRG is applicable to models with long-
range interactions. Thus we expect that the use of DMRG creates possible
new algorithm to hard combinatorial optimization problems.

5 Conclusion

The quantum annealing method provides a new quantum algorithm for com-
binatorial optimization problems represented by random Ising models. The
problem is to obtain the ground state of a random Ising model, and the solu-
tion is given by a certain classical spin configuration. The quantum annealing
method extracts a classical state from a quantum superposition of classi-
cal states. The process of quantum annealing is realized in principle by the
real-time adiabatic evolution from the quantum ground state to the classical
ground state. We reviewed theories on the adiabatic evolution in quantum
mechanics.

Since the quantum annealing method is a fresh algorithm, properties on
this method has not been revealed sufficiently. The residual energy is known
as an important quantity which tells the efficiency of the method used. We
investigated the annealing-time dependence of the residual energy, and ob-
tained that the residual energy decreases as square inverse of the annealing
time τ ,

EQA
res ∼ A

τ2
,

for long annealing-time limit. This result is in contrast to the logarithmic
behavior, (2), in thermal annealing. Therefore the convergence of the solution
to the exact one by the quantum annealing is qualitatively faster than that
by the thermal annealing.
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Special methods are required for simulation of quantum annealing in con-
ventional computers. Direct simulations are limited to small-sized problems
because of exponential increases in the number of bases. The quantum Monte-
Carlo method has been applied to quantum annealing. Although it utilizes
Markovian Monte-Carlo process instead of real-time evolution, it sometimes
succeeds in obtaining the ground state. However there is no guarantee on
the adiabatic evolution in the Monte-Carlo process, and moreover quantum
Monte-Carlo method involves small thermal fluctuations. As a new method of
simulation which overcomes problems in quantum Monte-Carlo technique, we
proposed use of the density matrix renormalization group (DMRG) method
for quantum annealing. Results of simulation on one-dimensional random Ising
model with periodic boundary condition show success of quantum annealing,
though DMRG is known to be inappropriate to periodic systems. The success-
ful performance for periodic systems in addition to the absence of exchange
interactions in the model intended for quantum annealing suggest applica-
bility of DMRG to models including long-range interactions. We expect the
simulated quantum annealing using DMRG provides a powerful method for
optimization problems.
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1 Introduction

Thermal annealing [1] is known to be a very general and useful method for ob-
taining approximate solutions of multi-variable optimization problems. Such
a problem consists of the minimization of a multi-variable function (cost-
function) with respect to its variables (sometimes obeying a given set of con-
straints). The cost-function landscape are often very rugged, consisting of local
minima surrounded by high cost-barriers. In such cases optimization using it-
erative minimization heuristics can fail miserably by getting trapped into an
arbitrarily shallow minimum. In thermal annealing a fictitious thermal fluc-
tuation is introduced into the minimization dynamics to generate possibility
of going uphill. This enables the system to get out of the shallow traps and
explore the landscape more widely to find out a reasonably deep minimum
for settling down. The thermal fluctuation is eventually, but slowly, reduced
to zero and one ends up, to a good approximation, with a globally optimized
solution.

Quantum annealing is essentially a similar method, where the fluctuations
employed for the annealing are quantum (rather than thermal) in nature [2,
3]. In this method one maps the multi-variable cost function to a (classical)
Hamiltonian H, and the independent variables, to the degrees of freedom
(involved in H). One can represent H by a hermitian matrix; the eigenstates of
H (basis states) will represent different classical configurations (different sets
of values of the independent variables) and the eigenvalues corrosponding to
them, the values of the cost function for respective configurations. As such, all
the terms (corrosponding to interactions between different degrees of freedom)
in H are mutually commuting since the degrees of freedom are all classical.
Quantum fluctuation is introduced by adding to the Hamiltonian, a suitable
kinetic term H′(t) that does not commute with H. This non-commuting term
H′(t) introduces tunnelling probabilities between the eigenstates of H. The

A. Das and B.K. Chakrabarti: Quantum Annealing of a Spin Glass and a Kinetically Con-
strained System, Lect. Notes Phys. 679, 239–257 (2005)
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ground state of the total Hamiltonian (H′(t)+H) is thus a superposition of the
eigenstates of H. The introduction of such a quantum tunnelling is supposed
to make the energy barriers in the landscape transparent to the system. This
allows transitions between different configurations classically trapped between
even infinite barriers, if the barriers are narrow enough. In other words, it is
expected that application of a quantum tunnelling term will make the free
energy landscape completely ergodic, i.e., the system will consequently be
able to visit any configuration with finite probability [4]. Finally, of course,
the quantum tunnelling term is to be tuned to zero following some annealing
schedule to get back the classical Hamiltonian.

According to adiabatic theorem of quantum mechanics, in such a quantum
mechanical evolution, if the initial state of the sytem is the ground state of
the total Hamiltonian, then for a slow enough annealing schedule, the system
will continue to be in the ground state of the evolving Hamiltonian, and in
the limit t → ∞, the system will be found in the ground state of H (which
is the solution to the optimization problem). Thus in principle, a sufficiently
slow adiabtic evolution for any H, can always end up with the solution of
the corrosponding classical problem, no matter how hard it may be. But
if the problem is NP-hard, then whether such an adiabatic evolution can
actually solve the problem in polynomeal time (i.e., the evolution time that
guarantees the attainment of the ground state, is bounded by some polynomeal
in the system size N) is still an open question. Some positive indications in
this direction have been found from the study of time-dependent Schrödinger
Equation for small systems [5, 6]. However, the cpu time for following exact
Schrödinger evolution in a classical computer is clearly much greater than
that required for solving the original (classical) problem itself, since at the
early stage of the annealing when the non-commuting term H′ is very high,
the ground state of the system will be a superposition, where all the basis
states (classical configurations) contribute substancially. Hence at each step
of evolution one has to evaluate all possible classical configurations at this
stage of annealing.

One can in any case, use quantum Monte Carlo methods to simulate such
quantum evolutions in order to anneal systems representing hard optimization
problems. Such Monte Carlo quantum annealing methods at finite tempera-
ture have been reported to work much better than thermal annealing in some
cases[7]. It has been argued that when the barriers are very high but narrow
enough, quantum annealing would be the better choice, since the probability
of quantum tunnelling across a barrier increases with the decrease of barrier
width, while the thermal transition probability in such a case has no such
dependence on barrier width [4]. This is however, not the case in general [8].
Actually, quantum and thermal fluctuations are inherently different in nature
(as reflected in the functional forms of the transition probabilities in respective
cases), giving rise to non-trivial differences in their effectiveness in perform-
ing annealing. In fact, unlike the classical glasses below glass transition point,
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quantum spin glasses (transverse Ising spin glasses in particular) may remain
ergodic even in the glass phase (for low enough tunnelling fields [4, 10, 9]).

In this article we discuss quantum annealing of two different kinds of glassy
systems, namely a ±J infinite range Ising spin glass and a kinetically con-
strained system in one dimension, using zero temperature quantum Monte
Carlo methods.

2 Quantum Annealing of ±J Ising Spin Glass
at Infinite Dimension

In this section we discuss the annealing (relaxation) behaviour of a ±J infinite
range Ising system at zero temperature. The Monte Carlo method used here,
samples the ground state of a given quntum Hamiltonian for a given set of
values of its parameters (tunnelling field, etc). We start with a high value
of the quantum tunnelling term and decrease it to zero very slowly during
the simulation. Thus the Monte Carlo method effectively simulates the zero
temperature adiabatic evolution of the system (so far ground state expectation
values are concerned). Here our aim is to study the nature of such evolution in
the system during annealing (rather than formulating an efficient algorithm
for finding the ground state of the system).

2.1 Model

Let us consider an infinite range Ising spin system whose Hamiltonian is

H = −
N∑

i,j(>i)

Jijσ
z
i σz

j ,

where σz
i is the z-component of Pauli spin, representing a classical Ising spin

at site i and Jij ’s are random variables taking up values either +1 or −1 with
equal probabilities. The above Hamiltonian describes a cluster of N Ising
spins, each connected to all others through exchange interactions of equal
strength (J = 1) but random signs. Clearly, the eigenstates of H (the basis
states) are the direct-products of the eigenstates of σz

i ’s. Each basis state
represents a distinct spin configuration of the system.

For such a system, finding the ground state spin configuration for any
arbitrary given realization of interactions (the set of Jij ’s), is known to be an
NP-hard problem [11]. In thermodynamic limit the system becomes a non-
ergodic spin glass below some spin glass temperature TG. To perform zero
temperature quantum annealing of this ±J Ising system, we need to introduce
quantum fluctuations into the system. This is done by adding a transverse
field term H′ = Ω(t)

∑N
i=1 σx

i where σx
i ’s are x-components of Pauli spins

which introduces probability of tunnelling between the basis states (classical
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configurations), and Ω(t) is the strength of the transverse field. The total
Hamiltonian is thus given by

Htot = H + H′(t) = −
N∑

i,j(>i)

Jijσ
z
i σz

j − Ω(t)
N∑

i=1

σx
i . (1)

We start with a high enough value of Ω initially (at t = 0) and sample
the ground state of Htot using a zero temperature quantum Monte Carlo
algorithm (discussed below). During sampling, we reduce the strength Ω(t) of
the transverse field very slowly following a linear annealing schedule. At the
end of the simulation Ω(t) becomes zero, and we are left with the classical
Hamiltonian H. The simulated system is finally found to be in an optimized
eigenstate of H, occationally mixed (in a very small percentage) with few
other energetically close basis states.

2.2 The Zero Temperature Quantum Monte Carlo Method Used

To simulate the ground state of Htot, we use a zero-temperature quantum
Monte Carlo technique [12]. In this method one makes a linear transformation
of the form

T = CI −Htot , (2)

where C is a suitable real constant and I is the identity operator, such that
the matrix representation of T in the eigen-basis of H is non-negative and
irreducible (if such a transformation could not be done for an Htot, then this
method would not be applicable for it). One can then consider T to be the
transfer-matrix of a uniform chain (with Periodic Boundary Condition (PBC))
of classical plackets, where each placket is nothing but a classical cluster of N
mutually interacting Ising spins represented by H.

Now the key point is that one can simulate the chain of classical plackets
using the elements of its transfer-matrix T and in this simulation the equi-
librium average of any observable (say, energy) related to a single placket is
approximately equal to the expectation value of the observable over the dom-
inant eigenstate of T . The dominant eigenstate of T in turn, is the ground
state of Htot (due to the form of the linear transformation between them).
Thus we actually simulate the ground state properties of Htot by simulating
the chain. In the next section we establish the scheme in details.

Simulation of a Chain of Classical Plackets Using Transfer-Matrix

In this subsection we demonstrate that the equilibrium averages for a single
member of a uniform classical chain (with PBC) is approximately equal to the
respective averages (expectation values) over the dominant eigenstate of the
transfer-matrix of the chain. Let us consider a uniform chain of L identical
classical spin clusters (or may be any localized discrete degrees of freedom in
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µ1

µ

µL

µL+1

2 f(µλ, µλ+1)

µλ

µλ+1

Fig. 1. The figure shows the uniform chain of plackets (with periodic boundary
condition) used to simulate the ground state of Htot (1). A placket (solid circle) in
the chain is basically the cluster of N Ising spins with a given realization of Jij ’s,
represented by H in (1). The interactions f(µλ, µλ+1) between any two nearest-
neighbour-plackets are determined by the relation Tµλµλ+1 = e−βf(µλ,µλ+1), where
T is obtained from Htot by the linear transformation (8). If the dimension of each
placket is d, then the dimension of the resulting chain is d + 1

general) µi’s, as shown in Fig. 1. Each of the µi’s can be in, say, p different
states. One may note here, that if each placket µ is a spin cluster embedded
in dimension d, then the chain is actually a d + 1-dimensional object. Since
the chain is uniform, its Hamiltonian will be of the form

Hd+1 =
L∑

λ=1

f(µλ, µλ+1) ,

where f(µλ, µλ+1) is a p× p matrix whose elements are the possible contribu-
tions to the Hamiltonian from a pair of neighbouring spins, as each of them
takes up p different values independently. The partition function of the chain
is thus given by

Z =
p∑

µ1=1

· · ·
p∑

µL=1

exp

[
−β

L∑

λ=1

f(µλ, µλ+1)

]

=
p∑

µ1=1

· · ·
p∑

µL=1

e−βf(µ1,µ2) × e−βf(µ2,µ3) × · · · × e−βf(µL,µ1)

=
p∑

µ1=1

· · ·
p∑

µL=1

Tµ1µ2 × Tµ2µ3 × · · · × TµLµ1 ,

where Tµλµλ+1 = e−βf(µλ,µλ+1), β being the temperature inverse. Again, since
each of µλ and µλ+1 can take up p independent values (i.e., can be in p
independent states), Tµλµλ+1 defines a p × p matrix T . Hence summing over
all the indices from µ2 to µL and recalling the rule of matrix multiplication
one gets
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Z =
p∑

µ1=1

(T L)µ1µ1 = Trace(T L) .

The matrix T is a transfer-matrix for the chain. If the matrix T is symmetric
then (it is not the necessary but the sufficient condition) one can write

Z =
p∑

r=1

(θr)L ,

where θr are the eigenvalues of T ordered by the index r, so that |θi| ≥ |θj | if
i < j. Here a few points are to be noted. Since all the elements of T are strictly
positive at any finite β, the matrix T is both non-negative and primitive (i.e.,
there exists some finite n, such that T n is strictly positive). Then according
to Perron-Frobenius theorem (see [13]) the dominant eigenvalue θ1 is strictly
positive and non-degenerate. Thus

Z = (θ1)L +
p∑

r=2

(
θr

θ1

)L

≈ (θ1)L

Here, the leading order error is (θ2/θ1)L and since θ1 is non-degenerate,

lim
L→∞

(
θi

θ1

)L

= 0 (3)

for any i 
= 1.
Now, to see how one can simulate the chain using T , one has to note that

the probability that the chain be in a given state A, in which µ1 = µ1(A), µ2 =
µ2(A) · · · etc, is

P (A) =
(
e−βf [µ1(A),µ2(A)] × · · · × e−βf [µL(A),µ1(A)]

)
/Z

=
(
Tµ1(A)µ2(A) × · · · × TµL(A)µ1(A)

)
/Z (4)

Thus using the conditions of detailed balance, one obtains transition proba-
bility from a state A to another state B given by

P (A → B) =
Tµ1(B)µ2(B) × · · · × TµL(B)µ1(B)

Tµ1(A)µ2(A) × · · · × TµL(A)µ1(A)
. (5)

Thus if T is given, we can simulate the equilibrium properties (thermal aver-
age) of any physical quantity related to a placket µ in the chain. To obtain
that, we require to know the probabilites for the placket µ to be in its dif-
ferent possible states when the chain is in equilibrium. Let P (µ = k) denotes
the probability that the placket is found in its k-th state when the chain is
at thermal equilibrium (at a given β). If the k-th state is represented by a
column vector |k〉, then these column vectors satisfy the matrix relation
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〈i|T |j〉 = Tij ,

where 〈i| is the transpose of |i〉 and the sequence of matrices implies the proper
multiplications between them.

On the other hand, if |E1〉 be the dominant (normalized) eigenvector of T
corrosponding to the dominant eigenvalue θ1, and if T is hermitian then one
can expand |E1〉 linearly in terms of the basis vectors as

|E1〉 =
p∑

k=1

γk
1 |k〉 , (6)

where γ1
k is the amplitude of the basis state |k〉 in |E1〉. Thus in the sampling

of |E1〉 using the basis states |k〉’s, the probability of occurance of the state
|k〉 will be |γ1

k|2. Now, one can show that

P (µ = k) = |γ1
k|2 + O

[
(θ2/θ1)L

]
. (7)

The above equation says that one can sample the dominant eigenstate |E1〉
of the matrix T just by sampling its basis states (classical configurations of
a placket in the chain) according to the probability of their occurance in the
simulation of the placket at equilibrium in the chain (using the elements of T
itself, as prescribed in (5)).

To prove equation (7), we take any placket in the chain and call it µ1.
Probability that µ1 is found in the state |k〉 is

P (µ1 = k) =
1
Z

[
∑

µ2

∑

µ3

· · ·
∑

µL

Tµ1µ2Tµ2µ3 · · · TµLµ1

]

µ1=k

=
1
Z

(T )L
kk =

〈k|(T )L|k〉
trace{(T )L} . (8)

Above, we have summed up the probabilities of all the configurations of the
chain, in which µ1 = k. Now let |θi〉 (i = 1, 2, · · · p) denote the normalized
eigenvector of T corrosponding to the eigenvalue θi. Then one may have a
linear transformation between |θi〉’s and |k〉 of the form

|θi〉 =
∑

k

γi
k|µk〉

and the reverse transformation

|k〉 =
∑

i

(γ†)k
i |θi〉 =

∑

i

γi∗
k |θi〉 ,

γ being an unitary matrix. Hence

T L|k〉 =
∑

i

γi∗
k θL

i |θi〉

=> 〈k|T L|k〉 =
∑

i

|γi
k|2θL

i ,
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using ortho-normality of |θi〉’s. Thus, from equation (8) we get

P (µ1 = k)

=
〈k|T L|k〉

trace{T L}

=
∑

i |γi
k|2θL

i∑
i θL

i

=
∑

i |γi
k|2(θi/θ1)L

1 +
∑

i�=1(θi/θ1)L

≈ |γ1
k|2 + O[(θ2/θ1)L] ,

which proves equation (7).
Thus one can in fact simulate the dominant eigenstate of any given suitable

(hermitian, non-negative and primitive) N × N matrix upto a good approxi-
mation using the above results. One has to define a uniform chain (with PBC)
of classical plackets, each having N possible configurations. The i-th state of
a placket corrosponds to the i-th vector of the basis in which the given matrix
is represented. One then views the given matrix as the transfer-matrix for a
placket in the chain, and simulate the chain using its elements (as prescribed
in (5)). At equilibrium, the probability of getting a placket in its i-th state
is equal to the modulus square of the weight of the i-th basis vector in the
representation of the dominant eigenstate of the given matrix (upto an error
of the form discussed above).

Implementation of the Monte Carlo

We now illustrate the implementation of the above Monte Carlo scheme by
employing it to simulate the ground state of Htot given in (1). Here basis
vectors |k〉’s are the eigenvectors of H, and a classical placket is the cluster
of N Ising spins with exchange interaction described by H. Now we make a
linear transformation of the form given in (2), with C = N(N − 1)/2. The
resulting T matrix is clearly non-negative (since none of its diagonal element
are all smaller than N(N−1)/2 and off-diagonal elements are either 0 or Ω(t),
which we always take to be positive.). Since Htot connects a basis state to all
other basis states that can be obtained by a single spin flip from it, there
is no closed subspace for Htot. Thus T is also irreducible. It can be shown
that for a non-negative irreducible matrix, all the results of Perron-Frobenius
theorem we have used here, holds good [13]. Besides, T is of course hermitian.
Hence we can take T as a transfer-matrix for the chain. It corrosponds to
some interaction f(µλ, µλ+1) between two neighbouring (µλ and µλ+1) and
some inverse temperature β (not explicitly important here), given by

T (µλ, µλ+1) = e−βf(µλ,µλ+1) .
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To simulate the ground state of Htot at a given Ω for a particular real-
ization of Jij ’s, we construct a uniform chain of L plackets with PBC. Each
placket is a cluster of N classical Ising spins (described by cooperative term of
Htot) connected through the given particular realization of Jij ’s (see 1). We
start with an arbitrary spin configuration (same for all plackets) and a given
value of Ω. In one Monte Carlo step we randomly visit L plackets. At each
such visit we make an allowed move (a move whose probability is not trivially
zero), such that the chain goes from a state A, say, to a new state, say B. The
probability of acceptance of the move is nothing but the transition probablity
P (A → B) calculated following (5) (using the elements of T ). While sampling,
one can easily avoid moves whose probabilities are trivially zero (due to the
sparsity of the matrix T ) by constructing a more restricted Markov process
to do the sampling [12].

For doing quantum annealing of the same system, we start with a high
enough value of Ω and reduce it very slowly with time t (Monte Carlo step)
following a linear schedule. During visiting different plackets in a given Monte
Carlo step, Ω is however held fixed. The linear schedule is specified by Ω(t =
0) = Ωin and The total number of Monte Carlo steps executed; Ωin is linearly
reduced to zero with t within 95% of the total Monte Carlo steps.

2.3 Results and Discussions

We have studied the relaxation behaviour of several random Jij samples with
N = 30 for linear annealing schedule (we start with an initial transverse
field Ωin and reduce it linearly with Monte Carlo step, so that it becomes
zero before last few, 5%, steps. We observe that for an annealing of ∼ 107

Monte Carlo steps, the system reaches the true ground state (determined by
an extensive search method) in almost every case, for a suitably large initial
transverse field Ωin. We calculate the average exchange energy of the chain
(over L plackets) in each Monte Carlo step, and average that over a few ∼ 500
Monte Carlo steps. The exchange energy (as given by H of (1)) is not linear
in N and we have to scale it by a factor N3/2 to obtain the intensive energy
density. In thermodynamic limit, this intensive energy density approaches the
value −0.7633[11] (our finite size results shows some fluctuations about that).
In Fig. 2 the relaxation behaviour of three typical random realizations (R1, R2
and R3) during their annealing are shown. We found that for doing annealing
of a given sample within a given number of steps, there is a suitable range of
Ωin. If Ωin falls below the range, then the transition probabilities are too low
to be able to anneal the system within the given time. On the other hand, if
Ωin is above the range, then the rate of change of Ω(t) is not slow enough to
ensure the convergence to the ground state finally (i.e., the evolution in no
more adiabatic). In Fig. 2, the values of respective Ωin’s belong to the lower
end of the respective ranges. The ranges are generally wide enough, and one
can find a Ωin within the range, just by a few trials.
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Fig. 2. In the figure, annealing behaviour of three different randomly generated
realizations (R1, R2 and R3) of Jij ’s are shown for N = 30. In Each case the system
goes to the exact ground state (shown by respective horizontal lines) at the end of
the annealing. In each case the annealing time is 107 Monte Carlo steps, number
of plackets in the chain is L = 600, and each Monte Carlo step consists of visiting
L plackets randomly and making a random spin-flip trial there. In each case, the
initial transverse field (Ωin) has been reduced to zero following a linear schedule,
within the Monte Carlo steps. The initial transverse field Ωin is chosen to be just
sufficient for reaching the ground state finally, within the given Monte Carlo steps

The relaxation behaviour is found to be typically “linear” in the sense that
the long-time averages decrease linearly with time (see lower part of Fig. 3).
The relaxation observed in shorter time scale of course shows fluctuations
around that linear behaviour (shown in the upper part of Fig. 3). This linear
nature of relaxation is typically seen independent of the details of the par-
ticular realizations. The slope of the linear fit of course depends on the the
annealing time, Ωin, and also on the system size, (not discussed here).

3 Quantum Annealing
in a Kinetically Constrained System

Here we demonstrate the effectiveness of quantum annealing in the context
of a certain generalized Kinetically Constrained Systems (KCS) [14]. KCS’s
are simple model systems having trivial ground state structures and static
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Fig. 3. In this figure the annealing relaxation (N = 30, L = 600 and Ωin = 7.5) for
a particular realization is shown. The upper frame shows the relaxation of intensive
energy density with time, when averaged over small (∼500) Monte Carlo steps. The
lower frame shows the same relaxation, when the averaging is done over a much
larger number of (∼104) Monte Carlo steps. A linear χ2-fit for the longer time
average is shown in the lower part of the figure

properties, but a complex relaxation behaviour due to some explicit con-
straints introduced in the dynamics of the system [14]. These systems are
very important in understanding how much of the slow and complex relax-
ation behaviour of a glass can be attributed to its constrained dynamics alone,
leaving aside any complexity of its energy landscape structure. In KCS’s one
can view the constraints to be represented by infinitely high energy barri-
ers appearing dynamically. To study annealing, we generalize such models by
allowing the height of such kinetically occurring barriers to be finite but large.

Here we study quantum annealing in the context of a kinetically con-
strained system, which can be represented by a generalized version of East
model [15] (a one dimensional KCS). We also compare the results with that
of thermal annealing done in the same system. The original East model is ba-
sically a one-dimensional chain of non-interacting classical Ising (‘up-down’)
spins in a longitudinal field h, say, in downward direction. The ground state
of such a system is trivially given by all spins down. A kinetic constraint is
introduced in the model by putting the restriction that the i-th spin cannot
flip if the (i−1)-th spin is down. Such a kinetic constraint essentially changes
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the topology of the configuration space, since the shortest path between any
two configurations differing by one or more forbidden flips, is increased in a
complicated manner owing to the blockage of the ‘straight’ path consisting
of direct flips of the dissimilar spins. Further, the constraint becomes more
limiting as more spins turn down, as happens in the late approach to equilib-
rium. As a result, the relaxation processes have to follow more complex and
lengthier paths, giving rise to exponentially large timescale (∼ e1/T 2

, where
T is the temperature) [15].

3.1 Model

Our model [16] is a chain of asymmetric double-wells (each with infinite
boundary walls), with a particle localized within each of them. The asym-
metry is due to an energy difference of 2h between the two wells of a double
well. The particle in one of the two (asymmetric) well can change its location
to the other well stochastically, either due to the thermal fluctuation or due to
quantum fluctuation present in the system. The generalized kinetic constraint
is introduced by assuming that if the particle in the (i− 1)-th double-well re-
sides in the lower one of the two wells, then there appears a barrier of height
χ and width a between the two wells of the i-th double-well. In such a situ-
ation the particle in the i-th double-well has to cross the barrier in order to
change its location from one well to the other (Fig. 4(b)). On the other hand,
if the particle of the (i − 1)-th is in its upper well, there is no such barrier
to cross for (Fig. 4(a)). Following the approximate mapping done in case of
symmetric double-well [10], this model can be approximately represented by

2h 2h

a

Γ Γ Γ Γ

χ

(a) (b)

a

a

a

a

Fig. 4. Potential energy wells for the spin at site i, when (i − 1)-th spin is (a)
up and (b) down, with the external field h in the downward direction and barrier
height χ very large and the width a small. For the classical generalized East model,
flipping across the barrier in (b) is a thermal jump (at any finite T ). In the quantum
model considered here, probability for crossing the barrier in (b) is due to quantum
tunnelling through it at a finite Γ
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a generalized version of East model, where each Ising spin is in a local longi-
tudinal field h in downward direction. The spin at the i-th site sees a barrier
of height χ and width a between its two energy states when the (i−1)-th spin
is down (Fig. 4(b)), where as no such barrier occurs for the i-th spin when
the (i − 1)-th spin in up (Fig. 4(a)). This kinetic constraint is same in both
cases irrespective of whether the dynamics is classical or quantum.

When dynamics of the particle is due to quantum fluctuations, the tun-
nelling probabilities come from the following semi-classical picture of scat-
tering of a particle in a double-well with infinitely remote outer boundaries
(a → ∞ in Fig. 4). If a particle is put in one of the wells of such a double-well
with some kinetic energy (actually the expectation value) Γ , then it will even-
tually be scattered by the separator (a barrier or step) between the two wells.
In such a scattering, there is a finite probability P that the particle manages
to go to the other well. We calculate P from the simple picture of scatterings
of a particle by one dimensional potentials as prescribed below. In thermal
case we take simple Boltzmann probabilities for crossing the same barriers.
The minimum of the energy of the Ising chain (equivalent to the potential
energy of the chain of the double-wells) trivially corresponds to the state with
all the spins down, i.e., aligned along the longitudinal field h (where all the
particles are in their respective lower wells). To reach the ground state in
quantum case, we start with a very large initial value of Γ and then reduce
it following an exponential schedule given by Γ = Γ0 exp (−t/τQ). Here t
denotes the time, and τQ sets the effective time scale of annealing. At zero
temperature the slow spin flip dynamics occurs only due to the tunnelling
(kinetic energy) term Γ , and hence the system ceases to have any relaxation
dynamics in the limit Γ → 0. It may be mentioned here that in absence of
any analytical expression for the tunnelling probability in asymmetric case of
the type discussed here (see e.g., [17]), we employ the asymmetric barrier tun-
nelling probabilities available [18]. Similarly, in thermal case, we start with a
high initial temperature T0 and reduce it eventually following an exponentially
decreasing temperature schedule given by T = T0 exp (−t/τC); τC being the
time constant for the thermal annealing schedule. Here, when (i − 1)-th spin
is down, the flipping probability for the i-th spin (∼ exp (−χ/T )). Otherwise,
it flips with probability P = 1 if it were in the up state, and with Boltzmann
probability P = exp (−h/T ) if it were in the down state.

3.2 Simulation and Results

We have employed [16] the quantum transmission (flipping) probabilities (cf.
[18]) from a very elementary scattering picture which is qualitatively adequate,
though not strictly valid for the asymmetric double-well (shown in Fig. 4(b))
because the states within it are bound by its finite width a. Following are the
flipping probabilities (P ) for the i-th spin in different possible situations used
in our Monte Carlo simulation:

I. If the (i − 1)-th spin is up and the i-th spin is also up then P = 1.
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II. If the (i − 1)-th spin is up and the i-th spin is down then (a) P = 0
for Γ < 2h and (b)P = min{1, 4[Γ (Γ − 2h)]1/2

/(
√

Γ +
√

Γ − 2h)2} for
Γ ≥ 2h.

III. If the (i − 1)-th spin is down and the i-th spin is up then P =
min{1, 4[Γ (Γ + 2h)]1/2

/((
√

Γ +
√

Γ + 2h)2 + g2)}.
IV. If the (i− 1)-th spin is down and the i-th spin is down then (a) P = 0 for

Γ < 2h, and (b) P = min{1, 4[Γ (Γ − 2h)]1/2
/((

√
Γ +

√
Γ − 2h)2 + g2)}

for Γ ≥ 2h (h and Γ denoting the magnitudes only).

Here g = χa, χ and a being respectively the height and width of the barrier
representing the kinetic constraint. The above expressions for P are actually
the transmission coefficients in respective cases of one-dimensional scattering
across asymmetric barrier or step (according to the form of the potential
encountered in passing from one well to the other, see e.g., [18]). Application
of the above scattering picture, even for the double-wells in Fig. 4b (which
our simulation is based on) as discussed before, is of course an approximation.
It may be noted that our flipping probabilities used here do not satisfy the
condition of detailed balance, though the evolution matrix has got the required
stochastic structure.

In our simulation [16], we take N Ising spins (σi = ±1, i = 1, . . . , N)
on a linear chain with PBC. The initial spin configuration is taken to be
random such that magnetization m = (1/N)

∑
i σi is practically negligible

(mi ≈ 0). We then start with a tunnelling field Γ0 and follow the zero tem-
perature (semi-classical) Monte Carlo scheme as mentioned above, using the
spin flip probabilities P ’s appropriate for the four cases I-IV. Each complete
run over the entire lattice is taken as one time unit and as time progresses, Γ
is decreased from its initial value Γ0 according to Γ = Γ0e

−t/τQ . The results
are shown in Fig. 5. It shows that for N = 50000 g = 100 and Γ0 = 100
the system freezes before reaching the ground state (mf = 1) for low values
of τQ; say for τQ = 2000. For a somewhat greater value, e.g., τQ = 5000,
the system is completely annealed to the ground state within about 4 × 104

time steps. However, for a much greater τQ, like τQ = 20000, the system
of course anneals completely but consumes more time unnecessarily. These
generic features remain the same for other higher values of g. We have also
studied the dependence of annealing behaviour with the parameter g, which
is actually a measure of how impenetrable is the infinite barrier representing
the kinetic constraint. Computations were carried out to locate, for a given
value of g, the minimum value of τQ for which the system just anneals up to
mf = 0.8 (complete annealing requires prohibitively longer computer time for
this comparative study).

We call this minimum value (τQ)min. A bisection scheme was used to locate
(τQ)min for different values of g starting for the same initial configuration. The
inset in Fig. 5 shows that (τQ)min increases fairly sharply with g (an empirical
analysis shows (τQ)min ∼ g1.67, for g ≤ 1000. This variation with g depends on
the specific functional forms of P occurring in the quantum case. In contrast
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Fig. 5. Quantum annealing (T = 0) for g = 100, Γ0 = 100 and h = 1 is shown for
different values of τQ, for a chain of 5×104 spins (m averaged over the same set of 10
initial configurations for each τQ). The horizontal (dashed) line indicates the average
(over the same set C) value of m that could be reached from the initial configurations
by simply minimizing the energy following the downhill principle (a single step is
enough to get there). In the inset, variation of log [(τQ)min] with log [g] is shown (by
the points) for one given configuration. The error in (τQ)min is typically less than
0.5% in each case. The continuous line in the inset shows a fit of the data by the
continuous line (τQ)min ∼ gκ; κ ≈ 1.67 (obtained by linear least-square fitting)

to this, in classical case, (τC)min grows exponentially with the barrier height
χ and is independent of the barrier width a. However, for even higher values of
g, the slope is expected to decrease, and finally in the asymptotic limit g → ∞,
the relaxation behaviour should converge to that of one with an unsurpassed
kinetic constraint (like the classical East model). This asymptotic convergence
could not however be explored, since the required computational time becomes
prohibitively long as g is increased further.

We compare the results of thermal and quantum annealing (Fig. 6) for the
same order of initial value and time constant for Γ and T (barrier height χ is
taken to be 1000 in both the cases while g was taken to be 100 in the quantum
annealing case, or equivalently the barrier width a is taken to be of the order
of 0.1). We observe that to achieve a similar degree of annealing (attaining
a certain final magnetization mf ), starting from the same disordered config-
uration, one typically requires much smaller τQ compared to τC ; typically,
τC ∼ 103 × τQ for equivalent annealing (for similar optimal values of final or-
der mf ∼ 0.92). For annealing with final order mf ∼ 1, we find τC ∼ 104×τQ.
This comparison of course depends on the barrier characteristics (value of g)
as shown in the inset of Fig. 5.
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Fig. 6. Comparison between classical and quantum annealing for a chain of 5× 104

spins (for the same initial disordered configuration with mi ∼ 10−3). We show the
results for τQ = 1.8 × 102 (for quantum) and τC = 106 (for classical) with h = 1;
a lower τC would not produce substantial annealing. Starting from the same initial
values Γ0 = T0 = 100, (and g = 100 in the quantum case) we observe that classical
annealing requires about 107 steps, whereas quantum annealing takes about 104

steps for achieving the same final order mf ∼ 0.92

3.3 Summary and Discussion

In this chapter, first we have discussed a zero temperature quantum Monte
Carlo method using transfer-matrix, and the results of its application to the
annealing of an infinite range ±J Ising system. Since at each instance the
Monte Carlo tries to sample the ground state of the system and there is
no temperature, for slow enough annealing schedule, the long-time averages
calculated by this method are expected to be close to those of the true adi-
abatic quantum evolution. The quantum Monte Carlo method applied here
is quite easy to implement and generally applicable. The only criteria is that
the Hamiltonian should be irreducible and there should exist a suitable linear
transformation to make the matrix non-negative. If the matrix is reducible
and one can identify the individual irreducible blocks in its block-diagonal
form, then one can apply the method for each block (using the corrosponding
subset of basis) separately. One may note that the meeting of the condition of
Perron-Frobenius theorem assures the complete lifting of the degeneracy of the
ground state of the Hamiltonian (dominant eigenstate of its linear transform).
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This is in fact a necessary condition for the quantum tunnelling term (gener-
ating the off-diagonal elements of the Hamiltonian) to assure convergence to
the global ground state at the end of the annealing (otherwise one may end
up with the lowest energy state within one of the subspaces which are not
connected by the tunnelling probabilities, depending on the initial state).

The relaxation behaviour of different random samples to their respective
ground states are studied. The long-time average of the intensive energy is
found to relax linearly with time (rather than logerithmic [7]). The slope of
the linear relaxation depends on the annealing schedule and also on the system
size (to be discussed else where).

Next we have discussed the annealing of a generalized kinetically con-
strained chain of N double-wells with a particle in each, starting from a dis-
ordered state (with negligible initial order), to its (external field induced)
fully ordered ground state. In our model kinetic constraints are represented
by barriers of finite height and width. We have shown that for certain barrier
characteristics, namely very high but thin barriers quantum annealing can be
far superior to its thermal counter part in reaching the ground state. In this
study we have put the barrier features (the height and the width) by hand
and see how the difference between the classical and the quantum annealing
depends on them.

The noise necessary for the annealing are introduced by temperature T in
thermal case and by a quantum mechanical kinetic energy term Γ in quantum
case. The introduced noise, is reduced following an exponential schedule in
both the cases: T = T0e

−t/τC , Γ = Γ0e
−t/τQ , with T0 ≈ Γ0. For our simulation

for the quantum case, we have taken the tunnelling probabilities P (for cases
I-IV) and employed them in a semi-classical fashion for the one dimensional
spin chain considered. We observe that for similar achievement in final order
(mf � 0.92 starting from mi = 10−3), τC ∼ 103τQ for N = 5 × 104. For even
larger order (mf ∼ 1), quantum annealing works even better (τC ∼ 103τQ,
for the same value of N). These comparison are for g = 102 and χ = 103 for
the constraint barriers.

In this picture, we considered the collective dynamics of a many particle
system, where each one is confined in a (field) induced asymmetric double-
well potential for which we considered only the low lying two states (the wave
packet localized in one well or the other), representing the two states (up and
down) of an Ising spin discussed above. The tunnelling of the wave packet
from one well to the other was taken into account by employing a scattering
picture and we used the tunnelling probabilities as the flip probabilities for the
quantum Ising spins. As such, the reported simulation for the one dimensional
quantum generalized East model is a semi-classical one.

Here a few words regarding the absence of detailed balance in our flipping
probabilities will be in order. Detailed balance (e.g., using rates which are
ratios of Boltzmann probabilities) is indeed the simplest way of ensuring the
approach of a non-equilibrium system to the simplest types of steady state
(e.g., the thermal equilibrium state’ corresponding to a canonical ensemble).
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But the study of the approach of non-equilibrium systems to steady states
typically (and necessarily, in the case of non-product states) involves a more
general set of dynamic rules, captured for example by an evolution opera-
tor involving a (typically non-hermitian) Hamiltonian which has the usual
stochastic structure which ensures conservation of probability, and ensures
eigenvalues, one of which is zero, having non-negative real parts. Tunneling is
one among many possible processes (usually captured by transition rates in
a master equation) which can satisfy these requirements, and is clearly more
appropriate than e.g., Arrhenius rates in a quantum system at zero tempera-
ture.

It may be noted that, because of the absence of inter-spin interaction, the
dimensionality actually plays no role in this model except for the fact that
the kinetic constraints on any spin depend only on the left nearest neighbor
(directedness in one dimension). Hence the semi-classical one dimensional sim-
ulation, instead of a proper quantum Monte Carlo simulation (equivalent to
a higher dimensional classical one [10]), is quite appropriate here. Addition-
ally, even for interacting (finite range) one dimensional system order is always
completely destroyed at any finite temperature (T = 0 is the critical point).
Thus it is difficult to reach the ground state efficiently by employing thermal
annealing in such systems in presence of competing interactions [10]. However,
quantum critical points in such systems exists at finite value of the tunnelling
(disordering) field Γ , and one can utilize the order below the critical point
while annealing, and reach the ground state more efficiently.
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1 Introduction

Recently, problems of information processing were investigated from the sta-
tistical mechanical point of view [1]. Among them, image restoration (see
[2, 3, 4] and references therein) and error-correcting codes [5] are most suit-
able subjects. In the field of error-correcting codes, Sourlas [5] showed that the
convolution codes can be constructed by an infinite range spin-glass Hamil-
tonian and the decoded message should correspond to the zero temperature
spin configuration of the Hamiltonian. Ruján [6] suggested that the error of
each bit can be suppressed if one uses finite temperature equilibrium states
(sign of the local magnetization) as the decoding result, what we call the MPM
(maximizer of posterior marginal) estimate, instead of zero temperature spin
configurations, and this optimality of the retrieval quality at a specific decod-
ing temperature (this temperature is well known as the Nishimori temperature
in the field of spin glasses) is proved by Nishimori [7].

The next remarkable progress in this direction was made by Nishimori
and Wong [8]. They succeeded in giving a new procedure in order to com-
pare the performance of the zero temperature decoding (statisticians call this
strategy the MAP (maximum a posteriori) estimation) with that of the fi-
nite temperature decoding, the MPM estimation. They introduced an infinite
range model of spin glasses such as the Sherrington–Kirkpatrick (SK) model
[9] as an exactly solvable example. Kabashima and Saad [10] succeeded in
constructing more practical codes, namely, low density parity check (LDPC)
codes by using the spin-glass model with finite connectivities. In these de-
coding processes, one of the most important problems is how one obtains
minimum energy states of the effective Hamiltonian as quickly as possible.
Geman and Geman [11] used simulated annealing [12] in the context of image
restoration to obtain good recovery of the original image from its corrupted
version. Recently, Tanaka and Horiguchi [13, 2] introduced a quantum fluctu-
ation, instead of the thermal one, into the mean-field annealing algorithm and
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showed that the performance of the image recovery is improved by control-
ling the quantum fluctuation appropriately during its annealing process. The
attempt to use the quantum fluctuation to search the lowest energy states in
the context of annealings by Markov chain Monte Carlo methods, what we
call quantum annealing, is originally introduced in [14, 15] and its application
to the combinatorial optimization problems including the ground state search
for several spin-glass models was done by Kadowaki and Nishimori [16] and
Santoro et al. [17]. However, these results are restricted to the research aided
by computer simulations, although there exist some extensive studies on the
Landou–Zener model for the single spin problems [18, 19, 20].

Recently, the averaged case performance of both the MPM and MAP esti-
mations for image restoration with quantum fluctuation was investigated by
the present author [21] for the mean-field model. He also used the quantum
Monte Carlo method to evaluate the performance for two-dimensional pictures
and found that the quantum fluctuation suppresses the error due to failing
to set the hyperparameters effectively; however, the best possible value of the
bit-error rate does not increase by the quantum fluctuation. In this result the
quantum and thermal fluctuations are combined in the MPM estimation (the
effective temperature is unity). Therefore, it is important for us to revisit this
problem and investigate to what extent the MPM estimation, which is based
on pure quantum fluctuation and without any thermal one, works effectively.

In this chapter, we make this point clear and show that the best possible
performance obtained by the MPM estimation, which is purely induced by
quantum fluctuations, is exactly the same as the results by the thermal MPM
estimation. The Nishimori–Wong condition [7, 8] for the quantum fluctuation,
on which the best possible performance is achieved, is also discussed. More-
over, we extend the Sourlas codes [5] by means of the spin-glass model with
p-spin interaction in a transverse field [22, 23] and discuss the tolerance of the
error-less (or quite low-error) state to the quantum uncertainties in the prior
distribution. In the last section of this chapter, we check the performance of
the MAP and MPM image restorations predicted by the analysis of the mean-
field infinite range model by using the quantum Markov chain Monte Carlo
method [24] and the quantum annealing [14, 15, 16, 17].

This chapter is organized as follows. In Sects. 2 and 3, we introduce our
model system for image restoration and error-correcting codes. We also explain
the relation between Bayesian inference and statistical mechanics. In Sect. 4,
we investigate the performance of the MAP and MPM estimations for these
two problems by using the analysis of the infinite range model. In Sect. 5, we
carry out the quantum Markov chain Monte Carlo method and the quantum
annealing to check the results we obtained from the analysis of the infinite
range models. In the final section we give the summary.
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2 Bayesian Statistics and Information Processing

In the field of signal processing or information science, we need to estimate
the original message which is sent via email or fax. Usually, these massages are
degraded by some noise and we should retrieve the original messages, and if
possible, we send these messages not only as sequence of information bits but
also as some redundant information such as parity check. In such problems,
noise channels or statistical properties of the original message are specified by
some appropriate probabilistic models. In this section, we explain the general
definitions of our problems and how these problems link to statistical physics.

2.1 General Definition of the Model System

Let us suppose that the original information is represented by a configuration
of Ising spins {ξ} ≡ (ξ1, ξ2, . . . , ξN ) (ξi = ±1, i = 1, . . ., N) with probability
P ({ξ}). Of course, if each message/pixel ξi is generated from independent
identical distribution (i.i.d.), the probability of the configuration {ξ} is written
by the product of the probability P (ξi), namely, P ({ξ}) =

∏N
i=1 P (ξi).

These messages/pixels {ξ} are sent through the noisy channel by not
only the form {ξi1 · · · ξip} ≡ {J0

i1···ip} for appropriately chosen set of indexes
{i1, . . ., ip} (what we call parity check in the context of error-correcting codes)
but also the sequence of the original messages/pixels itself {ξ}. Therefore, the
outputs of the noisy channel are exchange interactions {Ji1···ip} and fields
{τi}.

In the field of information theory, the noisy channel is specified by the con-
ditional probability such as P ({τ}|{ξ}) or P ({J}|{J0}). If each message/pixel
ξi and parity check J0

i1·ip are affected by the channel noise independently, the
probability P ({τ}|{ξ}) or P ({J}|{J0}), namely, the probabilities of output
sequences {τ} ≡ (τ1, . . . , τ2) or {J} ≡ (J11···1p, . . . , JN1···Np) for given input
sequences {ξ} = (ξ1, . . . , ξN ) or {J0} = (J0

11···1p, . . . , J
0
N1···Np) are written as

P ({τ}|{ξ}) =
N∏

i=1

P (τi|ξi), P ({J}|{J0}) =
N∏

i=1

P (Ji1···ip|J0
i1···ip) , (1)

respectively.
In this chapter, we use the following two kinds of the noisy channel.

The first one is referred to as binary symmetric channel (BSC). In this
channel, each message/pixel ξi and parity check Ji1···jp change their sign
with probabilities pτ and pr, respectively. By introducing the parameters
βτ ≡ (1/2) log(1 − pτ/pτ ), βr ≡ (1/2) log(1 − pr/pr), the conditional prob-
abilities (1) are given by
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P ({τ}|{ξ}) =
exp(βτ

∑
i τiξi)

[2 cosh βτ ]N
, P ({J}|{J0}) =

exp(βr

∑
i1···ip Ji1···ipJ

0
i1···ip)

[2 cosh βr]NB

(2)
where we defined N ≡

∑
i 1, NB ≡

∑
i1···ip 1.

Thus, the probability of the output sequences {J}, {τ} provided that the
corresponding input sequence of the original messages/pixels is {ξ} is obtained
by
∑

{J0} P ({J}|{J0})P ({J0}|{ξ})P ({τ}|{ξ}), that is to say,

P ({J}, {τ}|{ξ}) =
exp

(
βr

∑
i1,...,ip Ji1···ip ξi1· · ·ξip + βτ

∑
i τiξi

)

(2 cosh βr)NB(2 cosh βτ )N
(3)

where we used the following condition:

P ({J0}|{ξ}) =
N∏

i=1

δJ0
i1···ip

,ξi1···ξip
. (4)

The second type of the noisy channel is called the Gaussian channel (GC).
The above BSC (3) is simply extended to the GC as follows:

P ({J}, {τ}|{ξ})

=
exp

(
− 1

2J2

∑
i1,...,ip(Ji1···ip − J0ξi1· · ·ξip)2 − 1

2a2

∑
i(τi − a0ξi)2

)

(
√

2πJ)NB(
√

2πa)N
. (5)

We should notice that these two channels can be treated within the single
form:

P ({J}, {τ}|{ξ}) =
∏

i1···ip
Fr(Ji1···ip)

∏

i

Fτ (τi)

× exp



βr

∑

i1···ip
Ji1···ip ξi1 · · · ξip + βτ

∑

i

τiξi



 (6)

with

Fr(Ji1...ip) =

∑
j=±1 δ(Ji1···ip − j)

2 cosh βr
, Fτ (τi) =

∑
j=±1 δ(τi − j)
2 cosh βτ

(7)

for the BSC and

Fr(Ji1···ip) =
exp

[
− 1

2J2 (J2
i1···ip + J2

0 )
]

√
2πJ2

, Fτ (τi) =
exp

[
− 1

2a2 (τ2
i + a2

0)
]

√
2πa2

(8)
for the GC. Therefore, it must be noted that there exist relations between the
parameters for both channels as

βr =
J0

J2
, βτ =

a0

a2
. (9)
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The main purpose of signal processing we are dealing with in this chapter
is to estimate the original sequence of messages/pixels {ξ} from the outputs
{J}, {τ} of the noisy channel. With this aim, it might be convenient for us to
construct the probability of the estimate {σ} for the sequence of the original
messages/pixels {ξ} provided that the outputs of the noisy channel are {J}
and {τ}.

From the Bayes formula, the probability P ({σ}|{J}, {τ}) is written in
terms of the so-called likelihood P ({J}, {τ}|{σ}) and the prior Pm({σ}) as
follows:

P ({σ}|{J}, {τ}) =
P ({J}, {τ}|{σ})Pm({σ})∑
{σ} P ({J}, {τ}|{σ})Pm({σ}) . (10)

As the likelihood has a meaning of the probabilistic model of the noisy channel,
we might choose it naturally as

P ({J}, {τ}|{σ}) =
exp

(
βJ

∑
i1···ip Ji1···ip σi1 · · ·σip + h

∑
i τiσi

)

(2 cosh βJ )NB(2 cosh h)N
(11)

for the BSC and

P ({J}, {τ}|{σ}) =
exp

(
−βJ

2

∑
i1···ip(Ji1···ip − σi1 · · ·σip)2 − h

∑
i(τi − σi)2

)

(2π/βJ )NB/2(π/h)N/2

(12)
for the GC. Therefore, what we call the posterior P ({σ}|{J}, {τ}) which is
defined by (10) is rewritten in terms of the above likelihood as

P ({σ}|{J}, {τ}) =
e−βHeff

∑
{σ} e−βHeff

(13)

where we defined the inverse temperature β = 1/T and set T = 1. The
effective Hamiltonian Heff is also defined by

Heff = −βJ

∑

i1···ip
Ji1···jp σi1 · · ·σip − h

∑

i

τiσi − log Pm({σ}) (14)

for the BSC and

Heff = −βJ

2

∑

i1···ip
(Ji1···ip − σi1 · · ·σip)2 − h

∑

i

(τi − σi)2 − log Pm({σ}) (15)

for the GC.

2.2 MAP Estimation and Simulated Annealing

As we mentioned, the posterior P ({σ}|{J}, {τ}) is a useful quantity in order
to determine the estimate {σ} of the sequence of the original messages/pixels.



264 J.-I. Inoue

We might choose {σ} as the estimate of the original message/pixel sequence,
which maximizes the posterior for a given set of the output sequences {J}, {τ}.
Apparently, this estimate {σ} corresponds to the ground state of the effec-
tive Hamiltonian Heff . In the context of the Bayesian statistics, this type of
estimate {σ} is referred to as maximum a posteriori (MAP) estimate.

From the view point of important sampling from the posterior as the
Gibbs distribution (Gibbs sampling), such a MAP estimate is obtained by
controlling the temperature T as T → 0 during the Markov chain Monte Carlo
steps. This kind of optimization method is well known and widely used as
simulated annealing (SA) [11, 12]. The optimal scheduling of the temperature
T is T (t) = c/ log(1 + t), which was proved by using mathematically rigorous
arguments [11].

2.3 MPM Estimation and a Link to Statistical Mechanics

From the posterior P ({σ}|{J}, {τ}), we can attempt to make another kind of
estimation. For this estimation, we construct the following marginal distribu-
tion for each pixel σi:

P (σi|{J}, {τ}) =
∑

{σ}�=σi

P ({σ}|{J}, {τ}) . (16)

Then, we might choose the sign of the difference between P (1|{J}, {τ}) and
P (−1|{J}, {τ}) as the estimate of the ith message/pixel; to put it in another
way,

sgn

[
∑

σi

σiP (σi|{J}, {τ})
]

= sgn

(∑
{σ} σi e−Heff

∑
{σ} e−Heff

)
≡ sgn(〈σi〉1) (17)

where we defined the bracket 〈· · ·〉β as

〈· · ·〉β ≡
∑

{σ}(· · ·) e−βHeff

∑
{σ} e−βHeff

. (18)

Therefore, the above estimate has a link to statistical mechanics through the
local magnetization 〈σi〉1 for the spin system that is described by Heff at
temperature T = 1. This estimate sgn(〈σi〉1) is referred to as maximizer of
posterior marginal (MPM) estimate or finite temperature (FT) estimate [6]. It
is well known that this estimate minimizes the following bit-error rate:

p
(MPM)
b = P

(1)
b (βJ , h : Pm) =

1
2

[
1 − R(1)(βJ , h : Pm)

]
(19)

with the overlap between the original message/pixel ξi and its MPM estimate
sgn(〈σi〉):
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R(1)(βJ , h : Pm) =
∑

{ξ,J,τ}
P ({J}, {τ}, {ξ}) ξi sgn(〈σi〉1) . (20)

Obviously, the bit-error rate for the MAP estimate is given by

p
(MAP)
b = lim

β→∞
P (β)(βJ , h : Pm) =

1
2

[
1 − lim

β→∞
R(β)(βJ , h : Pm)

]
(21)

with

R(β)(βJ , h : Pm) =
∑

{ξ,J,τ}
P ({J}, {τ}, {ξ}) ξi sgn(〈σi〉β) . (22)

In the next section, we compare p
(MPM)
b with p

(MAP)
b by using the replica

method and show that the former is smaller than the latter.

2.4 The Priors and Corresponding Spin Systems

In the previous two subsections, we have shown the relation between the
Bayesian inference of the original messages/pixels under some noises and sta-
tistical physics [1]. However, we have not yet mentioned about the choice of
the prior distribution Pm({σ}) in the effective Hamiltonian Heff . In the frame-
work of the Bayesian statistics, the choice of the prior is arbitrary; however,
the quality of the estimation for a given problem strongly depends on the
choice.

Image Restoration and Random Field Ising Model

In image restoration, we might have an assumption that in the real world
two-dimensional pictures, the nearest neighboring sites should be inclined to
be the same values; in other words, we assume that the real picture should
be locally smooth (see Fig. 1). Taking this smoothness into account, then, it
seems reasonable to choose the prior for image restoration as

Pm({σ}) =
exp (βm

∑
〈ij〉σiσj)

Z(βm)
, Z(βm) =

∑

{σ}
exp



βm

∑

〈ij〉
σiσj



 . (23)

In conventional image restoration, we do not send any parity check and
only available information is the degraded sequence of the pixels {τ}. Thus,
we set βJ = 0 for this problem. Then, we obtain the effective Hamiltonian for
image restoration as

Heff = −βm

∑

〈ij〉
σiσj − h

∑

i

τiσi . (24)

This Hamiltonian is identical to that of the random field Ising model in which
the random field on each cite corresponds to each degraded pixel τi.
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Fig. 1. A typical example of image data retrieval. From the left to the right, the
original {ξ}, degraded {τ}, and the recovering {σ} images. The above restored image
was obtained by quantum annealing. The detailed account of this method will be
explained and discussed in last part of this chapter

Error-Correcting Codes and Spin Glasses with p-Body Interaction

In error-correcting codes, we usually use so-called uniform distribution because
we do not have any idea about the properties of the original message sequence
{ξ} as we assumed smoothness for images. Thus, we set the prior as Pm({σ}) =
2−N and substitute − log Pm({σ}) = N log 2 = const. into Heff (usually, we
neglect the constant term).

In this case, we do not use any a priori information to estimate the orig-
inal message; however, in error-correcting codes, we compensate this lack of
information with extra redundant information as a form of ξi1 · · · ξip, besides
the original message sequence {ξ}. In information theory, it is well known
that we can decode the original message {ξ} without any error when the
transmission rate R, which is defined by R = N/NB (N is the original mes-
sage length and NB is the redundant message length), is smaller than the
channel capacity C (see for example [26]). The channel capacity is given by
C = 1+p log2 p+(1−p) log2(1−p) for the BSC and p = (1/2) log2(1+J2

0/J2)
for the GC. As we will mention in the next section, when we send NCr combi-
nations of p bits among the original images {ξ}, as products ξi1 · · · ξip, error-
less decoding might be achieved in the limit of p → ∞. We call this type
of code Sourlas codes [5]. For there Sourlas codes, we obtain the following
effective Hamiltonian:

Heff = −βJ

∑

i1···ip
Ji1···ip σi1 · · ·σip − h

∑

i

τiσi . (25)

It is clear that this Hamiltonian is identical to that of the Ising spin glass
model with p-body interaction under some random fields on cites.

3 Quantum Version of the Model

In the previous sections, we explained the relation between the Bayesian
statistics and statistical mechanics. We found that there exists an effective
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Hamiltonian for each problem of image restoration and error-correcting codes.
In order to extend the model systems to their quantum version, we add the
transverse field term −Γ

∑
i σx

i into the effective Hamiltonian [22]. In this
expression, {σx} means the x-component of the Pauli matrix and Γ controls
the strength of quantum fluctuation. Each term Γσx

i appearing in the sum
might be understood as tunneling probability between the states σz

i = +1 and
σz

i = −1 intuitively. As a result, the quantum version of image restoration is
reduced to that of statistical mechanics for the following effective Hamiltonian:

HQuantum
eff = −βm

∑

〈ij〉
σz

i σz
j − h

∑

i

τiσ
z
i − Γ

∑

i

σx
i . (26)

We also obtain the quantum version of the effective Hamiltonian for error-
correcting codes as

HQuantum
eff = −βJ

∑

i1···ip
Ji1···ip σz

i1 · · ·σz
ip − h

∑

i

τiσ
z
i − Γ

∑

i

σx
i . (27)

We should keep in mind that in the context of the MAP estimation, it might
be useful for us to control the strength of quantum fluctuation, namely, the
amplitude of the transverse field Γ as Γ → 0 during the quantum Markov
chain Monte Carlo steps. If this annealing process of Γ is slow enough, at the
end Γ = 0, we might obtain the ground states of the classical spin systems
described by the Hamiltonian

Hclassical
eff = −βm

∑

〈ij〉
σz

i σz
j − h

∑

i

τiσ
z
i (28)

for image restoration and

Hclassical
eff = −βJ

∑

i1···ip
Ji1···ip σz

i1 · · ·σz
ip − h

∑

i

τiσ
z
i . (29)

for error-correcting codes. This is an essential idea of the quantum annealing.
Unfortunately, up to now, there are no mathematically rigorous arguments for
the optimal scheduling of Γ (t) corresponding to Geman and Geman’s proofs
[11] for the simulated annealing [12]. We will revisit this problem in the last
section. In this chapter, we investigate its averaged case performance by the
analysis of the infinite range model and by carrying out quantum Markov
chain Monte Carlo simulations.

4 Analysis of the Infinite Range Model

In the previous section, we completely defined our two problems of information
processing, that is to say, image restoration and error-correcting codes as the
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problems of statistical mechanics of random spin systems in a transverse field.
We found that there exist two possible candidates to determine the original
sequence of the messages/pixels. The first one is the MAP estimation and
the estimate is regarded as ground states of the effective Hamiltonian that is
defined as a minus of logarithm of the posterior distribution. As we mentioned,
to carry out the optimization of the Hamiltonian, both the simulated annealing
and the quantum annealing are applicable. In order to construct the quantum
annealing, we should add the transverse field to the effective Hamiltonian and
control the amplitude of the field Γ during the quantum Markov chain Monte
Carlo steps. Therefore, the possible extension of the classical spin systems to
the corresponding quantum spin systems in terms of the transverse field is an
essential idea of our work.

Besides the MAP estimate as a solution of the optimization problems, the
MPM estimate, which is given by the sign of the local magnetization of the
spin system, is also available. This estimate is well known as the estimate
that minimizes the bit-error rate. Performances of both the MAP and MPM
estimations are evaluated through this bit-error rate.

In order to evaluate the performance, we first attempt to calculate the
bit-error rate analytically by using the mean-field infinite range model. As
the most famous example of the solvable model, the Sherrington–Kirkpatrick
model [9] in spin glasses, we also introduce the solvable models for both im-
age restoration and error-correcting codes. In this section, according to the
previous work by the present author [21], we first investigate the performance
of image restoration.

It is important to bear in mind that in our Hamiltonian, there exist two
types of terms, namely, A0 = −Hclassical

eff and A1 = −Γ
∑

i σx
i , and they do not

commute with each other. Therefore, it is impossible to calculate the partition
function directly. Then, we use the Suzuki–Trotter (ST) decomposition [24, 25]

Zeff = lim
M→∞

tr
(
e

A0
M e

A1
M

)M

(30)

to cast the problem into an equivalent classical spin system. In the following,
we calculate the macroscopic behavior of the model system with the assistance
of the ST formula [24, 25] and replica method [9] for the data {ξ, J, τ} average
[· · ·]data:

[log Zeff ]data = lim
n→0

[Zn
eff ]data − 1

n
(31)

of the infinite range model.

4.1 Image Restoration

In order to analyze the performance of the MAP and MPM estimations in
image restoration, we suppose that the original image is generated by the
next probability distribution,
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P ({ξ}) =
exp

(
βs

N

∑
ij ξiξj

)

Z(βs)
, Z(βs) =

∑

{ξ}
exp



βs

N

∑

ij

ξiξj



, (32)

namely, the Gibbs distribution of the ferromagnetic Ising model at the tem-
perature Ts = β−1

s . For this original image and under the Gaussian channel,
the macroscopic properties of the system such as the bit-error rate are derived
from the data-averaged free energy [log Zeff ]data. Using the ST formula and
the replica method, we write down the replicated partition function as

[Zn
eff ]data =

∑

{ξ}

∫ ∞

−∞

∏

ij

dJij√
2πJ2/N

exp



− N

2J2

∑

ij

(
Jij −

J0

N
ξiξj

)2




×
∫ ∞

−∞

∏

i

dτi√
2πa

exp

(
− 1

2a2

∑

i

(τi − a0ξi)
2

)

×
exp

(
βs/N)

∑
ij

ξiξj

)

Z(βs)

×tr{σ}

n∏

α=1

M∏

K=1

exp

[
βJ

M

∑

ij

Jijσ
α
iKσα

jK +
βm

MN

∑

ij

σα
iKσα

jK

+
h

M

∑

i

τiσ
α
iK + B

∑

i

σα
iKσα

i,K+1

]
(33)

where [· · ·]data means the average over the quenched randomness, namely, over
the joint probability P ({J}, {τ}, {ξ}). We should keep in mind that these
quantities {ξ} and {J}, {τ} mean the data we send to the receiver and the
outputs of the channel the receiver obtain, respectively. Therefore, by calcu-
lating these averages [· · ·]data, we can evaluate the data-averaged case perfor-
mance of image restoration [21]. We also defined the partition function Z(βs)
for the original images and B as Z(βs) ≡

∑
{ξ} exp

(
βs/N)

∑
ij ξiξj

)
, B ≡

(1/2) log coth(Γ/M). The standard replica calculation leads to the following
expressions of the free energy density:

[log Zeff ]data =
[Zn

eff ]data − 1
nN

= −fRS
0

n
− fRS (34)

fRS
0 =

1
2
βsm

2
0 − log 2 cosh(βsm0) (35)

fRS = − (βJJ)2

2
Q2 +

(βJJ)2

2
S2 +

βm

2
m2 +

βJJ0

2
t2

−
∑

ξ

M(ξ)
∫ ∞

−∞
Du log

∫ ∞

−∞
Dw 2 cosh

√
Φ2 + Γ 2 (36)
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and the saddle point equations with respect to the order parameters.

S[〈σα
iK〉]data = m =

∑

ξ

M(ξ)
∫ ∞

−∞
Du

∫ ∞

−∞
Dω

(
Φ sinh Ξ

ΞΩ

)
(37)

[ξi〈σα
iK〉]data = t =

∑

ξ

ξM(ξ)
∫ ∞

−∞
Du

∫ ∞

−∞
Dω

(
Φ sinh Ξ

ΞΩ

)
(38)

[〈(σα
iK)2〉]data = Q =

∑

ξ

M(ξ)
∫ ∞

−∞
Du

[∫ ∞

−∞
Dω

(
Φ sinh Ξ

ΞΩ

)]2

(39)

[〈σα
iKσα

iL〉]data = S

=
∑

ξ

M(ξ)
∫ ∞

−∞

Du

Ω

∫ ∞

−∞

[(
Φ

Ξ

)2

cosh Ξ + Γ 2

(
sinhΞ

Ξ3

)]
(40)

with [ξi]data = m0 = tanh(βsm0) and M(ξ) = eβsm0ξ/2 cosh(βsm0), where
we used the replica symmetric and the static approximation, that is,

tK = t, Sα(KL) =
{

S (K 
= L)
1 (K = L) , Qαβ = Q (41)

and 〈· · ·〉 denotes the average over the posterior distribution and Φ, y, and Ω
are defined as

Φ ≡ u
√

(ah)2 + (JβJ )2Q + JβJω
√

S − Q + (a0h + J0βJ t)ξ + βmm (42)

Ξ ≡
√

Φ2 + Γ 2, Ω ≡
∫ ∞

−∞
Dω coshΞ . (43)

Then, the overlap R which is a measure of retrieval quality is calculated
explicitly as

[ξi sgn(〈σα
iK〉)]data = R =

∑

ξ

ξM(ξ)
∫ ∞

−∞
Du

∫ ∞

−∞
Dw sgn(Φ) ; (44)

then, of course, the bit-error rate is given by pb = (1 − R)/2.

4.2 Image Restoration at Finite Temperature

We first investigate the image restoration without the parity check term βJ =
0. For this case, the saddle point equations lead to the following much simpler
coupled equations:

m0 = tanh(βsm0), m =
∑

ξ

M(ξ)
∫ ∞

−∞
Du

Φ0 tanh
√

Φ2
0 + Γ 2

√
Φ2

0 + Γ 2
(45)

with Φ0 ≡ mβm + a0hξ + ahu. Then, the overlap R is also reduced to
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R =
∑

ξ

ξM(ξ)
∫ ∞

−∞
Du sgn(Φ0) = 1 − 2pb (46)

where R depends on Γ through m. In Fig. 2 (left), for the case of no parity
check βJ = 0, we plot the bit-error rate pb as a function of Tm = β−1

m . We
choose the temperature of the original image T−1

s = βs = 0.9 and noise rate
βτ = a0/a2 = 1. We keep the ratio h/βm to its optimal value βτ/βs = 0.9 and
investigate the Tm-dependence of pb. Then, the parameter Tm has the meaning
of temperature for the simulated annealing. Obviously, p

(MAP)
b = limTm→0 pb

and pb at Tm = Ts is the lowest value of p
(MPM)
b for Γ = 0.

Let us stress again that in practice, the infinite range model is not useful
for realistic two-dimensional image restoration because all pixels are neighbor
of each other. In order to restore these two-dimensional images, we should use
the prior P ({ξ}) for two dimensions. In fact, let us think about the overlap r
between an original pixel ξi and the corresponding degraded pixel τi, namely,

r = [ξiτi]data =

∑
τ,ξ eβτ ξτ+βsm0ξ(ξτ)

4 cosh(βτ ) cosh(βsm0)
= tanh(βτ ) . (47)

From this relation, the error probability pτ is given as pτ = (1 − r)/2 =
1/(1+e2βτ ) = 0.119 < p

(MPM)
b for βτ = 1, and unfortunately, the restored im-

age becomes much worse than the degraded one (see Fig. 2 (left)). This is be-
cause any spacial structure is ignored in this artificial model. This result might
be understood as a situation in which we try to restore the finite-dimensional

Fig. 2. The bit-error rate pb = (1 − R)/2 without exchange term (βJ = 0) as
a function of temperature Tm = β−1

m (left). Keeping the ratio to h/βm = βτ/βs =
a0/a2βs = 0.9 (we set a0 = a = 1), we change the value of Tm. For the case of Γ = 0,
pb takes its minimum at Tm = Ts = 0.9. For finite Γ , the optimal temperature Tm

is not Ts; however, the minimum of pb does not change. The right panel shows the
optimal temperature T opt

m as a function of Γ
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image with some structures by using the infinite range prior without any
structure (namely, the correlation length between pixels is also infinite). How-
ever, the infinite range model is useful to predict the qualitative behavior of
macroscopic quantities such as bit-error rate and we can grasp the details of
its hyperparameters’ (namely, Tm, h, or Γ ) dependence and can also compare
the MAP with the MPM estimations. This is a reason why we introduce this
model to the analysis of image restoration problems. Of course, if we use two-
dimensional structural priors, both the MAP estimation via simulated and
quantum annealing and the MPM estimation by using thermal and quantum
fluctuations work well for realistic two-dimensional image restoration. In the
next section, we will revisit this problem and find it. It is also important for
us to bear in mind that the quality of restoration depends on the macroscopic
properties of the original image.

In our choice of the original image, its macroscopic qualities are de-
termined by the temperature Ts and magnetization m0 as a solution of
m0 = tanh(βsm0). Although we chose the temperature Ts = 0.9 in Fig. 2
(left), it is important to check the retrieval quality for different temperatures
Ts. In Fig. 3 (right), we plot the bit-error rate for the case of Ts = 0.7. From
this panel, we find pb < pτ and the MPM estimation improves the quality of
the restoration.

For Γ > 0, the optimal temperature which gives the minimum of pb is not
Ts. In the right panel of Fig. 2, we plot the T opt

m as a function of Γ . In Fig. 3
(left), we plot the bit-error rate as a function of Γ for Tm = Ts = 0.9 setting
the ratio to its optimal value h/βm = βτ/βs = 0.9. From this figure, we find
that the MPM optimal estimate no longer exists by adding the transverse field
Γ > 0 and the bit-error rate pb increases as the amplitude of the transverse
field Γ becomes much stronger.

Fig. 3. The bit-error rate pb is drawn for Tm = 0.01, 0.1 and Tm = 0.9 as a function
of Γ (left). The right panel is the same type of the plot as the right panel in Fig. 2
for the case of Ts = 0.7
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On the other hand, when we set the temperature Tm = 0.01, the Γ -
dependence of the bit-error rate is almost flat (see Fig. 3 (right)). We should
notice that pb at Γ = 0 for Tm = 0 corresponds to the performance of the
MAP estimation by quantum annealing. We discuss the performance of the
quantum annealing in the last part of this subsection.

We next consider the performance for the MAP and MPM estimations with
the parity check term (βJ 
= 0). We plot the result in Fig. 4. As we mentioned
before, the two-body parity check term works very well to decrease the bit-
error rate pb. However, in this case, there does not exist the optimal βJ which
minimizes the bit-error rate for any finite values of Γ . As we see in the left
panel of Fig. 4, for a small value of βJ , the restoration by a finite Γ is superior
to that in the absence of the transverse field (Γ = 0).

Fig. 4. The bit-error rate pb as a function of βJ for Γ = 0, 1, 2 keeping the ratio
constant h/βm = βτ/βs (left). In the right panel, pb is plotted as a function of Γ for
the case of βJ = 0.5, 1, 2.0

Hyperparameter Estimation

In this subsection, we evaluated the performance of the MAP and MPM es-
timations in image restoration through the bit-error rate. In these results,
we found that the macroscopic parameters βm, h, and Γ -dependence of the
bit-error rate have important information to retrieve the original image. How-
ever, from the definition, (44),(46), as the bit-error rate contains the original
image {ξ}, it is impossible for us to use pb as a cost function to determine
the best choice of these parameters. In statistics, we usually use the marginal
likelihood [27] which is defined by the logarithm of the normalization constant
of tr{σ}P ({σ}|{τ})Pm({σ}), that is,
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K(βm, h, Γ : {τ}) ≡ log ZPos. − log ZPri. − log ZL (48)

where ZPos., ZPri and ZL are the normalization constants for the posterior,
the prior and the likelihood, respectively, and which are given by

ZPos. = tr{σ}exp



βm

∑

ij

σz
i σz

j + h
∑

i

τiσ
z
i + Γ

∑

i

σx
i



 (49)

ZPri. = tr{σ}exp



βm

∑

ij

σz
i σz

j + Γ
∑

i

σx
i



, ZL = tr{τ}exp

(
h
∑

i

τiσ
z
i

)
, (50)

respectively. For simplicity, let us concentrate ourselves on the case of no
parity check βJ = 0.

It must be noted that the marginal likelihood (48) is constructed by us-
ing the observables {τ} and does not contain the original image {ξ} at all.
Therefore, in practice, the marginal likelihood has a lot of information to de-
termine the macroscopic parameters, what we call hyperparameters, before we
calculate the MAP the MPM estimates.

In the infinite range model, it is possible for us to derive the data-averaged
marginal likelihood per pixel K(βJ , h, Γ ) = [K(βJ , h, Γ : {τ})]data/N explic-
itly. Here we first investigate the hyperparameter dependence of the mar-
ginal likelihood. log ZPri and [log ZL]data = [log

∫∞
−∞

∏
i dτiFτ (τi)ehτiσ

z
i ]data

per pixel can be calculated as

log ZPri

N
= −βmm2

1

2
+ log 2 cosh

√
(βmm1)2 + Γ 2 (51)

[log ZL]data

N
= −h2

2

[( a0

ah

)2

− a2

]
(52)

and the data average of the first term on the right-hand side of (48) is identical
to the free energy density for βJ = 0. Thus, we obtain the data-averaged
marginal likelihood as

K(βm, h, Γ ) = −βmm2

2
+
∑

ξ

M(ξ)
∫ ∞

−∞
Du log 2 cosh

√
Φ2

0 + Γ 2

+
βmm2

1

2
− log 2 cosh

√
(βmm1)2 + Γ 2 +

h2

2

[( a0

ah

)2

− a2

]
(53)

where m1,m mean the magnetizations of the prior and the posterior, and they
are given by

m1 =
βmm1 tanh

√
(βmm1)2 + Γ 2

√
(βmm1)2 + Γ 2

(54)

and (45), respectively. In Fig. 5 (left), we plot K(βm, h, Γ ). In this figure, we
set Ts = 0.9, βτ = 1. We found that the data-averaged marginal likelihood
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Fig. 5. The data-averaged marginal as a function of hyperparameters βm, h, and Γ
(left). The right panel shows the time development of the hyperparameters, βm, h,
and Γ via the gradient descent of the marginal likelihood. We set the time constants
cβm = ch = cΓ = 1 and the values of true hyperparameters as Ts = β−1

s = 0.9,
βτ = 1

takes its maximum at Tm = Ts, h = βτ , and Γ = 0. This result might be
naturally understood because the performance of both the MAP and MPM
estimations should be the best for setting the probabilistic models of the
noise channel and the distribution of the original image to the corresponding
true probabilities. Therefore, it might seem that the transverse field Γ has
no meaning for restoration. However, when we attempt to maximize the mar-
ginal likelihood via gradient descent, we need to solve the following coupled
equations,

cβm

dβm

dt
=

∂K

∂βm
=

〈
∑

ij

σz
i σz

j

〉

Pos.

−
〈
∑

ij

σz
i σz

j

〉

Pri.

(55)

ch
dh

dt
=

∂K

∂h
=

〈
∑

i

τiσ
z
i

〉

Pos.

−
〈
∑

i

τiσ
z
i

〉

Pri.

−
〈
∑

i

τiσ
z
i

〉

L

(56)

cΓ
dΓ

dt
=

∂K

∂Γ
=

〈
∑

i

σx
i

〉

Pos.

−
〈
∑

i

σx
i

〉

Pri.

(57)

with the definitions of the brackets

〈· · ·〉Pos. =
tr{σ}(· · ·) exp

(
βm

∑
ij σz

i σz
j + h

∑
i τiσ

z
i + Γ

∑
i σx

i

)

tr{σ}exp
(
βm

∑
ij σz

i σz
j + h

∑
i τiσz

i + Γ
∑

i σx
i

) (58)

〈· · ·〉Pri. =
tr{σ}(· · ·) exp

(
βm

∑
ij σz

i σz
j + Γ

∑
i σx

i

)

tr{σ}exp
(
βm

∑
ij σz

i σz
j + Γ

∑
i σx

i

) ,
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〈· · ·〉L =
tr{τ}(· · ·) exp(h

∑
i τiσ

x
i )

tr{τ}exp(h
∑

i τiσx
i )

(59)

and the time constants cβm
, ch, and cΓ . Thus, when we solve the above equa-

tions, we need to evaluate these expectations for every time steps by using
the quantum Markov chain Monte Carlo method. It is obvious that it takes
quite long time to obtain the solutions. From the reasons mentioned above,
it is convenient for us to suppress the error of hyperparameter estimation by
introducing the transverse field. From Figs. 2, and 3, we actually find these
desirable properties.

Incidentally, for the infinite range model, we derive these coupled equations
explicitly. The results are given by

cβm

dβm

dt
=

m2
1 − m2

2
− βmm2

1 tanh
√

(βmm1)2 + Γ 2

√
(βmm1)2 + Γ 2

+ m
∑

ξ

M(ξ)
∫ ∞

−∞
Du

Φ0 tanh
√

Φ2
0 + Γ 2

√
Φ2

0 + Γ 2
(60)

ch
dh

dt
= −a2h +

∑

ξ

M(ξ)
∫ ∞

−∞
Du

Φ0(a0ξ + au) tanh
√

Φ2
0 + Γ 2

√
Φ2

0 + Γ 2
(61)

cΓ
dΓ

dt
= −Γ tanh

√
(βmm1)2 + Γ 2

√
(βmm1)2 + Γ 2

+ Γ
∑

ξ

M(ξ)
∫ ∞

−∞
Du

tanh
√

Φ2
0 + Γ 2

√
Φ2

0 + Γ 2

(62)
where m1 and m satisfy (45) and (54). We plot the results by solving the differ-
ential equations with respect to the hyperparameters, namely, (60),(61),(62),
numerically in Fig. 5. We find that each hyperparameter converges to its op-
timal value.

4.3 Image Restoration Driven by Pure Quantum Fluctuation

In the above discussion, we investigated mainly the MPM estimation at the
finite temperature Tm > 0 according to reference [21]. However, it is worth-
while for us to check the limit βm → ∞, keeping the effective amplitude
of the transverse field Γeff = Γ/βm finite. In this limit, we investigate pure
effect of the quantum fluctuation without any thermal one. To evaluate the
performances of the MAP and MPM estimations for this zero temperature
case, we set Φ0 = βm(m+h∗a0ξ+h∗au) = βmφ0, where h∗ is its optimal value
h∗ = βs/βτ , and consider the asymptotic form of the saddle point equations
with respect to m and m1 in the limit of βm → ∞. We easily find

m1 =
√

1 − Γ 2
eff , m =

∑

ξ

M(ξ)
∫ ∞

−∞

φ0Du√
φ2

0 + Γ 2
eff

(63)
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and the time evolution of Γeff as

cΓeff

dΓeff

dt
= − Γeff√

m2
1 + Γ 2

eff

+
∑

ξ

M(ξ)
∫ ∞

−∞

ΓeffDu√
φ2

0 + Γ 2
eff

(64)

where cΓeff = βmcΓ . The bit-error rate is given by pb = (1 − m0)/2 +∑
ξ M(ξ)ξH(u∗), where u∗ = (a0h∗ξ + m)/ah∗. We fist plot the Γeff -

dependence of the bit-error rate at Tm = 0 in Fig. 6. In this figure, the
value at Γeff = 0 corresponds to the quantum MAP estimation which might
be realized by the quantum annealing. From this figure, we find that the
performance of the quantum MPM estimation is superior to the MAP es-
timation and there exists some finite value of the amplitude Γ at which
the bit-error rate takes its minimum. In the same figure, we also plot the
Tm-dependence of the bit-error rate for Γ = 0. We find that, for both the
quantum and thermal cases, the best possible values of both the MAP and
MPM estimations are exactly the same. In Fig. 6 (right), we plot the time
development of the effective amplitude of the transverse field and the resul-
tant bit-error rate. From this figure, we notice that at the beginning of the
gradient descent the bit-error rate decreases but as Γ decreases to zero, the
error converges to the best possible value for the quantum MAP estimation.
The speed of the convergence is exponentially fast. Actually, in the asymp-
totic limit t → ∞, Γeff → 0, Eq. (64) is solved as Γeff = Γeff(0) e−θΓeff t, where
θΓeff ≡ (1/cΓeff )(1−

∑
ξ M(ξ)

∫∞
−∞ Du/|φ0|). However, this fact does not mean

that it is possible for us to decrease the effective amplitude of the transverse
field to zero by using exponentially fast scheduling to realize the best possible
performance of the quantum MAP estimation. This is because the time unit
t appearing in (64) does not correspond to the quantum Monte Carlo step

Fig. 6. The bit-error rate for the quantum (Tm = 0) and thermal (classical) (Γ =
0) estimations (left). The right panel shows the time development of the effective
amplitude of the transverse field Γeff = Γ/βm. The inset means the time dependence
of the bit-error rate
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and the dynamics (64) requires the (equilibrium) magnetization m(Γeff) at
each time step in the differential equation. As result, we need the information
about m near Γeff → 0, namely, the asymptotic form m(t → ∞, Γeff → 0),
to discuss the annealing schedule to obtain the MAP estimation. Although
we assume that in each time step in (64), the system obeys the equilibrium
condition : m =

∑
ξ M(ξ)

∫∞
−∞ φ0Du/

√
φ2

0 + Γ 2
eff , we need the dynamics of

m to discuss the optimal annealing scheduling about Γeff . This point will be
discussed in the last section by means of the quantum Markov chain Monte
Carlo method.

The Nishimori–Wong Condition on the Effective Transverse Field

From Fig. 6 (left), we found that the lowest value of the bit-error rate is the
same for both the thermal and quantum MPM estimations. In the thermal
MPM estimation, Nishimori and Wong [8] found the condition under which
the best performance is obtained, namely, what we call the Nishimori–Wong
condition. They showed that the condition (m/m0) = (h/βτ )(βs/βm) should
hold in order to obtain the lowest value of the bit-error rate. When we set the
hyperparameter h to its true value h = βτ , the condition is reduced to the
simple form T opt

m = Ts. Therefore, it is important for us to derive the same
kind of condition which gives the best performance of the quantum MPM
estimation. Here we derive the condition and show that the lowest values of
pb for the thermal and quantum MPM estimations are exactly the same.

We first evaluate the condition (∂pb/∂Γeff) = 0 for pb = (1 − m0)/2 +∑
ξ ξM(ξ)H(u∗). After some simple algebra, we obtain

m(Γ opt
eff )

∑

ξ

ξM(ξ) exp

[
−{a0h∗ξ + m(Γ opt

eff )}2

2a2h2
∗

]
= 0 . (65)

Taking into account that m(Γeff) 
= 0 is needed for meaningful image restora-
tions, the Nishimori–Wong condition for the quantum MPM estimation is
written as

m0(βs)
m(Γ opt

eff )
=

a0

a2h∗βs
. (66)

As we chose h∗ = βτ/βs, βτ = a0/a2, this condition is simply rewritten as
m0(βs) = m(Γeff).

Let us summarize the Nishimori–Wong condition for the MPM estimation:

Thermal: T opt
m = Ts (Reference [8])

Quantum: m0(βs) =
∑

ξ

M(ξ)
∫ ∞

−∞

φ0Du√
φ2

0 + (Γ opt
eff )2

.

In Fig. 7, we plot the temperature of the original image Ts-dependence of the
optimal temperature T opt

m and the optimal amplitude of the transverse field
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Fig. 7. The optimal temperature T opt
m and the optimal transverse field Γ opt

eff as a
function of the temperature Ts of the original image (left), respectively. The optimal
temperature for the thermal MPM estimation T opt

m is simply given by T opt
m = Ts

(Nishimori temperature). The right panel shows the magnetizations m(T opt
m ) and

m(Γ opt
eff )

Γ opt
eff . In the right panel of this figure, the magnetizations m(T opt

m ) and m(Γ opt
eff )

are plotted. The effective amplitude of the transverse field Γeff at which the bit-
error rate takes its minimum in Fig. 6 is consistent with Γ opt

eff (Ts = 0.9) � 0.66
as shown in Fig. 7 (left).

From these results, it is shown that the lowest values of the bit-error rate
for both the thermal and quantum MPM estimations are exactly the same
and the value is given by

pb =
1 − m0

2
+
∑

ξ

ξM(ξ)H
(

a0h∗ξ + m0

ah∗

)
. (67)

Therefore, we conclude that it is possible for us to construct the MPM es-
timation purely induced by the quantum fluctuation (without any thermal
fluctuation) and the best possible performance is exactly the same as that of
the thermal MPM estimation.

4.4 Error-Correcting Codes

In this subsection, we investigate the performance of the decoding in the so-
called Sourlas codes [5], in which uncertainties in the prior are introduced
as the quantum transverse field. Although we usually choose the prior in the
Sourlas codes as P ({σ}) = 2−N (the uniform prior), here we use P ({σ}) =∏

i e−Γ σ̂x
i . Then, the effective Hamiltonian of the extended Sourlas codes leads

to
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Heff = −βJ

∑

i1,...,ip

Ji1···ip σz
i1σ

z
i2· · ·σz

ip − h
∑

i

τiσ
z
i − Γ

∑

i

σx
i . (68)

Hereafter, we call this type of error-correcting codes quantum Sourlas codes.
We first derive the Γ -dependence of the bit-error rate for a given p. Then, the
channel noise is specified by the next output distribution:

P ({J}, {τ}|{ξ})

=
exp

(
−Np−1

J2p!

∑
i1,...,ip

(
Ji1···ip − J0p!

Np−1 ξi1 · · · ξip

)2

− 1
2τ2 (τi − a0ξi)2

)

(J2πp!/Np−1)1/2
√

2πa
. (69)

For simplicity, we treat the case in which the original message sequence {ξ}
is generated by the following uniform distribution P ({ξ}) = 2−N . Then, the
moment of the effective partition function Zeff leads to

Zn
eff = exp

[
βJ

M

∑

i1,...,ip

n∑

α=1

M∑

t=1

Ji1···ip σα
i1(t)σ

α
i2(t)· · ·σα

ip(t)

+
h

M

∑

i

n∑

α=1

M∑

t=1

τiσ
α
i (t) + B

∑

i

M∑

t=1

σi(t)σi(t + 1)

]
(70)

where α and t mean the indexes of the replica number and the Trotter
slice, respectively. We set B ≡ (1/2) log coth(Γ/M) and used the gauge
transform Ji1···ip → Ji1···ip ξi1 · · · ξip, σip → ξipσ

z
ip. After averaging Zn

eff

over the quenched randomness [· · ·]data, namely, over the joint distribution
P ({J}, {τ}, {ξ}), we obtain the following data-averaged effective partition
function:

[Zn
eff ]data =

∏

tt′

∏

αβ

∫ ∞

−∞
dQαβ(t, t

′
)
∫ ∞

−∞
dλαβ(t, t

′
)
∫ ∞

−∞
dmα(t)

∫ ∞

−∞
dm̂α(t)

× exp [−Nf(m, m̂,Q,λ)] (71)

with

f(m, m̂,Q,λ) = −βJJ0

M

∑

t,α

mp
α(t) − hτ0

M

∑

t,α

mα(t)

− (βJJ)2

4M2

∑

tt′ ,αβ

Qp
αβ(t, t

′
) − (hτ)2

2M2

∑

tt′ ,αβ

Qαβ(t, t
′
)

+
1
M

∑

t,α

m̂α(t)mα(t) +
1

M2

∑

tt′ ,αβ

λαβ(t, t
′
)Qαβ(t, t

′
)

− 1
M

∑

t,α

m̂α(t)σα(t) − 1
M2

∑

tt′ ,αβ

λαβ(t, t
′
)σα(t)σβ(t

′
)

− B
∑

t

σ(t)σ(t + 1) (72)
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where we labeled each Trotter slice by index t. Using the replica symmetric
and static approximations, namely,

mα(t) = m, m̂α(t) = m̂ (73)

Qαβ(t, t
′
) =

{
χ (α = β)
q (α 
= β) , λαβ(t, t

′
) =

{
λ1 (α = β)
λ2 (α 
= β) , (74)

we obtain the free energy density fRS :

βJfRS(m,χ, q) = (p − 1)βJJ0m
p +

1
4
(p − 1)(βJJ)2(χp − qp)

−
∫ ∞

−∞
Dw log

∫ ∞

−∞
Dz 2 cosh Ξ (75)

where we used the saddle point equations with respect to m̂, λ1, λ2, namely,
m̂ = pβJJ0m

p−1 + a0h and λ1 = p
2 (βJJ)2χp−1 + (ah)2, λ2 = p

2 (βJJ)2qp−1 +
(ah)2. Then, the saddle point equations are derived as follows:

m =
∫ ∞

−∞
Dω

∫ ∞

−∞
Dz

(
Φ sinh Ξ

ΞΩ

)
(76)

χ =
∫ ∞

−∞

Dω

Ω

∫ ∞

−∞
Dz

[(
Φ

Ξ

)2

cosh Ξ + Γ 2

(
sinhΞ

Ξ3

)]
(77)

q =
∫ ∞

−∞
Dω

[∫ ∞

−∞
Dz

(
Φ sinh Ξ

ΞΩ

)]2

(78)

where we defined

Φ = ω

√
p

2
(βJJ)2qp−1 + (ah)2 + z

√
p

2
(βJJ)2(χp−1 − qp−1)

+ pβJJ0m
p−1 + a0h (79)

and Ξ =
√

Φ2 + Γ 2, Ω =
∫∞
−∞ Dz cosh Ξ. The resultant overlap leads to

R =
∫ ∞

−∞
Dω

∫ ∞

−∞
Dz sgn(Φ) = 1 − 2

∫ ∞

−∞
Dw H(−z∗p) (80)

where we defined z∗p by

z∗p = −
(pβJJ0m

p−1 + a0h) + w
√

p
2 (βJJ)2qp−1 + (ah)2

√
p
2 (βJJ)2(χp−1 − qp−1)

(81)

and the error function H(x) defined as H(x) =
∫∞

x
Dz. Thus, the bit-error

rate for the problem of error-correcting codes is given by pb = (1 − R)/2 =∫∞
−∞ Dw H(−z∗p), where the above bit-error rate pb depends on Γ through the

order parameters χ, q, and m.
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4.5 Analysis for Finite p

We first evaluate the performance of the quantum Sourlas codes for the case
of finite p by solving the saddle point equations numerically.

4.5.1 Absence of the External Field h = 0

In FIG. 8 (left), we first plot the Γ -dependence of the bit-error rate pb for the
case of p = 2 without magnetic field h = 0. In this plot, we choose J = J0 = 1
and set βJ = 1. It must be noted that J0/J corresponds to the signal to noise
ratio (SN ratio). From this figure, we find that the bit-error rate gradually
approaches to the random guess limit pb = 0.5 as Γ increases. This transition
is regarded as a second-order phase transition between the ferromagnetic and
paramagnetic phases. We plot the Γ -dependence of the order parameters m,χ
and q in the right panel of Fig. 8. We should notice that in the classical limit
Γ → 0, the order parameter χ should take the value 1 and both magnetization
m and spin glass order parameter q continuously become zero at the transition
point. Therefore, for the case of p = 2, the increase of the quantum fluctuation
breaks the error-less state gradually. On the other hand, in Fig. 9, we plot the
Γ -dependence of the bit-error rate pb for the case of p = 3. In this figure, we
find that the bit-error rate suddenly increases to 0.5 at the transition point
Γ = Γc and the quality of the message retrieval becomes the same as the
random guess. This first-order phase transition from the ferromagnetic error-
less phase to the paramagnetic random guess phase is observed in the right
panel of Fig. 9.

Fig. 8. The Γ -dependence of the bit error-rate pb for the case of p = 2 without
magnetic field h = 0 (left) and order parameters m, χ and q as a function of Γ
(right). We set βJ = 1, J = J0 = 1
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Fig. 9. The Γ -dependence of the bit error-rate pb for the case of p = 3 without
magnetic field h = 0 (left) and order parameters m, χ and q as a function of Γ
(right). We set βJ = 1, J = J0 = 1, and a0 = a1

We find that the system undergoes the first-order phase transition for p ≥
3. In FIG. 10, we plot the Γ -dependence of the bit-error rate for p = 2, 3, . . . , 6
and p = 12. From this figure, we find that the transition for p ≥ 3 is first-
order and the bit-error rate changes its state from the ferromagnetic almost
perfect information retrieval phase to the paramagnetic random guess phase
at Γ = Γc. The tolerance to the quantum fluctuation increases as the number
of degrees p of the interaction increases.

Fig. 10. The Γ -dependence of the bit error-rate pb for p = 2, . . . , 6 and p = 12
without magnetic field h = 0 (left). We set βJ = 1, J = J0 = 1. The right panel shows
the TJ = β−1

J dependence of the bit-error rate for keeping the ratio Γ/βJ ≡ Γeff to
the values Γeff = 0.1, 1, and 1.5
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Presence of the external field h �= 0

We next consider the case of h 
= 0. This means that we send not only the
parity check {Ji1···ip} but also bit sequence {ξ} itself. We plot the bit-error
rate as a function of Γ in Fig. 11. From this figure, we find that the bit-error
rate gradually goes to some finite value which is below the random guess limit.
The right panel of this figure that in this case there is no sharp phase transition
induced by the quantum fluctuation. In Fig. 12, we plot the bit-error rate and
corresponding order parameters as a function of Γ . This figure that the the
bit-error rate suddenly increases at some critical length of the transverse field
Γc. As we add the external field h, this is not a ferro-paramagnetic phase
transition; however, there exist two stable states, namely good retrieval phase
and poor retrieval phase. In Fig. 13, we plot the Γ -dependence of the bit-error
rate for p = 3, . . . , 6 and p = 12 (left) and for p = 6 and βJ = 0.2, . . . , 12
(right). From the right panel, interesting properties are observed. For small Γ ,
the bit-error rate becomes small as we increase p. On the other hand, for large
Γ , the bit-error rate becomes large as p increases. Moreover, the bit-error rate
for p = 6 takes its maximum at some finite value of Γ .

Fig. 11. The Γ -dependence of the bit error-rate pb for the case of p = 4 with
magnetic field h = 1 (left) and order parameters m, χ, and q as a function of Γ
(right). We set βJ = 1, J = J0 = 1, and a0 = a = 1

4.6 Phase Diagrams for p → ∞ and Replica Symmetry Breaking

In this subsection, we investigate properties of the quantum Sourlas codes in
the limit of p → ∞. In this limit, we easily obtain several phase boundaries
analytically and draw the phase diagrams.

First of all, we consider the simplest case, namely, the case of J0 = 0, h = 0.
For this choice of parameters, the ferromagnetic phase does not appear and
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Fig. 12. The Γ -dependence of the bit error-rate pb for the case of p = 5 with
magnetic field h = 1 (left) and order parameters m, χ, and q as a function of Γ
(right). We set βJ = 1, J = J0 = 1, and a0 = a = 1

Fig. 13. The Γ -dependence of the bit-error rate for p = 3, . . . , 6 and 12 (left). For
p = 6, the Γ -dependences of the bit-error rate for βJ = 0.2, . . . , 1.2 are shown in the
right panel

possible phases are paramagnetic phase and spin-glass phase. The free energy
density we evaluate is now rewritten as

fRS = −1
4
(p− 1)βJJ2(qp −χp)−TJ

∫ ∞

−∞
Dw log

∫ ∞

−∞
Dz2 cosh βJ

√
φ2

0 + Γ 2
eff

(82)
with φ0 = w

√
pJ2qp−1/2 + z

√
pJ2(χp−1 − qp−1)/2, where we defined Γeff =

Γ/βJ . In the paramagnetic phase, there is no spin-glass ordering, namely,
q = 0. Thus, the free energy density in the paramagnetic phase leads to
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fRS
para =

J2βJ

4
(p − 1)χp − TJ log

∫ ∞

−∞
Dz2 cosh βJ

√
Γ 2

eff +
p

2
J2χp−1z2 . (83)

The saddle point equation with respect to χ is given by

χ =

∫∞
−∞ Dz

{(
φ00

Γ 2
eff+φ00

)
cosh βJ

√
Γ 2

eff + φ00 + Γ 2
effTJ

sinh βJ

√
Γ 2

eff+φ00√
Γ 2

eff+φ00
3

}

∫∞
−∞ Dz cosh βJ

√
Γ 2

eff + φ2
00

(84)
with φ00 = pJ2χp−1z2/2. In the limit of p → ∞, there are two possible
solutions of χ, that is χp = 1 and χp = 0. The former is explicitly given from
(84) as χ � 1 − 4Γ 2

effT 2
J /p2J . Then, we obtain the free energy density for

this solution as fI = −J2/4TJ − TJ log 2 by substituting this χ into (83) and
evaluating the integral with respect to z at the saddle point in the limit of
p → ∞. Let us call this phase PI. The latter solution is explicitly evaluated
as χ = (TJ/Γeff) tanh(Γeff/TJ ) (<1; thus, χp = 0) and the corresponding free
energy density leads to fII = −TJ log 2 − TJ log cosh(Γeff/TJ). We call this
phase PII.

Here we should not overlook the entropy in PI, namely, S = −(∂fI/∂T ) =
−J2/4T 2

J + log 2. Obviously, S becomes negative for T < (J/2
√

log 2)−1 and
in this region, the replica symmetry of the order parameters might be broken.
Therefore, in this low temperature region, we should construct the replica
symmetry breaking (RSB) solution. To obtain the RSB solution, we break
the symmetry of the matrices q and λ as

qlδ,l′δ′ =
{

q0 (l = l
′
)

q1 (l 
= l
′
)

, λlδ,l′δ′ =
{

λ̂0 (l = l
′
)

λ̂1 (l 
= l
′
)

(85)

for l = 1, . . . , n/x, δ = 1, . . . , x. Then, we obtain the free energy density for
one-step RSB solution as

f1RSB = (p − 1)J0m
p +

βJJ2

4
[xqp

1 + (1 − x)qp
0 ] +

βJJ2

4
(p − 1)χp

− βJ

2
[xq1λ̂1 + (1 − x)q0λ̂0]

− TJ

x

∫ ∞

−∞
Dw log

∫ ∞

−∞
Dz

(∫ ∞

−∞
Dy2 cosh βJ

√
φ̂2 + Γ 2

eff

)x

(86)

with φ̂ = w
√

λ̂1 + z
√

λ̂0 − λ̂1 + y

√
pJ2χp−1/2 − λ̂0 + pβJJ0m

p−1 + a0h. By

taking (∂f1RSB/∂q0) = (∂f1RSB/∂q1) = 0, we obtain λ̂1 = pJ2qp−1
1 /2, λ̂0 =

pJ2qp−1
0 /2.

Here we set the parameters J0, h again to J0 = h = 0. At low temperature,
we naturally assume q1 < 0 (λ̂1 = 0), q0 = 1 (λ̂0 = pJ2/2), and χ = 1. Substi-
tuting these conditions into (86) and evaluating the integral with respect to y
at the saddle point in the limit of p → ∞, we obtain the free energy density in
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this phase, which will be referred to as SGI, as fSGI = −βJJ2x/4−log 2/(βJx).
Substituting the solution of (∂fSGI/∂x) = 0, namely, x = 2

√
log 2/(JTJ ) into

fSG, we obtain the free energy density which specifies SGI as fSGI = −J
√

log 2.
Let us summarize

PI (para) : fI = − J2

4TJ
− TJ log 2 (χ = 1, q = 0)

PII (para) : fII = −TJ log 2 − TJ log cosh
(

Γeff

TJ

)
(χp = q = 0)

SGI (spin glass) : fSGI = −J
√

log 2 (χ = q = 1) .

We illustrate the phase diagram in Fig. 14 (left).

Fig. 14. The phase diagrams in the limit of p → ∞. In the case of J0 = 0, there
exist three phases, namely, PI, PII, and SGI. Below the critical point (TJ/J)c =
(1/2J

√
log 2), the replica symmetry is broken (the left panel). The right panel shows

that the critical SN ratio (J0/J)c, above which (labeled FI in the panel) decoding
without errors is achieved, is given by

√
log 2

As the phase transitions between two arbitrary phases among the three Au: Please check
whether the edit
mode here retains
the intended sense.

phases PI, PII, SGI are all first order, each phase boundary is obtained by
balancing the free energy density. Namely, Γeff = TJ cosh−1(eJ2/4T 2

J ) (TJ >

Tc) for PI–PII, Γeff = TJ cosh−1(eJ
√

log 2/TJ /2) (TJ < Tc) for PII–SGI, and
TJ = J/2

√
log 2 = Tc for SGI–PI.

We next consider the case of J0 
= 0. This case is much more important
in the context of error-correcting codes. For the case the of absence of the
external field h = 0, the phase transition between the error-less phase and the
random guess phase is specified as the ferro-paramagnetic (or spin-glass) phase
transition. From the reasons we mentioned above, our main purpose here is to
determine the transition point (J0/J)c below which the ferromagnetic phase
is stable. The critical SN ratio (J0/J)c is important because as we mentioned
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before, the error-less decoding is possible when the channel capacity C and the
transmission rate R satisfy the inequality R ≤ C. The channel capacity for the
Gaussian channel we are dealing with is given by C = (1/2) log2(1 + J2

0/J2)
with J0 = J0p!/Np−1, J = J2p!/2Np−1, that is, C � J2

0p!/(J2Np−1 log 2)
in the limit of N → ∞ for a given p. On the other hand, the transmission
rate R is given as R = N/NB = N/NCp � p!/Np−1. Therefore, the error-less
decoding is possible when the inequality

R

C
=
(

J

J0

)2

log 2 ≤ 1 (87)

holds and the question now arises, namely, is it important to ask whether
the above inequality is satisfied or not at the critical point (J/J0)c? In the
following, we make this point clear.

We start from the saddle point equations which are derived from the free
energy density of the one-step RSB (86). These equations are given explicitly
as

m =
∫ ∞

−∞
Dw

∫∞
−∞ Dz

(∫∞
−∞ Dy2 cosh βJ Ξ̂

)x−1 ∫∞
−∞ Dy

(
φ̂

Ξ̂

)
2 sinh βJ Ξ̂

∫∞
−∞ Dz

(∫∞
−∞ Dy2 cosh βJ Ξ̂

)x

q0 =
∫ ∞

−∞
Dw

∫∞
−∞ Dz

(∫∞
−∞ Dy2 cosh βJ Ξ̂

)x−2 (∫∞
−∞ Dy

(
φ̂

Ξ̂

)
2 sinh βJ Ξ̂

)2

∫∞
−∞ D

(∫∞
−∞ Dy2 cosh βJ Ξ̂

)x

q1 =
∫ ∞

−∞
Dw






∫∞
−∞ Dz

(∫∞
−∞ Dy

(
φ̂

Ξ̂

)
2 sinh βJ Ξ̂

)x

∫∞
−∞ Dz

(∫∞
−∞ Dy2 cosh βJ Ξ̂

)x






2

(88)

χ =
∫ ∞

−∞
Dw

∫∞
−∞ Dz

(∫∞
−∞ Dy2 cosh βJ Ξ̂

)x−1 ∫∞
−∞ Dy

(
φ̂

Ξ̂

)2

2 sinh βJ Ξ̂

∫∞
−∞ Dz

(∫∞
−∞ Dy2 cosh βJ Ξ̂

)x

+ Γ 2
effTJ

∫ ∞

−∞
Dw

∫∞
−∞ Dz

(∫∞
−∞ Dy2 cosh βJ Ξ̂

)x−1 ∫∞
−∞ Dy

(
2 sinh βJ Ξ̂

Ξ̂3

)

∫∞
−∞ Dz

(∫∞
−∞ Dy2 cosh βJ Ξ̂

)x

(89)

with

φ̂ = Jw

√
p

2
qp−1
1 + Jz

√
p

2
(qp−1

0 − qp−1
1 ) + Jy

√
p

2
(χp−1 − qp−1

0 ) + pJ0m
p−1

(90)

and Ξ̂ =
√

φ̂2 + Γ 2
eff . When the number of products p of the estimate of the

original bits is extremely large and J/J0,m is positive, φ̂ = pJ0m
p−1 and
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the solutions of the above saddle point equations lead to m = q0 = q1 = 1
and χ = 1. Thus, the system is in the ferromagnetic phase and the replica
symmetry is not broken (q0 = q1). Substituting the replica symmetric solution
m = q = 1 into (75) and evaluating the integral with respect to w at the saddle
point in the limit of p → ∞, we obtain the free energy density in this phase (let
us call this FI) as fFI = −J0. We should notice that this free energy density
does not depend on the effective amplitude of the transverse field Γeff at all.
From the argument of the J0 = 0 case, the phase specified χ = 1, TJ < Tc =
(2
√

log 2) is the spin-glass phase. Therefore, the condition (87) is satisfied
and the ferromagnetic error-less phase exists for (J0/J) ≥ (J0/J)c =

√
log 2,

where (J0/J) is determined by balancing the free energy densities fFI = fSGI.
As a result, we conclude that the error-less decoding is achieved if the SN ratio
(J0/J) is greater than the critical value (J0/J)c =

√
log 2 and the condition

is independent of Γeff . To put it into other words, Shannon’s bound is not
violated by the quantum uncertainties in the prior distribution in the limit of
p → ∞.

The details of the analysis, including the numerical RSB solutions for finite
p, will be reported in the conference and in the forthcoming article [28].

5 Quantum Markov Chain Monte Carlo Simulation

In the previous section, we investigated the performance of the MAP and
MPM estimations for the problems of image restoration and error-correcting
codes by using analysis of the mean-field infinite range model. In the Sourlas
codes, the infinite range model is naturally accepted because we do not have
to consider any structure in the bit sequence {ξ}, and in that sense, the range
of interactions in the parity check {ξi1 · · · ξip} is infinite.

On the other hand, in image restoration, there should exist some geomet-
rical structures in each pair in the sequence of the original images {ξ}. Then,
we should introduce an appropriate two-dimensional lattice on which each
pixel is located. Therefore, in this section, we carry out computer simulations
for the two-dimensional model system to investigate the qualities of the MAP
and MPM image restorations quantitatively.

5.1 Quantum Markov Chain Monte Carlo Method

Let us remind the readers that our effective Hamiltonian for image restoration
is described by Heff = −βm

∑
〈ij〉 σz

i σz
j −h

∑
i τiσ

z
i −Γ

∑
i σx

i . In this section,
we suppose that each pixel σz

i is located on the two-dimensional square lattice.
To evaluate the expectation value of an arbitrary quantity A in the quantum
spin system

〈A〉 =
tr{σ} A e−βHeff

tr{σ} e−βHeff
, (91)
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we use the following ST formula [24] to carry out the above trace in practice
as

exp(−βHeff) = lim
M→∞

(
e

A
M e

B
M

)
(92)

where we defined

A = β(βm

∑

〈ij〉
σz

i σz
j + h

∑

i

τiσ
z
i ) = −βHclassical

eff , B = βΓ
∑

i

σx
i . (93)

We should keep in mind that these two terms A and B are easily diagonalized.
Then, by inserting the complete set

∑
{σjk} |{σjk}〉〈{σjk}| = 1, the parti-

tion function ZM for a fixed Trotter size M leads to

ZM = tr{σ}

(
e

A
M e

B
M

)
=

∑

{σjk=±1}
〈{σj1}|e

A
M |{σ′

j1}〉〈{σ
′

j1}|e
B
M |{σj2}

× · · · × 〈{σjM}|e A
M |{σ′

jM} 〉〈{σ′

jM}|e B
M |{σj1}〉 (94)

where |{σjk}〉 is the Mth product of eigenvectors {σ} and is explicitly given
by |{σjk}〉 = |σj1〉 ⊗ |σj2〉 ⊗ · · · ⊗ |σjM 〉.

By taking the limit of M → ∞, we obtain the effective partition function
Zeff of the quantum spin system with B = (1/2) log coth(βΓ/M) as follows:

Zeff ≡ lim
M→∞

ZM

= lim
M→∞

(aM )N
∑

{σjk}=±1

exp



ββm

M

∑

ij,k

σk
i σk

j +
βh

M

∑

i,k

τiσ
k
i + B

∑

i,k

σk
i σk+1

i





= lim
M→∞

(aM )N

×
∑

{σjk=±1}
exp



βeff




βm

∑

ij,k

σk
i σk

j + h
∑

i,k

τiσ
k
i + BM

∑

i,k

σk
i σk+1

i










(95)

where we defined aM and BM as aM ≡ {(1/2) sinh(2βeffΓ )}1/2, BM ≡
(1/2βeff) log coth(βeffΓ ), respectively, and introduced the effective inverse
temperature βeff = β/M . Thus, this is the partition function of a (d + 1)-
dimensional classical system at the effective temperature Teff = β−1

eff .
Let us think about the limit of Γ → 0 in this expression. Then, the cou-

pling constant of the last term appearing in the argument of the exponential
becomes strong. As a result, copies of the original system, which are described
by Hclassical

eff and located in the Trotter direction labeled as k, have almost the
same spin configurations. Thus, the partition function is now reduced to that
of the classical system at the temperature T = β−1.

We should not overlook that when we describe the same quantum sys-
tem at T = 0 of the effective Hamiltonian HQuantum

eff by the analysis of
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the Schrödinger equation ih̄(∂|ψ(t)〉/∂t) = H(t)|ψ(t)〉 for the time-dependent
Hamiltonian H(t) = −βm

∑
〈ij〉 σz

i σz
j − h

∑
i τiσ

z
i − Γ (t)

∑
i σx

i , the inverse
temperature β does not appear in the above expression. Therefore, we cannot
use β in the quantum Monte Carlo method to simulate the quantum system
at T = 0.

To realize the equilibrium state at the ground state T = 0 for a finite
amplitude of the quantum fluctuation Γ 
= 0, we take the limit β → ∞,M →
∞ keeping the effective inverse temperature βeff = O(1). Namely, the effective
parameters to simulate the pure quantum system by the quantum Monte Carlo
method are βeff and M , instead of β and M . This choice is quite essential
especially in the procedure of quantum annealing [16] because the quantum
annealing searches the globally minimum energy states by using only the
quantum fluctuation without any thermal fluctuation. Therefore, if we set the
effective inverse temperature βeff as of order 1 object in the limit of M → ∞
(we can take into account the quantum effect correctly in this limit) and
β → ∞ (the thermal fluctuation is completely suppressed in this limit), we
simulate the quantum spin system at the ground state T = 0.

5.2 Quantum Annealing and Simulated Annealing

According to the argument in the previous subsection, we construct the quan-
tum annealing algorithm to obtain the globally minimum energy states of our
effective Hamiltonian Hclassical

eff . To realize the algorithm, we control the am-
plitude of the transverse field as

Quantum Annealing (QA): Γ → 0 for βeff = 1, M → ∞.

We should notice that the simulated annealing (thermal annealing) is achieved
by controlling the parameter β as

Simulated Annealing (SA): β → ∞ for finite M and Γ = 0.

As we mentioned, the scheduling of T (t) and Γ (t) might be essential in the
simulated annealing and the quantum annealing. Although we know the op-
timal temperature scheduling T (t) ∼ (log t)−1, we have not yet obtained any
mathematically rigorous arguments for Γ (t) as in the simulated annealing.
Therefore, in this section, we use the same scheduling for Γ (t) as that of the
simulated annealing, namely, T (t) = Γ (t). The justification of identification
of Γ (t) and T (t) comes from the results we obtained in the previous section,
that is, the shape of the bit-error rate at T = 0 as a function of Γ is almost
the same as the bit-error rate for the thermal one. Thus, we assume that Γ
and T might have the same kind of role to generate the equilibrium states for
given Γ and T . However, the mathematical arguments on the scheduling of Γ
are quite important and should be made clear in near future.
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5.3 Application to Image Restoration

We investigate the MAP and MPM estimations by the quantum Monte Carlo
method and the quantum annealing for the two-dimensional pictures which
are generated by the Gibbs distribution P ({ξ}) = exp

(
βs

∑
〈ij〉 ξiξj/Z(βs)

)
.

It must be noted that the above sum
∑

〈ij〉(· · ·) should be carried out for the
nearest neighboring pixels located on the two-dimensional square lattice. A
typical snapshot from this distribution is shown in Fig. 16.

Thermal MPM Estimation Versus Quantum MPM Estimation

Before we investigate the performance of the simulated annealing and the
quantum annealing, as a simple check for our simulations, we demonstrate
the thermal MPM estimation for the degraded image with pτ = 0.1 of the
original image generated at Ts = 2.15 by using the thermal and quantum
Markov chain Monte Carlo methods. We show the result of the Tm-dependence
of the bit-error rate in Fig. 15. We carried out 30 independent runs for the
system size 100×100. We set h/βm = Tsβτ = (Ts/2) log(1−pτ/pτ ). From this
figure, we find that the best performance is achieved around the temperature
Tm = Ts = 2.15. In Fig. 16, we show the original, degraded, and restored
images. From this figure, we found that the restored image at relatively low
temperature Tm = 0.6 is pained in even for the local structure of the original

Fig. 15. The bit-error rate pb for the thermal MPM estimation as a function of the
temperature Tm (left). The plots were obtained from 30 independent runs for the
system size 100 × 100. We set the temperature of the original image Ts = 2.15 and
the noise rate pτ = 0.1. The right panel shows the bit-error rate for the quantum
MPM estimation for the system size 50 × 50, and the Trotter number M = 200 for
the same noise level pτ = 0.1 as shown in the left panel. The error-bars are obtained
from 50-independent runs
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Fig. 16. From the left to the right, original, degraded (pτ = 1), and restored
pictures at Tm = 0.6 and Tm = Ts = 2.15 are displayed

images. On the other hand, at the optimal temperature Tm = 2.15, the local
structures of the original image are also restored.

We next investigate the quantum MPM estimation. In Fig. 15, we plot
the bit-error rate for the quantum MPM estimation of the original image
generated by the Gibbs distribution for the two-dimensional ferromagnetic
Ising model. We control the effective transverse field Γeff on the condition
that the inverse temperature β is equal to β = βeffM , namely, the effective
inverse temperature βeff = 1. The hyperparameter β−1

m = Tm and h are fixed
to their optimal values Tm = Ts = 2.15 and h = βτ = (1/2) log(1 − pτ/pτ ).
To draw this figure, we carry out 50 independent runs for the system size
50×50 for the Trotter size M = 200. The Monte Carlo step (MCS) needed to
obtain the equilibrium state is chosen as t

′
= Mt, where t = 105 is the MCS

for the thermal MPM estimation. One Monte Carlo step in the calculation
the quantum MPM estimate takes M times evaluations of spin flips than
the calculation of the thermal MPM estimate. Thus, we provide a reasonable
definition of the time t

′
of which the quantity is plotted and compared as a

function as t
′
= t (thermal) and t

′
= Mt (quantum).

From this figure, we find that the lowest values of the bit-error rate for the
quantum and thermal MPM estimations are almost the same as our analysis
of the mean-field infinite range model predicted; however, the Γ -dependence
of the bit-error rate is almost flat. We display several typical examples of re-
stored images by the thermal and quantum MPM estimations in Fig. 17. From

Fig. 17. From the left to the right, the 50×50 original image generated at Ts = 2.15,
degraded images (pτ = 0.1), and the restored image by the thermal MPM estimation,
and the restored image by the quantum MPM estimation. Each bit-error rate is
pb = 0.06120 for the thermal MPM at Tm = Ts = 2.15 and pb = 0.06040 for the
quantum MPM estimation with Γ = 0.8 (at the nearest point from the solution of
m0 = m(Γ )), respectively
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this figure, we find that the performance of the quantum MPM estimation is
slightly superior to the thermal MPM.

Simulated Annealing Versus Quantum Annealing

In last part of this section, we investigate how effectively the quantum tunnel-
ing process possibly leads to the global minimum of the effective Hamiltonian
for the image restoration problem in comparison to the temperature-driven
process used in the simulated annealing. It is important for us to bear in mind
that the observables we should check in the problem of image restoration are
not only the energy on time E but also the bit-error rate pb. As we men-
tioned, the globally minimum energy state of the classical Hamiltonian does
not always minimize the bit-error rate. Therefore, from the view point of im-
age restoration, the dynamics of the bit-error rate is also a relevant quantity,
although, to evaluate the performance of the annealing procedure, the energy
on time is a much more important measure. In this chapter, we investigate
both of these two measures.

In our simulations discussed below, we choose the temperature and the
amplitude of transverse scheduling as Γ (t) = T (t) = 3/

√
t according to Kad-

owaki and Nishimori [16]. To suppress the thermal and quantum fluctuations
at the final stage of the annealing procedure, we set Γ = T = 0 in the last
10% of the MCS.

In Fig. 18, we plot the time development of the bit-error rate and the
energy on time, namely, Et = −βm

∑
〈ij〉 σz

i σz
j − h

∑
i τiσ

z
i , where we defined

Fig. 18. The time dependence of the bit-error rate for the simulated annealing
(SA) and the quantum annealing (QA). The MCS t

′
for the quantum annealing is

defined by t
′

= Mt for the MCS, where t is the MCS for the SA. The right panel
indicates the dynamical process of the energy function by the SA and the QA. We
carried out this simulation for the system size 50×50 with the Trotter size M = 200.
The noise rate is pτ = 0.1. The error bars are calculated by 50 independent runs
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σz
i = (1/M)

∑
k σk

i for the quantum annealing. As the MCS t
′
for the quantum

annealing is defined by t
′
= Mt for the MCS, where t is the MCS for the SA,

we should not overlook that the initial behavior of the first Mth MCS in the
quantum annealing is not shown in this figure. We carried out this simulation
for the system size 50 × 50 with the Trotter size M = 200. The noise rate is
pτ = 0.1. We set β−1

m = Ts = 2.15 and h = (1/2) log(1 − pτ/pτ ) = 1.1. From
this figure, we find that the mean value of the bit-error rate calculated by the
quantum annealing is smaller than that of the simulated annealing. However,
the energy on time of the simulated annealing is slightly lower than that of
the quantum annealing. Although this result is not enough to decide which
annealing is superior, the simulated annealing with temperature scheduling
T (t) = 3/

√
t seems to be much more effective than the quantum annealing

with the same scheduling of the amplitude of the transverse field for finding the
minimum energy state. Of course, we should check more carefully to choose
the optimal or much more effective scheduling of Γ . This might be one of
the important future problems. In Fig. 19, we display the resultant restored
images by the simulated annealing and the quantum annealing. For this typical
example, the performance of the quantum annealing restoration measured by
the bit-error rate is better than that of the simulated annealing. The difference
of the correct pixels is estimated as ∆n = 50×50×∆pb = 2, 500×0.0084 = 21
(pixels), where ∆pb = pb(SA)−pb(QA). From the reasons we mentioned above,
the MAP estimate obtained by the quantum annealing is not a correct MAP
estimate; however, the quality of the restoration is really fine.

Fig. 19. From the left to the right, the original image (Ts = 2.15), degraded
image (pτ = 0.1), and typical restored images by the simulated annealing and the
quantum annealing. The resultant bit-error rates are pb = 0.066400 for the SA and
pb = 0.058000 for the QA

6 Summary

In this chapter, we investigated the role of the quantum fluctuation introduced
by means of the transverse field extensively. From the analysis of the infinite
range model, we showed that the performances of the quantum MAP and
MPM estimations are exactly the same as those of the thermal one. We derived
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the Nishimori–Wong condition on the effective amplitude of the transverse
field and this information might be useful to determine the optimal amplitude
of the transverse field for given degraded image data. We also investigated
the tolerance of the Sourlas codes to the quantum uncertainties in the prior
distribution and discussed the condition on which the error-less ferromagnetic
phase exists. We found that Shannon’s bound is not violated by the quantum
fluctuation in the limit of p → ∞. The analytic results of the image restoration
were checked by the quantum Markov chain Monte Carlo method. The results
supported the analysis of the infinite range model finely.

I hope that the present work provides some useful information for deep
understanding of the optimization method based on the quantum fluctuation
which is essentially a different mechanism from the thermal hill-climbing.
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1 Introduction

The purpose of this chapter of this monograph is to confront the reader with
a number of optimization algorithms that are exact and polynomial in time
and which have interesting applications in the physics of disordered systems.
These are solid materials which contain a substantial degree of quenched dis-
order, have been an experimental and a theoretical challenge for physicists
for many decades. The different thermodynamic phases emerging in random
magnets, the aging properties and memory effects of spin glasses, the disorder
induced conductor-to-insulator transition in electronic or bosonic systems, the
collective behaviour of magnetic flux lines in amorphous high temperature su-
perconductors, and the roughening transition of a disordered charge density
wave systems are only a few examples for these fascinating phenomena that
occur due to the presence of quenched disorder.

Analytic studies of models for these systems are usually based on pertur-
bation theories valid for weak disorder, on phenomenological scaling pictures
or on mean-field approximations. Therefore the demand for efficient numerical
techniques that allow the investigation of the model Hamiltonians of disor-
dered systems has always been high. Three facts make life difficult here: 1)
The regime, where disorder effects are most clearly seen, are at low temper-
atures – and are even best visible at zero temperature; 2) the presence of
disorder slows the dynamics of theses systems down, they become glassy, such
that for instance conventional Monte-Carlo or molecular dynamics simulations
encounter enormous equilibration problems; 3) any numerical computation of
disordered systems has to incorporate an extensive disorder average.

In recent years more and more model systems with quenched disorder
were found that can be investigated numerically 1) at zero temperature, 2)
without equilibration problems, 3) extremely fast, in polynomial time (for a
review on these developments see [1, 2] and [3] for an introduction to the non-
expert). This is indeed progress, which became possible by the application
of exact combinatorial optimisation algorithms developed by mathematicians

H. Rieger: Combinatorial Optimization and the Physics of Disordered Systems, Lect. Notes
Phys. 679, 301–324 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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and computer scientists over the last few decades. This gift is not for free:
first a mapping of the problem of finding the exact ground state of the model
Hamiltonian under consideration onto a standard combinatorial optimisation
problem has to be found. If one is lucky, this problem falls into the class
of P -problems, for which polynomial algorithms exist. If not, the intellec-
tual challenge for the theoretical physicist remains to reformulate the model
Hamiltonian in such a way that its universality class is not changed but a
mapping on a P -problem becomes feasible.

Here we review some of the most fruitful applications of polynomial al-
gorithms from the realm of combinatorial optimisation to various problems
in the statistical physics of disordered systems. The next section presents the
application of Dijkstras algorithm for finding shortest paths in weighted net-
works to the model of a non-directed polymer in a disordered environment
with isotropical correlations. Then, in the 3rd and 4th section, we discuss
minimum cost flow problems on weighted graphs and its solution via the suc-
cessive shortest path algorithm and apply it to the roughness properties and
the entanglement transition of elastic lines in a disordered environment and
to the loop percolation transition in a vortex glass model. In the 5th section
we focus on the minimum cut – maximum flow problem and discuss among its
many applications the roughening transition of elastic media in a disordered
environment. A discussion closes this paper in the 6th section.

2 Polymers in a Disordered Environment
and Dijkstras Algorithm

A well studied model of a single elastic line [4], like an individual polymer
or a single magnetic flux line in a type-II superconductor, in a disordered
environment is the following: If one excludes overhangs (and by this also
self-overlaps) of the elastic lines one can parametrise its configuration by the
longitudinal coordinate z. The line configuration can then be described by
the transverse coordinate r(z) as a function of z. The presence of disorder is
usually modelled by a random potential energy V (r, z) and the ground state
configuration of the line is highly non-trivial due to the competition between
the elastic energy, that tends to straighten the line, and the random energy,
that tries to bend the line into positions of favourable energy:

Hsingle−line = Helastic + Hrandom =
∫ H

0

dz

{
γ

2

[
dr
dz

]2

+ V [r(z), z]

}
, (1)

where H is the longitudinal length (not the proper length) of the line. The
random potential energy is a Gaussian variable with prescribed mean and
correlations 〈〈V [r, z]V [r′, z′]〉〉 = g(R − R′), where R = (r, z) and 〈〈· · ·〉〉
denotes the average over the disorder.
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A lattice version of this continuum model is the directed polymer model:
The lines correspond to directed paths on a hyper-cubic lattice that start at
a specific lattice site, say (0, 0, . . . , 0) and proceed only in the (1, 1, . . . , 1)
direction along the bonds. The energy contribution for a path passing bond i
of the lattice is a positive random variable ei and the total energy of a path
P is simply

Hlattice
single−line =

∑

i∈P
ei =

∑

i

eini , (2)

where ni = 1 if the path passes bond i (i.e. i ∈ P) and ni = 0 otherwise.
We are interested in isotropically correlated disorder and consider the

problem on a non-directed (square) lattice (i.e. paths can pass any bond in
both directions) in order not too exclude overhangs right from the beginning.
In case of uncorrelated disorder overhangs were shown to be irrelevant [6], but
for isotropically correlated disorder this is not clear. We define the latter to
decay algebraically with the spatial distance of the bonds

〈〈ei − ej〉〉 = |Ri − Rj|2α−1 , (3)

where Ri spatial position of bond i, and we generate correlated random num-
bers using a well-established numerical procedure [5].

We calculate the exact ground states of the Hamiltonian (2) or optimal
paths using Dijkstras algorithm (note that all energies ei are positive). This
simple polynomial algorithm works as follows: Let V = {1, . . . , Ld} be the set
of lattice sites and A = {(i, j)|i, j ∈ V nearest neighbors} the set of bonds.
The algorithm increases successively a subset S of sites for which the optimal
path starting at the fixed site s are known. Obviously initially S := {s}. We
denote the energy of the optimal path starting at s and terminating at i with
E(i) and since all optimal paths can be constructed via a predecessor list, we
keep track of this list, too, via an array pred(i), denoting the predecessor site
of site i in a shortest path from s to i:

algorithm Dijkstra
begin

S := {s}; S := V \{s};
E(s) := 0, pred(s) := 0;
while |S| < |V | do
begin

choose (i, j) : E(j) := mink,m{E(k) + e(k,m)|k ∈ S,m ∈ S, (k,m) ∈ A};
S := S\{j}; S := S ∪ {j};
pred(j) := i;

end
end

In Fig. 1 we show examples of the set {i} of lattice sites that are end-points
of optimal paths starting from a fixed initial site and having a total energy
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Fig. 1. Example for the growth front of the non-directed polymer for uncorrelated
disorder (a and b) and correlated disorder (c and d; α = 0.4). The black pixels
indicate the lattice sites of the (square) lattice are connected via optimal paths to
the offspring (centre of the top line) with energy less than a given value

E(i) less than a given value Emax. For uncorrelated disorder the surface of
this set is roughly a semi-circle, whereas for strongly correlated disorder the
surface becomes topologically more complicated.

The universal properties of the optimal paths are typically described the
scaling of two characteristic quantities: The average transverse fluctuations
〈〈r2〉〉 ∝ Hν and the energy fluctuations 〈〈E2〉〉 ∝ Hω, where H is the lon-
gitudinal distance between starting point and end point of the paths. By
computing the optimal paths for several thousands of samples for a given dis-
order correlation exponent α and for a given longitudinal distances H and
fitting the resulting data for transverse and energy fluctuations to the ex-
pected power laws we can extract the exponents ν and ω (the details of these
computations can be found in [7]). The resulting estimates in 2d are shown
in Fig. 2 [7]. Although the number of overhangs in the optimal paths we com-
puted in the non-directed case increased with α (i.e. increasing correlations)
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Fig. 2. Numerical estimate of the roughness exponent ν (left) and energy fluctuation
exponent ω (right) for as a function of the correlation exponent α. The straight lines
are at exactly know values ν = 2/3 and ω = 1/3 for uncorrelated disorder. Around
α = 0 the correlations of the disorder become relevant. The insets show the difference
of our estimates between the directed and non-directed case
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the fraction of bonds contributing to overhangs scaled to zero for all values of
α we considered. Hence overhangs appear to be irrelevant also in the presence
of correlated disorder.

3 Interacting Elastic Lines in a Disordered Environment

When one puts interacting elastic lines together into a finite system with a
given density of lines they will show interesting collective behaviour. Exam-
ples are the entanglement of magnetic flux lines in high-Tc superconductors in
the mixed phase [8] or the entanglement of polymers in materials like rubber
[9]. The degree of entanglement of the lines usually manifests itself in various
measurable properties like stiffness or shear modulus in the case of polymers
and in transport or dynamical properties for magnetic flux lines in supercon-
ductors. A theoretical description of these line systems can be based on the
single-line Hamiltonian (1) plus an appropriate line interaction term:

Hmany−lines =
N∑

i=1

H(i)
single−line +

∑

i<j

∫ L

0

dz

∫ L

0

dz′ Vint[Ri(z) − Rj(z′)] , (4)

where Ri(z) = (ri(z), z) is the spatial position of the infinitesimal line segment
dz of the i-th line. If the interactions Vint[Ri(z)−Rj(z′)] are short ranged (i.e.
in case of flux lines the screening length small compared to the average line
distance) or just hard core repulsive, and the random, δ-correlated disorder
potential Vr[ri(z), z] in (1) is strong compared to the elastic energy (∝ γ)
this continuum model reduces to a lattice model reminiscent of the single-line
lattice model (2):

Hlattice
many−lines =

∑

i

eini , (5)

where ni = 1 if a line passes bond i and ni = 0 otherwise and the positive
random variable ei is the energy cost for a line segment to occupy bond i.
The hard core constraint is thus enforced on the bonds but for the sake of
an easier formal description we allow the lines to touch in isolated points, the
lattice sites. The lines live on the bonds of a simple cubic lattice with a lateral
width L and a longitudinal height H (L × L × H sites) with free boundary
conditions in all directions. Each line starts and ends at an arbitrary position
on the bottom respective top planes. The number N of lines threading the
sample is fixed by a prescribed density ρ = N/L2. For a single line N = 1,
one recovers the non-directed polymer model (2). The random bond energies
are uniformly distributed over the interval [0, 1].

Note that the allowed configurations of the bond variables ni are only
those that be identified with lines threading the samples (or loops inside the
sample, which, however, cost energy and therefore do not occur in the ground
state), which means that the number of occupied bonds connected to a lattice
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site that lies neither on the top nor on the bottom plane has always to be
even. If we connect all sites on the top to an extra site, called the source, an
all sites on the bottom to another extra site, called the targe, than the latter
statement remains true also for the top an bottom plane. We can now say
that N lines start at the source node and terminate at the target node, or, in
network flow jargon: The feasible configurations of the variables ni constitute
a flow with zero excess on all lattice sites and an excess +N and −N for the
source and target node, respectively.

Thus the determination of the ground state configuration of the N -line
problem with the Hamiltonian (5) is a minimum-cost-flow-problem, which can
be solved with a successive shortest path algorithm [1, 2, 3]. In essence one
starts with the zero flow ni = 0, corresponding to zero lines in the system, and
sends successively one unit of flow from the source to the target, corresponding
to adding one line after the other to the system. This has to happen with the
minimal energy, i.e. along optimal paths, which are calculated using Dijkstras
algorithm that we encountered already in the single line problem discussed in
the last section. However, when trying to add a line to a system with a number,
say M , of lines already present, the existing line configuration sometimes must
be changed to minimise the total energy for M +1 line solution. That becomes
feasible by allowing flow to be sent backwards on already occupied bonds. By
this operation one gains energy (whereas occupying an empty bond i always
costs energy ei ≥ 0), which means one has to operate on a network that has
to be adapted to the existing flow configuration and has negative energies on
all occupied bonds. Unfortunately Dijkstras algorithm works only for positive
bond energies, and one has either to use a slower (label-correcting) algorithm
to find the optimal paths in a graph with negative edge costs [3] or one has to
use the concept of node potentials, by which one can make all energies in the
adapted network non-negative without changing the actual shortest paths.
This procedure is described in full detail in [3], and an example for a ground
state configuration of a 3d system is shown in Fig. 3.

3.1 Roughening in 2d

The first quantity we are interested in is the disorder averaged line roughness
[10]. The mean square displacement of a single line with index i in one sample
is defined as

w2
i = r2

i − r2
i (6)

with rn
i = H−1

∑H
z=1 rn

i (z) for n = 1, 2. The mean square displacement of
all lines in one sample is w̄2 = 1

N

∑N
i=1 w2

i and the roughness w is defined
as the square root of the disorder averaged sample mean square displacement
w =

√
〈w̄2〉.

The roughness of a one line system (N = 1) scales as w ∼ Hζ in the limit
of infinite transverse system size. In 2d the value of the roughness exponent
is ζ = 2/3 [11], whereas in 3d it is close to ζ = 5/8 [12, 13]. In the case of a
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Fig. 3. Ground state configuration in 3d of a N -line system with N = 9 defined
by (5). The entry/exit points are fixed in a regular 3 × 3 array for better visibility

non-vanishing line density one expects to observe this single line behavior as
long as the transverse fluctuations of the individual lines are smaller than the
average line-to-line distance a, which is given by the line density ρ = 1/a in
2d. This means that we expect w ∼ Hζ for H � a1/ζ .

Once the transverse fluctuations of the individual lines have reached
the size of average line-to-line distance one expects a collective behavior
of the lines that restricts the individual line roughness due to the presence of
the others. If the line system behaves like an elastic medium the roughness
in the collective regime is expected to behave like w ∼ ln L [14]. Hence, for
fixed line density ρ we expect the following scaling form

w ≈ a ln(L) · g2d(H/(a ln L)1/ζ) , (7)

where g2d(x) is a scaling function with the asymptotic behavior g2d(x) ∝ xζ

for x � 1, corresponding to the single-line behavior, and g2d(x) = const. for
x � 1, corresponding to the collective regime. Note that we have assumed
that the line density enters this form only via a rescaling of the lateral length
scales.

We computed the ground states of a large number of disorder realizations
(up to 103) for various values of L, H and ρ and produced scaling plots for
fixed line density ρ according to the suggested size scaling form (7). We found
a good data collapse for all values of ρ that we checked (ρ = 0.05,. . . ,0.5). In
Fig. 4 we show the data collapse for ρ = 0.05. This particular value results in
the best data collapse for the achieveable system sizes.

We estimated the saturation roughness wsat = limH→∞ w(H) from the
flat tail of the roughness curves w(H) and show them in Fig. 4 as a function
of L for several values of the line-density ρ. The data can be fitted to the
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Fig. 4. Left: Scaling plot of the roughness in 2d according to the finite size scaling
form (7). The line density is ρ = 0.05, the roughness exponent is ζ = 2/3. Right:
Saturation roughness as a function of the system width with fits of the form y =
A + B ln(L)

form y = A+Bln(L) again reflecting the collective super-rough scaling of the
roughness in 2d. The slope B of the data sets decreases as ρ increases while
the constant part A does not vary much. This leads to the strengthening of
finite size effects with increasing ρ.

The crossover from single-line to multi-line scaling takes place when Hζ ∼
a, where a is the average line-to-line distance a = 1/ρ in 2d. For fixed but
large lateral system size L the scaling form (7) predicts

w ≈ a · g̃2d(H/a1/ζ) (8)

where the scaling function g̃2d(x) has the asymptotic behavior g̃2d(x) ∼ xζ

for x � 1 and g̃2d(x) ∼ const. for x � 1. Figure 5 shows the corresponding
data collapse of the roughness data that we computed. Note that the height
has been also rescaled with a factor of 1− 1/a to account for the limit ρ → 1.
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Fig. 5. Scaling plot for the roughness in 2d according to the scaling form (8). The
system size is fixed at L = 256
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3.2 Roughening in 3d

In this section we present our numerical results and the corresponding scaling
laws obtained for the 3d case. If the observations we made in the last section
could be carried over to the 3d case, one would expect 2 regimes: One for
small heights H, in which the transverse fluctuations of the lines are still
much smaller than the average line-to-line distance a = 1/ρ1/2 in 3d; and
one for large H, in which the line roughness is restricted due to collective
effects. Only in the case our line system would also for 3d fall into the same
universality class as a 3d elastic medium (this is, as we have shown the case
in 2d), one would expect wsat ∝

√
ln L [16, 17].

However, surprisingly we find i) three regimes instead of two (cf. the data
shown in Fig. 6), and ii) wsat ∝ L, i.e. the size of the transverse fluctuations
is not restricted by the presence of a large number of other lines but only
by the lateral system size. Apparently in 3d the lines become transparent to
each other, and the wandering of any line to the transverse direction does not
induce collective behavior.
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slope 0.625

slope 0.5
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Fig. 6. Data for the roughness w as a function of the height H for different
transverse system sizes L and two densities: ρ = 0.005 (top) and ρ = 0.4 (bottom).
In the low density limit (top) the crossover from single line to collective behavior is
visible – indicated by the two straight lines with slope 0.625, the sinle line roughness
exponent, and 0.5, respectively. In the high density limit the crossover from collective
line behavior (indicated by the straight line with slope 0.5) to the saturation regime
is visible. The data points are averaged over 100–1000 samples

The three regimes that we find can be characterized as follows: 1) A single
line regime for H � a1/ζ in which the roughness behaves as in the the one-
line case: w ∝ Hζ . 2) An intermediate regime for a1/ζ � H � L2 in which
the roughness increases as H1/2, which is identical to the behavior of random
walks. Between the two regimes one can see a cross-over that can be shown to
be related to the entropic repulsion of the lines. Recall that this leads in 2d
asymptotically to collective effects, but here the consequences are different.
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Fig. 7. Scaling plot of the roughness in 3d according to the finite size scaling form
(9) for different line densities ρ = 0.1 (filled symbols), 0.2 (bold) and 0.4 (empty) for
system sizes L = 16 (ovals), 24 (squares) and 32 (diamonds). The inset shows data
collapse according to the scaling form (12)

3) The saturation regime for H � L2 in which the roughness saturates at the
lateral system size: w ≈ L. In the following we support this central result with
the data we obtained from our ground state calculations for the 3d system
and derive the appropriate scaling forms for the different regimes.

In Fig. 7 we show our results for the roughness in 3d in the crossover region
from the intermediate or multi-line regime to the saturation regime. We show
data for three different line density values, but we have also data for other
values, and they all fit well into the scenario that we propose now). The finite
size scaling plots yield an excellent data collapse using the scaling form:

w = L · g(a)
3d (H/L2) . (9)

The scaling function g
(a)
3d (x), which still depends on a, or the line density

ρ = 1/a2, has the following asymptotic behavior: g
(a)
3d (x) ∝ x1/2 for x → 0

and g
(a)
3d (x) = const. for x → ∞.

The first crucial observation here – and the essential difference to the 2d
case – is that in the limit L → ∞ the roughness is not significantly restricted
by the presence of the other lines but approaches a value proportional to
the lateral system size. Actually, as we see from the plot of the saturation
roughness as a function of L shown in Fig. 8 that wsat = limH→∞ w(L, a) =
0.28 · L + ca, where ca is a small constant that varies only slightly with a.
This variation with a is a boundary effect: The free boundary conditions
act effectively in a repulsive way on the lines that competes with the steric
inter-line repulsion. Therefore systems with a lower line density show smaller
transverse line fluctuations than those with a higher density.

The second crucial observation is that the roughness of the lines in the
intermediate regime grows like H1/2, i.e. they have a roughness exponent that
is smaller than the single line value of ζ = 0.625 and is identical to the value
for simple random walks. Although the actual line configuration is constructed
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in a highly non-trivial manner via a global criterion, namely the computation
of the global N -line ground state, their universal geometric properties appear
to be similar to that of random walks.

The density dependence of the scaling functions g
(a)
3d (x) can be worked out

by matching it with the scaling form for the single- to multi-line regime. Here
the relevant length scale in the H-direction is a1/ζ , and in analogy to the 2d
case we expect for L � a the L-independent scaling form

w = a · g̃3d(H/a1/ζ) (10)

with the asymptotics g̃3d(x) = xζ for x � 1 and g̃3d(x) = x1/2 for x � 1. In
Fig. 9 we show the corresponding scaling plot for the data that we obtained
from our calculations. Hence we get the expected single line behavior w ∼ Hζ

when H � a1/ζ , and we obtain
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Fig. 9. Scaling plot for the roughness in 3d in the crossover region from single
to multi-line behavior. The system size is L = 32. The inset shows the original,
unscaled data
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w = a1−(1/2ζ)H1/2 for w � L and H � a1/ζ . (11)

From this the natural scaling variable for the crossover region from the in-
termediate regime (where w should be described by (11)) to the saturation
regime (where w should be proportional to L according to (9)) appears to be
a1−(1/2ζ)H1/2/L or H/a1/ζ−2L2, which implies that (9) can be rewritten as

w = L · g3d(H/a1/ζ−2L2) for H � a1/ζ . (12)

with g3d(x) = x1/2 for x → 0 and g3d(x) = 0.28 for x → ∞ (see the inset
in Fig. 7). As in 2d, for high line densities ρ > 0.1 (a ≤ 3) one has to take
into account the limiting case ρ = 1 where lines fill all parallel lattice bonds
resulting zero roughness. This limit can be incorporated into (12) by rescaling
H by 1/(1 − ρ).

At this point we would like to stress that the random walk like scaling is
not related to the actual distance at which the lines touch or cross each other
(and are in some cases continued randomly). Both in 2d and in 3d the typical
length scale s between two consecutive intersection points on one line is much
larger then the length scale ξ for the crossover from single line to collective
behavior and its divergence with the line average distance a is much stronger.
This can be seen in Fig. 10, where we show scaling plots for the average
length of line segments s between two crossings, from which one concludes
that s scales with a as a2.6 in 2d (compared to a1.5 for the crossover lenght
scale ξ) and a3.2 in 3d (compared to a1.6 for ξ). This also demonstrates that
the lines do not behave like independent random walkers in 3d but reflect the
effect of a steric repulsion that tends to avoid random crossings between them
(visible in 2d and in 3d).

3.3 Entanglement Transition

The main result of the roughness calculations for the 3d system is that the
lines with only hard core repulsion can transverse the whole system, in marked
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Fig. 10. Scaling plots for the length of line segments s between two crossings (a)
in 2d, the system size is L = 256 and (b) in 3d, the system size is L = 32. The insets
show the original, unscaled data
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Fig. 11. Definition of the winding angle of two flux lines. Right part, top: A
configuration of three lines that are entangled. Right part, bottom: The projection
of the line configuration on the basal plane, defining a connected cluster

difference to the 2d case. Consequently one expects the lines to be topologi-
cally entangled, which we study in this section.

We compute the winding angle of all line pairs as indicated in Fig. 11 (c.f.
[19]). For each z-coordinate the vector connecting the two lines is projected
onto that basal plane (Fig. 11). z = 0 gives the reference line with respect to
which the consecutive vectors for increasing z-coordinate have an angle φ(z).
If the two lines intersect we neglect the intersection point and interpolate
between the last and the next point in such a way that the global winding
angle is minimised. We define two lines to be entangled when φ(z) > 2π. This
choice is one that measures entanglement from the topological perspective
[20], and comes from the requirement that an entangled pair of lines can
not be separated by a suitable linear transformation in the basal plane (i.e.
the lines almost always would cut each other, if one were shifted). The precise
definition of entanglement is not of major relevance, and the one used is useful
since it is the computationally easiest.

Sets or bundles of pairwise entangled lines are formed so that a line be-
longs to a bundle if it is entangled at least with one other line in the set.
The topological multi-line-entanglement could be characterised by other mea-
sures as well; the universal properties of the transition will not depend on
these. These line bundles are spaghetti-like – i.e. topologically complicated
and knotted sets of one-dimensional objects. To study the size distribution of
these objects we project these bundles on the basal plane, as indicated in Fig.
3, where a bundle projects onto a connected cluster. The probability for two
lines to be entangled increases with increasing system height. Consequently
one would expect that the bundle size increases with H, and therefore also
their projections, the clusters. This scenario is exemplified in Fig. 12, for the
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Fig. 12. Line configurations for different heights H (from left to right: H = 64, 96,
128), the lateral size L = 20, the line density is ρ = 0.3. Only the largest line bundles
are shown, indicated by a varying grey scale. Black denotes the largest cluster, which
eventually percolates

largest height the largest cluster spans from one side of the system to the
other, i.e. it percolates.

Hence, for a given line density ρ we expect that for system heights larger
than a critical value Hc an system spanning large entangled bundle occurs,
containing an infinite number of lines in the limit L → ∞. We will call this
an entanglement transition occurring at a finite system height Hc. In the
projection plane this appears like a percolation transition and in the following
we will investigate its universal properties.

The numerical data we present have been obtained by averaging over upto
103 realizations of the random potentials ei in (5) and the statistical error
resulting from this finite sample average is in all cases smaller than the symbol
size. We studied different line densities between ρ = 0.1 and ρ = 0.5, but
present for brevity only data for ρ = 0.3. In Fig. 13 we show the probability
Pperc of the clusters, formed by the entangled bundles in the projection plane,
to percolate as a function of the height H of the system. The curves for
different lateral system sizes L intersect at Hc, which gives our estimate for
Hc(ρ = 0.3) = 134. The inset shows a scaling plot according to

Pperc = p(L1/νδ) (13)

with δ = (H − Hc)/Hc the reduced distance from the critical height and
ν = 4/3 the correlation length exponent. The finite size corrections for smaller
system sizes than those shown are large, but could be incorporated in the
scaling plot by using an L-dependent shift Hc(L) that converges to Hc for
larger L.

ν = 4/3 is the exponent of conventional bond percolation in two dimen-
sions. Thus we are led to the conclusion that the entanglement transition
belongs to the same universality class as conventional 2d percolation. We
checked other quantities to confirm this result The cluster size distribution
P (n) at H = Hc approaches P (n) ∝ n−τ with τ = 187/91 ≈ 2.055 in the
limit L → ∞. The mass (i.e. number of entangled lines) of the percolating
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Fig. 13. Percolation probability for different lateral system sizes L as a function
of the system height H, the line density is ρ = 0.3. Inset: Scaling plot of the data
with Hc = 134 and ν = 4/3

bundle at Hc fits well to M ∝ Ldf with df = 91/48 ≈ 1.896. Both exponents,
the cluster distribution exponent τ and the fractal dimension df are identical
to those for conventional bond percolation and one can also use the order pa-
rameter exponent, β = 5/36, to fit the data reasonably well. Details of these
computations can be found in [21].

4 Disorder Induced Loop Percolation in Vortex Glasses

Another application of the successive shortest path algorithm for minimum-
cost-flow-problem is finding the ground state of the Hamiltonian

H =
∑

i

(ni − bi)2 with the constraint ∀k :
∑

l n.n. of k

n(kl) = 0 , (14)

where the integer variables ni live on the bonds i of a d-dimensional hyper-
cubic lattice and bi ∈ [−2σ, 2σ] are real valued quenched random vari-
ables with σ ≥ 0 setting the strength of the disorder. The constraint∑

l n.n. of k n(kl) = 0 means that at all lattice sites k the incoming flow has to
balance the outgoing flow, i.e. the flow {ni} is divergenceless. The physical
motivation of studying models these kind of models is the following:

In 2d the Hamiltonian (14) occurs for instance in the context of the solid-
on-solid (SOS) model on a disordered substrate [22]. The SOS representation
of a 2d surface is defined by integer height variables uk for each lattice site k
of a square lattice. The disordered substrate is modelled via random offsets
dk ∈ [0, 1] for each lattice site, such that the total height at lattice site k is
hk = uk + dk. The the total energy of the surface is
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HSOS =
∑

(kl)

(hk − hl)2 =
∑

˜(kl)

(n ˜(kl) − b ˜(kl))
2 (15)

where the first sum runs over all nearest neighbor pairs (kl) of the square
lattice and the second sum runs over all bonds ˜(kl) of the dual lattice (being
a square lattice, too), which connect the centers of the elementary plaquettes
of the original lattice. A dual bond ˜(kl) therefore crosses perpendicularly a
bond (kl) connecting neighbors k and l on the original lattice. We define
n ˜(kl) = nk −nl and d ˜(kl) = dl−dk if l is either the right or the upper neighbor
of k (i.e. for k = (x, y) either l = (x+1, y) or l = (x, y+1) and n ˜(kl) = nl−nk

and d ˜(kl) = dk − dl if l is either the left or the lower neighbor of k (i.e. for
k = (x, y) either l = (x − 1, y) or l = (x, y − 1). In this way the sum over all
four dual bond variables attached to one site of the dual lattice corresponds
to the sum of original height variables around an elementary plaquettes in
the original lattice: (n(x,y)−n(x,y+1))+(n(x,y+1)−n(x+1,y+1))+(n(x+1,y+1)−
n(x+1,y)) + (n(x+1,y) − n(x,y)) = 0, which implies that the flow {n ˜(kl)

} is
divergence free as inferred in (14).

In 3d the Hamiltonian (14) is the strong screening limit of the vortex glass
model for disordered superconductors [23, 24]

HVG =
∑

i,j

(ni − bi)Gλ(ri − rj)(nj − bj) , (16)

where the integer vortex variables ni live on the bonds of a simple cubic lattice
and have to fulfill the constraint in (14) since they represent magnetic vortex
lines that are divergence free. The real valued quenched random variables
bi ∈ [−2σ, 2σ] are derived from the lattice curl of a random vector potential
(σ ≥ 0 being the strength of the disorder). The 3d vector ri denotes the spatial
positions of bond i in the lattice and the sum runs over all bond pairs of the
lattice (not only nearest neighbors). The lattice propagator Gλ(r) has the
asymptotic form Gλ(r) ∝ exp(−|r|/λ)/|r|, where λ is the screening length. In
the strong screening limit λ → 0 only the on-site repulsion survives [23] and
gets

Hλ→0
VG =

∑

i

(ni − bi)2 (17)

which is the Hamiltonian (14) in 3d that we intend to discuss here.
The ground state of (14) can again be computed within polynomial time

by a successive shortest path algorithm [3]. As for the N -line problem one
starts with a configuration {ni} that optimizes the Hamiltonian in (14) but
does not, in general, fulfill the mass balance constraint given in (14). In the
N -line problem that was simply the zero-flow ni = 0, which does not fulfill
the requirement that the source and the target have excess +N and −N ,
respectively. Here we start with ni the closest integer to the real number bi
for each bond i. Since this solution violates the mass-balance constraint one
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Fig. 14. Examples of ground state configurations of the Hamiltonian (14) for
varying disorder strengths σ (for particular disorder realizations). Top: 2d, L = 50,
the critical disorder strength is σc ≈ 0.46; Bottom: 3d, L = 16, the critical disorder
strength is σc ≈ 0.31. The occupied bonds (ni �= 0) are marked black, the percolating
loop is marked by light grey

successively sends flow from nodes that have an excess flow to nodes that
have a deficit along optimal paths that are again found using node potentials
(to make all costs non-negative) and Disjkstras algorithm. The details of this
algorithm can be found in [1, 2, 3].

Figure 14 shows three typical ground state configurations for different
strength of the disorder σ in 2d and in 3d. For small σ only small isolated
loops occur, whereas for larger σ one finds loops that extend through the whole
system, they percolate. A finite size scaling study of the underlying percolation
transition yields a novel universality class with numerically estimated critical
exponents (see Fig. 15) ν = 3.3± 0.3, β = 1.8± 0.4 and τ = 2.45± 0.05 in 2d,
and ν = 1.05± 0.05, β = 1.4± 0.1 and τ = 2.85± 0.05 in 3d. Details of these
calculations can be found in [25].

5 Elastic Manifolds in a Disordered Environment
and a Periodic Potential

A system of strongly interacting (classical) particles or other objects, like mag-
netic flux lines in a type-II superconductor (as we discussed in Sect. 3 and
for which the starting Hamiltonian would given by (4)), or a charge density
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Fig. 15. Finite size scaling analysis for the model (14) in 2d (top) and 3d (bottom).
Plot of the percolation probability P perc (left) and of the probability P∞ for a bond
belonging to a percolating loop (middle). For 2d the best data collapse is obtained
for ν = 3.3, β = 1.8, for 3d its is ν = 1.05, β = 1.4. The insets shows the raw
data. (Right) Plot of the average number nm of loops of mass m per lattice bond at
σc = 0.458 in 2d and at σc = 0.3129 in 3d, respectively. The straight line represents
nm ∝ mτ , with τ = 2.45 in 2d and τ = 2.85 in 3d

wave system in a solid, will order at low temperatures into a regular arrange-
ment a lattice (crystal lattice or flux line lattice). Fluctuations either induced
by thermal noise (temperature) or by disorder (impurities, pinning centers)
induce deviations of the individual particles from their equilibrium positions.
As long as these fluctuations are not too strong an expansion of the poten-
tial energy around these equilibrium configuration might be appropriate. An
expansion up to 2nd order is called the elastic description or elastic approx-
imation, which in a coarse grained form (where the individual particles that
undergo displacements from their equilibrium positions do not occur any more
and are replaced by a continuum field φ(r) reads then

Hmanifold = Helastic + Hrandom =
∫

ddr
γ

2
|∇φ(r)|2 + V (φ(r), r) . (18)

The random potential energy is a delta-correlated Gaussian variable with
mean zero, 〈〈V (φ, r)V (φ′, r′)〉〉 = D2δ(φ−φ′)δr−r′). The integration extends
over the whole space that paramterizes the manifold, for instance d = 1 for
an elastic line in a random potential, d = 2 for an interface or a surface in a
disordered environment etc. Note that for d = 1 one recovers the single line
Hamiltonian (1). The many-line Hamiltonian (4) also allows such an elastic
description in the limit, in which the interactions are strong and the the
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random potential is weak compared to the elastic energy. In this limit the
lines will only deviate moderately from a regular, translationally invariant
configuration (the Abrikosov flux line lattice). This case is called an elastic
periodic medium and one has to modify the φ-part of the disorder correlator
such that the Hamiltonian has the correct translational symmetry [26].

The presence of a periodic background potential, like a crystal potential,
has a smoothening effect on the elastic manifold and tends to locck it into one
of its minma. The competition between the random potential, that roughens
the manifold, and such a periodic potential might lead to a roughening tran-
sition [27, 28]. In 2d this is actually not the case [29], but in 3d there is as we
will see. We consider a lattice version of the Hamiltonian

H = Hmanifold + Hperiodic with Hperiodic =
∫

ddr Vperiodic(φ(r)) , (19)

where Vperiodic(φ) = − cos φ represents the periodic potential.
We introduce a discrete solid-on-solid (SOS) type interface model for the

elastic manifold whose continuum Hamiltonian is given in (19). Locally the
EM remains flat in one of periodic potential minima at φ = 2πh with integer
h. Due to fluctuations, some regions might shift to a different minimum with
another value of h to create a step (or domain wall) separating domains. To
minimize the cost of the elastic and periodic potential energy in (19), the
domain-wall width must be finite, say ξo. Therefore, if one neglects fluctu-
ations in length scales less than ξo, the continuous displacement field φ(r)
can be replaced by the integer height variable {hx} representing a (3 + 1)d
SOS interface on a simple cubic lattice with sites x ∈ {1, . . . , L}3. The lattice
constant is of order ξo and set to unity. The energy of the interface is given
by the Hamiltonian

H =
∑

〈x,y〉
J(hx,x);(hy,y)|hx − hy| −

∑

x

VR(hx,x) , (20)

where the first sum is over nearest neighbour site pairs. After the coarse
graining, the step energy J > 0 as well as the random pinning potential
energy VR becomes a quenched random variable distributed independently
and randomly. Note a periodic elastic medium has the same Hamiltonian as
in (20) with random but periodic J and VR in h with periodicity p [30]. In
this sense, the elastic manifold emerges as in the limit p → ∞ of the periodic
elastic medium.

To find the ground state, one maps the 3D SOS model onto a ferromagnetic
random bond Ising model in (3 + 1)d hyper-cubic lattice with anti-periodic
boundary conditions in the extra dimension [31] (for the 3 space direction one
uses periodic boundary conditions instead). The anti-periodic boundary con-
ditions force a domain wall into the ground state configuration of the (3+1)d
ferromagnet. Note that bubbles are not present in the ground state. A domain
wall may contain an overhang which is unphysical in the interface interpreta-
tion. Fortunately, one can forbid overhangs in the Ising model representation
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using a technique described in [31]. If the longitudinal and transversal bond
strengths are assigned with J/2 and VR/2 occurring in (20), respectively, this
domain wall of the ferromagnet becomes equivalent to the ground state con-
figuration of (20) for the interface with the same energy. The domain wall
with the lowest energy is then determined exactly by using a combinatorial
optimisation algorithm, a so-called max-flow/min-cost algorithm [1, 2, 3].

For completeness we briefly sketch how solve the task of finding the mini-
mal energy configuration for an interface in a d+1 dimensional random bond
ferromagnet H =

∑
〈ij〉 Jijσiσj in which we fix all spins in the lower (up-

per) plane, i.e. all σi with i = (x11, . . . , xd, y) and y = 1 (y = H), to be
σi = +1(−1). First one maps it onto a flow problem in a capacitated net-
work. We introduce two extra sites, a source node s, which we connect to all
spins of the hyperplane y = 1 with bonds Js,(x1,...,xd,y=1) = J∞, and a sink
node t, which we connect to all spins of the hyperplane y = H with bonds
Js,(x1,...,xd,y=H) = J∞. We choose J∞ = 2

∑
(ij) Jij , i.e. strong enough that

the interface cannot pass through a bond involving one of the two extra sites.
Now we enforce the aforementioned boundary conditions for the spins in the
upper and the lower plane by simply fixing σs = +1 and σt = −1. The graph
underlying the capacitated network we have to consider is now defined by the
set of vertices (or nodes) N = {1, . . . , H ·Ld} ∪ {s, t} and the set of edges (or
arcs) connecting them A = {(i, j)|i, j ∈ N, Jij > 0}.

The capacities uij of the arcs (i, j) is given by the bond strength Jij . For
any spin configuration σ = (σ1, . . . , σN ) we define now S = {i ∈ N |σi = +1}
and S = {i ∈ N |σi = −1} = N\S. Obviously σs ∈ S and σt ∈ S. The
knowledge of S is sufficient to determine the energy of any spin configuration
via H(S) = −C + 2

∑
(i,j)∈(S,S) Jij where (S, S) = {(i, j)|i ∈ S, j ∈ S}.

The constant C =
∑

(i,j)∈A Jij is irrelevant, i.e. independent of S. Note that
(S, S) is the set of edges (or arcs) connecting S with S, this means it cuts
N in two disjoint sets. Since s ∈ S and t ∈ S, this is a so called s-t-cut-set,
abbreviated [S, S]. Thus the problem of finding the ground state configuration
of an interface in the random bond ferromagnet can be reformulated as a
minimum cut problem

minS⊂N {H ′(S)} = min[S,S]

∑

(i,j)∈(S,S)

Jij . (21)

in the above defined capacitated network (with H ′ = (H + C)/2). It does
not come as a surprise that this minimum cut is identical with the interface
between the (σi = +1)-domain and the (σi = −1)-domain that has the lowest
energy. Actually any s-t-cut-set defines such an interface, some of them might
consist of many components, which is of course energetically unfavourable.

A flow in the network G is a set of nonnegative numbers xij subject to a
capacity constraint and a mass balance constraint for each arc
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0 ≤ xij ≤ uij and
∑

{j|(i,j)∈A}
xij −

∑

{j|(j,i)∈A}
xji =






−v for i = s
+v for i = t

0 else
(22)

This means that at each node everything that goes in has to go out, too,
with the only exception being the source and the sink. What actually flows
from s to t is v, the value of the flow. The maximum flow problem for the
capacitated network G is simply to find the flow x that has the maximum
value v under the constraint (22).

Let x be a flow, v its value and [S, S] an s-t-cut. Then, by adding the mass
balances for all nodes in S we have v =

∑
(i,j)∈(S,S) xij −

∑
(i,j)∈(S,S) xji

and since xij ≤ uij and xji ≥ 0 the following inequality holds: v ≤∑
(i,j)∈(S,S) uij = u[S, S] Thus the value of any flow x is less or equal to

the capacity of any cut in the network. If we discover a flow x whose value
equals to the capacity of some cut [S, S], then x is a maximum flow and the
cut is a minimum cut. The following implementation of the augmenting path
algorithm constructs a flow whose value is equal to the capacity of a s-t-cut
it defines simultaneously. Thus it will solve the maximum flow problem (and,
of course, the minimum cut problem).

Given a flow x, the residual capacity rij of any arc (i, j) ∈ A is the max-
imum additional flow that can be sent from node i to node j using the arcs
(i, j) and (j, i). The residual capacity has two components: 1) uij − xij , the
unused capacity of arc (i, j), 2) xji the current flow on arc (j, i), which we
can cancel to increase the flow from node i to j rij = uij − xij + xji. The
residual network G(x) with respect to the flow x consists of the arcs with
positive residual capacities. An augmenting path is a directed path from the
node s to the node t in the residual network. The capacity of an augmenting
path is the minimum residual capacity of any arc in this path.

Obviously, whenever there is an augmenting path in the residual network
G(x) the flow x is not optimal. This motivates the following generic augment-
ing path algorithm:

algorithm Ford-Fulkerson
begin

Initially set xij := 0, xji := 0 for all (i, j) ∈ A;
do

construct residual network R with capacities rij ;
if there is an augmenting path from s to t in G

′
then

begin
Let rmin the minimum capacity of r along this path;
Increase the flow in N along the path by a value of rmin;

end
until no such path from s to t in G

′
is found;
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This algorithm is polynomial in the number of lattice sites if the distri-
bution of capacities is discrete (binary for instance). In the general case it
has to be improved, and there are indeed more efficient algorithms to solve
this problem in polynomial time [1, 2, 3]. We stop the description of these
algorithms and focus on the results we obtained by applying them to the
particular elastic manifold model we are interested here:

We performed the ground state calculation for the Hamiltonian (20) on
L3 × H hyper-cubic lattices for L ≤ 32. H, the size in the extra direction, is
taken to be larger than the interface width. We present the results for an ex-
ponential distribution for J > 0, P (J) = e−J/J0/J0 and uniform distribution
for 0 ≤ VR ≤ Vmax. The disorder strength is controlled with the parameter
∆ ≡ Vmax/J0. Other distributions studied include (bimodal, bimodal) and
(uniform, uniform) distributions for (J, VR), and gave identical estimates for
the critical exponents.

The order parameter that provides the information about the suspected
roughening transition is the magnetisation-like quantity m ≡ 〈|〈eiπhx〉o|〉,
which is non-zero in the flat phase and vanishes in the rough phase. The
critical point ∆c can be determined from the finite-size-scaling property of
the order parameter:

m(L, ε) = L−β/νF(εL1/ν) , (23)

where ε ≡ ∆ − ∆c, and β (ν) is the order parameter (correlation length)
exponent. The scaling function F(x) has a limiting behaviour F(x → 0) =
const. so that the order parameter decays algebraically with L as m ∼ L−β/ν

at the critical point. It also behaves as F(x → −∞) ∼ |x|β so that m ∼ |ε|β
for ∆ < ∆c in the infinite system size limit.

Consider the effective exponent [β/ν](L) = − log(m(2L)/m(L))/ log 2. It
converges to the value of β/ν at the critical point and deviates from it other-
wise as L increases. We estimate the critical threshold as the optimal value of
∆ at which the effective exponent approaches a nontrivial value. The plot for
this effective exponent is shown in Fig. 16. One can see that there is a down-
ward and upward curvature for ∆ < 4.20 and ∆ > 4.30, respectively. From
this behaviour we estimate that ∆c = 4.25 ± 0.05 and β/ν = 0.07 ± 0.03.

Note that the effective exponent varies with L even at the estimated critical
point, which implies that corrections to scaling are not negligible for system
sizes up to L = 32. For that reason our numerical results for ∆c and β/ν
have rather large error bars, and one may need larger system sizes for better
precision. The exponents β and ν could also be obtained from the scaling
analysis using (23). We fix the values of ∆c and β/ν to the values obtained
before and vary ν to have an optimal data collapse. We obtain ν = 1.4 ± 0.2
and the corresponding scaling plot is shown in Fig. 16. The order-parameter
scaling property shows that the roughening phase transition is a continuous
transition, though the exponent β � 0.1 is very small, as opposed to the results
of the Gaussian variational study [27] predicting a first order transition.
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Fig. 16. Left: The effective exponent [β/ν](L) for different values of ∆ as a function
of 1/L. The broken line is a guide for the eyes that separates the curves with a
downward bending (∆ < ∆c) from those with an upward bending (∆ > ∆c). Right:
Scaling plot of mLβ/ν vs. |ε|L1/ν with ε = ∆ − 4.25, β/ν = 0.07, and ν = 1.4

6 Summary

To conclude we discussed several applications of polynomial combinatorial
optimisation algorithms to the numerical investigation of ground state prop-
erties of disordered systems. We did not touch the application of matching
algorithms, with which one can compute the ground states of spin glass mod-
els on planar graphs (e.g. in 2d with free boundary conditions [32, 33] and
to study 2d disordered elastic media [34]. We also did not discuss the optimi-
sation of sub-modular function, which is useful in the context of the q → ∞
limit of the 2d random bond Potts model [35]. Together with the example
we presented in this paper we learn that there are plenty of interesting prob-
lems in the realm of the theory of disordered that can be effectively studied
with polynomial algorithms. There is another plentitude of problems that are
currently investigated with non-polynomial combinatorial optimisation algo-
rithms (like the notorious 3d spin glass problem [3]) as well as with quantum
annealing algorithms.
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1 Introduction

Simulated annealing is usually applied to systems with frustration, like spin
glasses and optimisation problems, where the energy landscape is complex
with many spurious minima. There are certain other systems, however, which
have very simple energy landscape picture and ground states, but still the sys-
tem fails to reach its ground state during a energy-lowering dynamical process.
This situation corresponds to “dynamical frustration”. We have specifically
considered the case of the axial next nearest neighbour (ANNNI) chain, where
such a situation is encountered. In Sect. II, we elaborate the notion of dynamic
frustration with examples and in Sect. III, the dynamics in ANNNI model is
discussed in detail. The results of application of the classical and quantum
annealing are discussed in Sects. IV and V. Summary and some concluding
comments are given in the last section.

2 Dynamic Frustration in Ising Models

Quenching dynamics in magnetic systems has been a topic of intense research
over the last few decades. In quenching dynamics, the system has a disordered
initial configuration corresponding to a high temperature. As the temperature
is suddenly decreased quite a few interesting phenomena take place like do-
main growth [1, 2], persistence [3, 4, 5, 6] etc.

The Ising model maybe regarded as the simplest model describing mag-
netic properties of many real systems and it shows a rich dynamical behaviour
with respect to the above phenomena. The dynamics of Ising models has been
extensively studied in lattices of different dimensions as well as on graphs and
networks.

In dynamical studies, the system is allowed to evolve from the initial con-
figuration following a certain prescription and the commonly used dynamical
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rule at zero temperature is the Glauber dynamics, i.e., a spin is chosen ran-
domly and flipped if it makes the energy lesser, not flipped if energy increases
and flipped with probability 1/2 if there is no energy change.

The zero temperature deterministic dynamics in Ising models can be vi-
sualised as the motion of interfaces and the domains grow in size as the inter-
faces annihilate on approaching each other (Fig. 1). In one dimension, a zero
temperature quench of the Ising model ultimately leads to the equilibrium
configuration, i.e., all spins point up (or down).

Fig. 1. Domain coarsening in one dimensional Ising model: the spin at the boundary
of the left domain wall flips making the two domain walls move closer (Top: earlier
picture, bottom: later picture)

In two or higher dimensions, however, the system does not always reach
equilibrium [7, 8, 9, 10, 11, 12]. Such a situation corresponds to dynamical
frustration when the system gets frozen in a metastable state which does not
correspond to the ground state. For example, in the two dimensional lattice
(Fig. 2), the dynamics stops at a higher energy when the domain walls are
straight and appear without any corner. The system thus acquires a “striped
phase”, where the number of stripes is an even number. In dimensions higher
than two, there maybe other kind of frozen states in which the system gets
locked.

Fig. 2. Striped phase in two dimensional Ising model under zero temperature
quenching dynamics – the domain walls are straight and no spin flips can occur
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This kind of freezing or blocking is also encountered in ferromagnetic Ising
models on random graphs and small world networks where there are finite
number of random long range bonds. In the random graph, any two spins are
connected with a finite probability while in the small world network, random
long range connections occur in addition to nearest neighbour links. In these
cases, the domain walls may get pinned resulting in a frozen state [13, 14, 15,
16, 17]. Recently, freezing has been observed on scale-free networks also, where,
although the system is locked in an excited state, the dynamics continues
indefinitely [18].

In the above examples of freezing in Ising models on finite dimensional
lattices, graphs and networks, a few things are to be noted

(a) The ground state is simple in all the cases
(b) There is no frustration arising out of the interactions in the system.

In addition, power law scalings with time (e.g., domain size ∼t1/z) exist
for the finite dimensional lattices [19] but in the case of networks or random
graphs, one has an exponential relaxation behaviour consistent with the mean
field nature of these systems [20, 21, 22, 23].

3 Dynamics in ANNNI Chain

We will now discuss the dynamics in the axial next nearest neighbour Ising
(ANNNI) model [24] in which there is frustration but no randomness or dis-
order. The ANNNI model in one dimension is described by the Hamiltonian

H = −J1ΣSiSi+1 + J2ΣSiSi+2 . (1)

The ground state of this model is well-known: it is ferromagnetic for κ =
J2/J1 < 0.5; antiphase for κ = J2/J1 > 0.5 and highly frustrated for J2/J1 =
0.5. All configurations having domains of size ≥2 are ground states at the
point κ = 0.5, which we call the fully frustrated point.

The dynamics of the ANNNI chain has quite a few interesting behaviour
[25, 26]. When zero temperature quenching dynamics is considered, κ = 1.0
emerges as a dynamical transition point. For κ < 1, there is no conventional
domain coarsening or persistence behaviour. Here, all domains of size 1 imme-
diately vanish but domains of size two are stable such that two domain walls
cannot approach each other and annihilate (Fig. 3).

Unlike in the Ising model in d = 2, here the domain walls are not pinned
but can move around keeping their number fixed. The energy of the system is
constant as spin flips occur with zero energy cost. The system thus wanders
in a subspace of iso-energy metastable states forever. As a result, the model
also does not show a power-law decay in the persistence probability. Interest-
ingly, there is no special effect of the κ = 0.5 point (which dictates the static
behaviour) on the dynamics.
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(a)

(b)

Fig. 3. Dynamics in ANNNI chain for κ < 1: All domains of size 1 are unstable
and they immediately vanish (a). The system is left with domains of size ≥2. A
domain of size two, as shown in (b), is energetically stable as the spins within
the domain satisfy the antiferromagnetic ordering with their second neighbours and
energy contribution from first neighbours is zero. As a result, two domain walls have
to maintain a minimum distance and cannot approach each other and annihilate

As the domain walls continue moving in the system, the number of spin
flips at any time becomes a constant in time. This constant is independent of
the value of κ. That is expected as this quantity is proportional to the number
of domain walls. The average number of domain walls remaining in the system
(per spin) turns out to be close to 0.28 [26].

The residual energy Er, defined as the excess energy over the ground state
energy shows an interesting behaviour with κ (Fig. 4). At small values of κ
the large number of domain walls makes the residual energy large. As κ is
increased, Er becomes lesser and at κ = 0.5 it is zero. This is not surprising
however; the configurations with domain sizes ≥2 are nothing but the degen-
erate ground states of the κ = 0.5 point. The residual energy decreases as
κ = 0.5 is approached from both sides.
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For the sake of completeness, it should be mentioned that the ANNNI
model shows conventional relaxation behaviour for κ > 1 although with a
dynamic exponent different from that of the nearest neighbour Ising model.

Since the conventional dynamics does not bring the system to the ground
state, one has to employ some other method to do this. Simulated annealing
for the Ising model on random graphs has been attempted to “melt” the
system with success [13]. For small world networks, freezing can be got rid
off by letting more number of edges in the system also [27]. We discuss in the
next two section the result of applying different annealing schedules to the
ANNNI model for various values of κ < 1.

4 Classical Annealing (CA)

We have adopted two different schemes for applying classical or thermal an-
nealing.

Scheme A

This is the conventional scheme where one starts with a finite temperature
T = T0 and slowly reduces it according to a linear schedule, such that, at the
t-th iteration step,

T = T0(1 − t/τ) , (2)

where τ is the total number of Monte Carlo steps (MCS). The final tempera-
ture (at t = τ) is zero for any starting value of T .

Since for all non-zero temperature, the ANNNI model is in a paramagnetic
state, one may start with a random initial configuration corresponding to T0.

We have calculated the residual energy and the order parameter as func-
tions of τ ; the former is expected to approach zero and the latter should
increase towards unity with larger values of τ .

In Fig. 5, we show the behaviour of Er against τ for different κ values.
These simulations have been done for a system of 100 spins keeping T0 = 10.
The number of configurations n over which averaging has been done decreases
with τ ; starting with n = 1000 for smaller values of τ , it is decreased to n = 100
for very large τ values. While for κ = 0.2, we find a stretched exponential
decay, the nature of the curves changes to a power law decay for higher values
of κ. Close to 0.5 it has a very slow decay. Corresponding to a power law fit
Er ∼ τ−α, α is very small here, e.g., for κ = 0.4, α = 0.08 ± 0.01, and for
κ = 0.6, α = 0.03±0.01. The slowing down of the decay pattern of Er seems
to depend on the closeness to κ = 0.5 as well as on the nature of the ground
state. For the various values of κ for which the annealing scheme has been
employed, the slowest decay is observed at κ = 0.6, when the system is close
to κ = 0.5 and the ground state is also antiphase. The power law remains
valid for κ > 0.5 with an increasing value of α.
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Fig. 5. Residual Energy vs. MCS τ in the ANNNI model for different values of
κ < 1.0. The decay is slow close to κ = 0.5. T0 = 10 here

We have also checked the efficiency of this scheme for different values of
T0. Note that the decrease in T is made with a slope equal to T0/τ ( 2), so we
compare the results for different T0’s by plotting Er against τ/T0. For κ = 0.4
or 0.6, Er is independent of T0 (as long as T0 is not very small compared to
1) while for κ = 0.2, lowering T0 makes the decay faster at large τ . However,
when T0 is made smaller than unity the decay does not become faster any
more. This plot (Fig. 6) also shows that for κ close to 0.5, the power law
behaviour is actually valid over a large range of τ which is not so apparent
from Fig. 5.

Thus Er depends strongly on κ: not only does the functional form change
from a stretched exponential to power law, there is also a non-universal ex-
ponent α which depends on the value of κ. The role of κ = 0.5 is felt clearly
as the annealing is least effective close to this point.

While estimating the order parameter (OP), it should be noted that for
κ < 0.5, the order parameter is just the magnetisation while for κ > 0.5, it is
the average of the four sublattice magnetisations defined as

mα = Σ
L/4−1
j=0 Sα+4j ; α = 1, 2, 3, 4 (3)

as in [26]. In Fig. 7, we plot the behaviour of the OP with τ for different
values of κ. The behaviour of the order parameter is also κ dependent. The
variations with τ are not smooth: the reason is that decreasing energy is not
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necessarily equivalent to increasing the order parameter. However it seems to
have a rough power law increase for all values of κ (Fig. 7). As expected, the
growth of the order parameter is slowest at κ = 0.6.

Thus we find that this annealing schedule is not very effective near κ = 0.5
but works well for small values of κ. It is not possible to detect whether there
is a value of κ for which the behaviour of the residual energy changes from
stretched exponential to power law from the present numerical study.

Scheme B

In this scheme, we first let the system evolve from a random configuration
(corresponding to a high temperature) using the zero temperature dynamics
and then, after a few steps, apply scheme A. The difference here is, we let the
system reach one of the metastable states under zero temperature dynamics,
heat it to a finite temperature T0 which is then gradually decreased.

In the ANNNI chain, for the first 100 iterations, the temperature is kept
zero such that when re-heated, the system is in one of the metastable iso-
energy states. We find that this scheme accelerates the decay of the residual
energy remarkably for small values of κ (e.g., κ = 0.2) at large τ . However,
for higher values, e.g., κ = 0.3, 0.4, 0.6, for which scheme A gave a power
law decay of Er, the results are identical to that of scheme A. Thus near the
κ = 0.5 point, this scheme is also seen to fail to bring the system to its static
ground state.

This scheme is highly appropriate for cases where the system has a frac-
tional probability to end up in a metastable or frozen state not corresponding
to the ground state. Here it is not possible to predict whether a random initial
configuration will reach the ground state under zero temperature dynamics
or not. A good example is the two dimensional Ising model as it reaches a
frozen state in about 30% cases. It is useless to apply scheme A here because
70% of the cases do not require any annealing at all. Therefore in order to
see whether CA is useful, it should be better to apply scheme A to an initial
configuration of frozen state which can be assumed to have evolved from a
perfectly random initial state with zero temperature Glauber dynamics. Thus
effectively it has undergone a period of cooling at zero temperature and when
scheme A is now applied to it, it is equivalent to scheme B.

We have performed some simulation on a square lattice of size L = 40,
where the number of stripes s is equal to 2 or 4. In each case, we find that the
behaviour of both the residual energy and the magnetisation is exponential
which means that the scheme works very well in this case. In Fig. 8, we show
the variation of the residual energy and magnetisation for s = 2. The expo-
nential relaxation is easily understood, as the thermal perturbation breaks
the structure of the domain walls and the system is then again free to evolve
dynamically. The results are identical for s = 2 and 4 at large τ . It may be
mentioned here that for a value of the stripe number s comparable to L, the
situation is very similar to the ANNNI model (as stripe sizes have to be ≥ 2)
and then the exponential behaviour may no longer be present. However, the
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Fig. 8. Order parameter (magnetisation) and residual energy versus MC time τ in
the 2-d Ising model under scheme B. The value of T0 is 1 here. The dashed line has
slope equal to 3.33 × 10−5 in the log-linear plot

probability of a large value of s is small and so, we have not considered values
of s > 4.

5 Quantum Annealing (QA)

Although the classical annealing methods work quite well for the ANNNI
model for small κ, we find that close to the κ = 0.5 point, it leads to very
slow relaxation. In several situations, quantum annealing is far more efficient
in decreasing the energy of the system [28, 29] and we therefore apply this
method in the ANNNI model. Here instead of thermal fluctuation, quantum
fluctuation is considered to induce tunnelling to enable the system reach the
ground state for κ < 1.

The Hamiltonian for the quantum ANNNI chain is :

H = −J1ΣSiSi+1 + J2ΣSiSi+2 − ΓΣSi (4)

This can be mapped to a 2-dimensional classical model [30, 31] using the
Suzuki-Trotter formula:

H = −J1ΣSα,iSα,i+1 + J2ΣSα,iSα,i+2 − JpΣSα,iSα+1,i (5)

where

Jp = −PT/2 ln(tanh(Γ/PT ))
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and α denotes the αth row in the Trotter direction. Subsequently, one can use
a linear schedule for the transverse field as in [29] and find out the results for
Er and the order parameter. However, it is not possible to make Γ equal to
zero in the last step as that would make Jp infinite.

We would first show some curious features of the results on applying this
method to the ANNNI model and then try to justify the results.

The Suzuki-Trotter mapping is exact for P → ∞ but it can be a good
approximation if PT ≥ 1. One needs to find out an optimum value of PT
for which Er does not change with P . We therefore fix PT and find out Er

for different values of P following [29]. We first fix PT = 1. For small κ, e.g.,
for κ = 0.1, the scheme indeed makes Er go down with τ quite efficiently.
However, the value of Er for the same τ and different values of P shows
that Er actually increases with P . Thus results for any finite P may not be
reliable. Even increasing PT to 2, we find that this behaviour persists. The
reason for this maybe that the Suzuki-Trotter mapping works with a non-zero
temperature for which the system is disordered and is always at a high energy
state compared to the perfectly ordered state and therefore Er does not go to
zero for large τ and P . These results are shown in Fig. 9.

In case of a value of κ close to 0.5, e.g., κ = 0.4, we find that Er re-
mains virtually a constant for all P values when PT = 1 which apparently
implies that PT = 1 is a good optimum value. However, Er actually remains a
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Fig. 9. The quantum annealing scheme does not appear to work well for the ANNNI
chain. For example at κ = 0.1, an optimum value of PT is difficult to find out as
Er increases with P where PT is fixed at 1 or 2 at any value of τ
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τ are shown for 3 different values of P . Er actually remains constant with τ and P
while the OP (m(t)) seems to fluctuate around a constant value

constant for all τ values as well showing that it does not relax at all. Thus here
too the quantum annealing method will not work well. The reason is again
because a non-zero temperature of the system has been used. However, the
manifestation of this non-zero temperature is different for small and higher
values of κ.

On hindsight, it may appear that quantum annealing is a redundant ex-
ercise in this case. However, it is interesting to find out how the redundancy
makes itself known for different values of κ in different ways.

6 Summary and Conclusions

In summary, we have shown that in systems with dynamic frustration, simu-
lated annealing can be applied which gives results according to the nature of
the system. For the ANNNI model, which has a competing interaction lead-
ing to frustration, (but well defined ground states with trivial degeneracy for
κ 
= 0.5) classical annealing seems to work well for values of κ close to κ = 0.

We have applied a different scheme of thermal annealing where the system
is heated after an initial period of cooling. The results remain same in case
of the ANNNI model when the frustration parameter is appreciable. But this
method is useful in case of some other models where the conventional scheme is
not very handy, e.g., the two dimensional Ising model. The better effectiveness
of the annealing scheme for the two dimensional model in comparison to the
ANNNI model may be attributed to the fact that there is no frustration in the
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former. The frustration present in the ANNNI model especially near κ = 0.5
makes it unresponsive to the thermal annealing while the unfrustrated two
dimensional Ising model responds fast to the thermal fluctuation.

In case of the ANNNI model, it is also interesting to note that while in
the dynamical studies it was shown that the κ = 0.5 point hardly has any
role to play, and dynamical quantities like persistent probability, number of
spins flipped at any time etc. were κ independent, things become strongly κ
dependent under any annealing schedule with non-universal exponents gov-
erning the power law decays. The effect of κ = 0.5 is also felt as the annealing
fails to make any impact close to it.

The application of a quantum annealing method with non-zero temper-
ature also fails to “melt” the system to its ground states and its effect is
differently manifested for small and large values of κs.

In fact we find that much is left to be done for a successful annealing
programme near κ = 0.5, e.g., one may attempt a zero-temperature quantum
annealing schedule.

Even for the classical annealing case, the change in behaviour of the resid-
ual energy as κ is varied requires to be studied more intricately and possibly
for larger syatem sizes. Our present study may act as a guideline for such
future research work.

Lastly, we note that the variations of the residual energy does not follow a
Huse-Fisher [32] type scaling in any parameter range for the ANNNI model.
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1 Introduction

Nowadays, the annealing concept is useful in (at least) two different fields,
namely Physics and Optimization. The annealing strategy was well known in
a physical context when Kirkpatrick, Gellat and Vecchi [1] generalized it to
complex Optimization problems. A familiar example (for a physicist) is that
of crystal growth: the more slowly you cool a liquid, the better crystal you
will obtain when temperature drops beyond the melting point.1 One could
say that Nature is trying to solve an Optimization problem: the variables to
play with are the atomic positions, while the cost function to be minimized
is the potential energy. The configuration that minimizes the cost function is
the perfect crystal, and a slow annealing schedule allows Nature to find good
crystals.

The annealing strategy can be mimicked by researchers with the help of a
computer. The physical dynamics at a given temperature is represented by a
Monte Carlo Markovian random walk in configuration space,[3, 4] while the
slow quench is reproduced by changing accordingly in the computer the para-
meter playing the role of the physical temperature. This combination yields
a powerful optimization method that can be used when trying to minimize a
physical potential energy,2 or a more general cost function [1].

When one tries to reproduce in the computer a physical annealing process,
it turns out that the accessible timescales do not match with experiments. For
a spin system, the typical annealing experiment last at least some seconds (see

1 By a better crystal we mean one with less defects (such as vacants, interstitials,
dislocations, etc., see for instance Kittel[2]) and composed of larger grains. Ideally
it would be a monocrystal.

2 At finite temperature the problem is minimizing the free energy, while at zero
temperature one wants to minimize the internal energy.

V. Mart́ın-Mayor: Exploring Complex Landscapes with Classical Monte Carlo, Lect. Notes Phys.
679, 339–372 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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e.g. [5]). In spite of the accessibility of dedicated computers,[8] this timescale
is larger by five orders of magnitude than the simulations you may do[6, 7] for
a small system of 2×105 degrees of freedom (a 603 lattice). For the simulation
of a liquid, you are restricted to some 104 particles, whose evolution may be
followed for microseconds [9]. The unpleasant conclusion is that, if your ex-
perimentalist friend cannot optimize it by means of an annealing experiment,
you will not do any better with a computer (at least doing what Nature does).
Of course you may try tricks. A very successful one is to use artificial Monte
Carlo dynamics, such as the cluster methods,[10, 4] which attempt global
changes of configuration variables not occurring in physical systems. These
methods are tremendously successful, but also highly problem-specific: you
need to find the right global changes. Another possibility is to use a quantum
dynamics (experimentally or simulating it in a classical computer; in both
cases it is a heavy task), that exploits the parallel computing possibilities of-
fered by quantum time evolution [11]. This promising alternative is illustrated
in several contributions in this volume.

Here, we will illustrate two of those Optimization problems that Na-
ture seems unable to solve by means of (classical) annealing, namely spin-
glasses [12, 13, 14, 15, 16] and supercooled glass-forming liquids [18, 19]. For
both kind of systems we have reasonably realistic three-dimensional models,
as well as Mean-Field models [14, 20, 21] (the p-spin Sherrintong-Kirkpatrick
models, see Sect. 3). The infinite dimensional Mean-Field models offer clear
advantages: they can be solved analytically and these solutions yield nice
physical pictures. Unfortunately, it is by no means obvious that the Mean-
Field solutions bear any resemblance to the three dimensional systems that
they aim to represent [24, 25]. Surprisingly enough, experiments have not yet
settled this controversy [15, 24, 25]. In the case of spin-glasses, the reason is
clear: the Mean-Field solution tell us about equilibrium properties, while no
experiment has reached thermal equilibrium for a spin-glass below its glass
temperature. The situation is somehow better for supercooled liquids. In that
case, the Mean-Field solution contains also dynamical information (actually,
it is in this way that the correspondence with liquids is established[20]). Im-
portant features of the Mean-Field solution are not present in liquids, but
Mean-Field is still considered an useful approximation.

Yet, when one wants to extract information from the three dimensional
systems, a numerical study of three dimensional models is still the main choice.
For a restricted family of models of glass-forming liquids, modified classical
Monte Carlo dynamics [22, 23] are quite (even too much3) effective. In the
spin-glass case, parallel tempering,[26] a sophisticated version of classical an-
nealing, has shown some limited success in three dimensions [27]. Things look
better in two dimensions, where no ordered low-temperature phase exists for

3 In the sense that the unwanted absolute minimum of the free energy, the crys-
talline phase, appears even if one is interested in the metastable supercooled
liquid.
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temperature T > 0. Effective ground-state (i.e. T = 0) search algorithms are
known (see H. Rieger in this volume), as well as an efficient cluster method for
T > 0 [28]. Furthermore, quantum annealing has been shown to be superior
to classical annealing in the ground-state search in 2D [29]. However,[30] a
similar procedure performs worse than classical annealing in the study of a
Mean-Field Sherrintong-Kirkpatrick model appropriated for glass-forming liq-
uids. A rather important open question is whether quantum annealing could
be useful in the study of three-dimensional hard optimization problems, such
as those posed by spin-glasses and glass-forming liquids. Clues for the answer
should be looked for in other contributions to this volume.

The layout of the rest of this note is as follows. In Sect. 2 we shall re-
call some of the most general features of an out-equilibrium glass. Then we
shall specialize to glass-forming liquids. In Sect. 3 we collect some ideas from
the Sherrington-Kirkpatrick model, in particular the relationship between the
glass transition and the topological features of the energy landscape. In Sect. 4
we shall comment on numerical attempts to give flesh to some of the Mean
Field concepts in three dimensions. In Sect. 5 we shall describe our proposal
to use high-frequency X-ray and neutron scattering data to study the energy
landscape. In Sect. 6 we elaborate on the use of modified Monte Carlo moves
(the swap) to deal with this problem. The last part of this note, Sects. 7 deals
with our investigations of rejuvenation and memory, two features of out-of-
equilibrium spin-glasses that, one would say, preclude the use of (classical)
annealing strategies.

2 Aging

Aging is found in many complex systems out of equilibrium, like supercooled
liquids,[18, 19] polymers,[31] colloids,[32] or spin-glasses,[33] and understand-
ing it is a necessary step toward a unified description of such systems [17, 34].
Aging is nicely demonstrated, for instance, in measures of the thermorema-
nent magnetization in spin-glasses (see e.g. [35]): in the presence of a magnetic
field, cool an spin-glass from room temperature to the working temperature,
T , below its glass-temperature; hold the magnetic field for a while (the time
elapsed will be called tw hereafter), then switch-off the field and record the
time-decay of the magnetization Mtw

(t). Not only this decay is very slow but,
even for the longest tw tried up to now, Mtw

(t) strongly depends on tw (the
larger tw is, the slower decays Mtw

(t)). Similar results are found in most aging
systems. After a short transient since preparation, a state is reached in which
one-time observables (e.g. energy, enthalpy) vary extremely slowly, while two-
time quantities (correlations, susceptibilities) strongly depend on the age, tw,
of the system as well as on frequency ω (or the measurement time t).

Despite recent efforts, our knowledge of aging of real materials is scant
in the theoretically important regime of large tw and small frequency, where



342 V. Mart́ın-Mayor

universal features should show up [17]. Two issues still open are the scaling
of correlations and the behavior of the fluctuation-dissipation ratio. The two
problems are briefly described below. Still more complex situations, such as
the behavior of aging systems under temperature changes, will be addressed
in Sect. 7.

2.1 Time Sectors

To illustrate the two times scaling of correlations, let us address quantitatively
the time-decay of Mtw

(t) or equivalently, given the Fluctuation-Dissipation
Theorem,[17] the time-dependent spin-spin correlation function4 in the ab-
sence of a magnetic field:

C(t, tw) =
1
N

∑

i

〈σi(t + tw)σi(t)〉 , (1)

(the reader will find often in the literature that C(t, t+tw) is named C(t, tw)).
Now, it seems to be a fact of general validity in out-equilibrium dynamics [17]
that C(t, tw) behaves differently in different time-sectors. Loosing generality5

for the sake of clarity, this amounts to say that it can be decomposed as

C(t, t + tw) =
∑

i

fi

(
(t + tw)1−µi − t1−µi

w

1 − µ

)
. (2)

Here, fi are smooth, decreasing functions that tend to zero at infinity, and
such that fi(0) is of order one. It follows that if t � tµi

w the i=th time sector
contributes the constant value fi(0) to C(t, tw), while for t � tµi

w it contributes
nothing. In other words, the i=th time sector is active only for t ∼ tµi

w (notice
that the different time sectors get neatly separated only in the limit of very
large tw).

Not much is known about the exponents µi defining the different time
sectors. With the popular parametrization in (2),[17, 35] one has 0 ≤ µi ≤
1. For the simple case of the coarsening-dynamics (domain-growth) of an
ordered ferromagnet,[41] only two time sectors are needed for a complete
description: µ1 = 0 describing the stationary, tw independent dynamics found
at small t, and µ2 = 1 describing the full-aging situation where the correlation-
function depends on the ratio t/tw. Also the spin-glass dynamics has been
experimentally claimed[35] to be ruled only by two time sectors: µ1 = 0 and
µ2 = 0.97. The second time sector is slightly but clearly different from the
full-aging t/tw behavior (µ = 1) and is thus named sub-aging. However, a
very recent experiment[39] seems to indicate that the sub-aging behavior is
just an artifact of the finite-time needed to cool the system down to the
4 Actually, in the aging regime they are related by a very smooth function [36, 37,

38].
5 The here presented formulation cannot describe logarithmic domain-growth, for

instance. See in [17] the general framework.
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working temperature (a limitation not suffered of in numerical simulations).
Using their fastest cooling protocol, Rodriguez et al.[39] have found a clear full-
aging behavior µ2 = 0.999. Furthermore, the role of the stationary time-sector
(µ1 = 0) to describe the data is far less critical than previously[35] thought.
The results by Rodriguez et al.[39] have not being universally accepted, and
there still is an ongoing controversy regarding the presence of full-aging in
spin-glasses (See [6, 7, 40]). For colloids, both superaging [42] (µ > 1) and full
aging[43] has been reported. Polymers show rather subaging [31, 44] (µ < 1), as
has also been observed numerically in simple liquids [45]. However, the values
quoted often correspond to different time regimes, and the regime where tw →
∞ with t/tw fixed has not been carefully studied (except for spin glasses). For
example in glycerol [46] full aging has not been seen either close to the glass
temperature, Tg (almost at equilibrium) or at lower temperatures T . In both
regimes the explored frequencies were much larger than 1/tw.

2.2 The Fluctuation-Dissipation Ratio

Consider observables A and B (B couples to an external field h). One example
will be given in Sect. 6. The susceptibility χ is the time integral of the linear
response:

R(tw, t + tw) ≡ δ〈A(t + tw)〉
δh(tw)

∣∣∣∣
h=0

, (3)

while the correlation function is

C(tw, t + tw) ≡ 〈A(t + tw)B(tw)〉 . (4)

In the simplest instance of (2), both R(tw, t + tw) and C(tw, t + tw) are
expected to be of the form [17]

C(tw, tw + t) = Cst(t) + Cag

(
g(tw + t)

g(tw)

)
. (5)

The stationary part Cst(t) is the µ = 0 sector, while g(t) is a monotonic
function acting as an “effective” correlation time, and Cag describes the aging
of the system [35].

Aging is also characterized by a non-trivial behavior of the fluctuation-
dissipation ratio (FDR), namely

X(tw, t + tw) =
TR(tw, t + tw)

dC(tw, tw + t)/dtw
. (6)

The fluctuation-dissipation theorem (FDT) states that X = 1 in thermody-
namic equilibrium, but this need not be so during aging, and FDT violations
(i.e. X 
= 1) are observed. Experiments [47, 48], mean-field results [36] and
simulations [38, 49, 50] suggest that the FDR depends on time only through
the correlation function:
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X = X[C(tw, tw + t)] . (7)

In structural glasses, in which we concentrate from now on, simulations
also show that at fixed tw, X takes essentially two values: X(C) = 1 for C
greater than some qEA(T ) (called Edwards-Anderson parameter) and X(C) =
x(tw) < 1 for C < qEA(T ). Since T/X can be interpreted as an effective
temperature Teff ,[36] it seems that FDT violations in structural glasses can
be characterized by a single time-dependent

Teff(tw) ≡ T/x(tw) , (8)

related to the slowest degrees of freedom. This lacks experimental confirma-
tion. (Note that other definitions of effective temperatures have been explored
[46, 51]). Also open is the issue of the behavior of Teff(tw) as tw → ∞ , of great
theoretical interest because it is related to the possible thermodynamic mean-
ing of Teff [36].

3 Pictures from the Sherrington-Kirkpatrick Model

The Sherrington-Kirkpatric model is a Mean-Field version of the Edwards-
Anderson model. The variables of the Edwards-Anderson model are spins
(σi = ±1, i = 1, 2 . . . N) placed in the nodes of a regular lattice. The Edwards-
Anderson Hamiltonian couples only nearest neighbor spins, and is itself a
random quantity:

H = −
∑

<i,j>

Jijσi, σj . (9)

The couplings Jij are independent random variables extracted from a Gaussian
distribution of mean Jij = 0 and variance J2

ij = J2 (it is customary to measure
temperatures in units of J). Note that we represent the Boltzman thermal av-
erage as 〈. . .〉 while the average over the couplings is given by an overline. All
important quantities are obtained in this order: first, you obtain the thermal
averages over the spins for a fixed coupling distribution, and later you average
the results over the couplings. For instance, the free energy is

F = −T log

[
∑

σ1=±1

. . .
∑

σN=±1

e−HJ/T

]
(10)

In the standard jargon, one says that the Jij are quenched random variables.
The Sherrignton-Kirkpatrick model is a Mean-Field version of the model

(9) in the sense that all spins interact with each other, but their coupling is
small:

H = −
∑

i�=j

Jijσiσj , J2
ij =

J2

N
. (11)
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The Sherrington-Kirkpatrick model can be solved analytically,[14] and this
solution yields a rich picture for the spin-glass phase. However, here we will
not be concerned with it. We are rather interested in the properties of a gen-
eralization of the Sherrington-Kirkpatrick model, the so-called p-spin model,
where we admit p-body interactions:6

H = −
∑

i1<i2<...<ip

Ji1,i2,...,ip
σi1σi2 . . . σip

, (12)

with J2
i1,i2,...,ip

= J2/Np−1 . The p-spin model is a kind of Mean-Field model
for supercooled liquids [20].

At first-sight, one is puzzled by this connection: a liquid is not made of
spins, and there is nothing in liquid physics [52] that could play the role of
the quenched couplings. However, when one tries to find closed equations for
the evolution of the correlation functions and the linear responses, recall (3),
for the model (12), you find that the standard Mode-Coupling approximation
that you make for supercooled liquids,[53] is exact in this case. Since the
Mode-Coupling approximation is, in general, somehow uncontrolled, it is very
interesing to have a model at hand where it can be used with full confidence.
We give here a very sketchy description of the main results of this analysis,
referring to the lectures notes by Cugliandolo [21] for details and further
references.

In a nutshell, below the so called Mode-Coupling temperature, Tmc, a di-
vorce is found between the statical and dynamical properties of model (12).
Indeed, the free energy is an analytical function of temperature down to the
critical temperature, Tc < Tmc. However, if one follows the (Langevin) dynam-
ics of an initially disordered system, in the large N limit its energy density
cannot go below the so-called threshold energy, Eth, at any temperature. The
threshold energy is not the ground-state energy, but the equilibrium energy
at temperature Tmc . In fact, for T < Tmc the equilibrium energy density
verifies E(T ) < Eth. Classical annealing [1] is useless for model (12). There-
fore, for T < Tmc the system is eternally out of equilibrium and a non-trivial
Fluctuation-Dissipation ratio, (6), is to be expected. As for thermodynamic
properties, a funny continuous transition is found at Tc, where the susceptibil-
ities are continuous, but the order parameter (defined below) has a discontin-
uous jump. A geometrical description of this puzzling behaviour is provided
by the TAP free energy [54].

3.1 The TAP Free Energy

Since model (12) is of Mean-Field nature, it can be solved (for a fixed realiza-
tion of the random couplings Ji1,i2,...,ip

) by minimizing a free-energy function

6 It is sometimes useful to relax the constraint σi = ±1. One rather considers a
spherical model where the constraint relaxes to

∑N

i=1
σ2

i = N (see [21] for details).
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that depends in the average magnetization of each spin. Hence we introduce
the variational parameters:

mi = 〈σi〉 , (13)

qEA =
1
N

N∑

i=1

m2
i . (14)

The Edwards-Anderson parameter, 0 ≤ qEA ≤ 1 plays the role of an order
parameter. The values of the mi are obtained by minimizing the TAP free-
energy:

FTAP =
N∑

i=1

1 + mi

2
log
[
1 + mi

2

]
+

1 − mi

2
log
[
1 − mi

2

]

−
∑

i1<i2<...<ip

Ji1,i2,...,ip
mi1mi2 . . . mip

− 2N
[
1 − qp

EA − p(qp−1
EA − qp

EA)
]

(15)

The first term approximates the entropy of the spins, the second their energy
while the third is the Onsager back-reaction term.

3.2 The TAP States

The TAP state at temperature T , for a given J realization, are the stationary
points of FTAP:7

0 =
∂FTAP

∂mi
. (16)

We name all the magnetizations for a generic state by m. States are classified
according to their index, that is the number of negative eigenvalues of the
Hessian matrix, ∂2FTAP/∂mi∂mj , at the TAP states (states with zero index
are minima).

The difference with a standard Mean-Field calculation is in that one cannot
directly identify the free-energy with the minimum of FTAP: there could be
so many states of high free energy that their contribution becomes relevant.
Indeed,[55] the free energy should be obtained by summing the contributions
of all states, e−βFJ =

∑
α e−βFTAP(mα) . Now, specially at low temperatures,

the number of states with free-energy density f = FTAP/N is eNΣJ (β,f). We
call ΣJ(β, f) the complexity and, since it is self-averaging, we will drop the J
subindex.

The free energy

e−βF =
∫

df e−N [βf−Σ(β,f)] , (17)

7 Finding TAP states is a non trivial numerical task.
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can be calculated using a saddle point method [56]:

F = N [f∗ − Σ(β, f∗)] , β =
∂Σ(β, f)

∂f

∣∣∣∣
f∗

(18)

This is a sketch of the situation as temperature varies:

• For T > Tmc, Σ(β, f∗) = 0 and f∗ is the free-energy of the paramagnetic
state. More than one solution exist for the TAP equations (16). But solu-
tions other than the paramagnetic one are metastable states that play no
role in thermodynamics.

• For Tc < T ≤ Tmc, Σ(β, f∗) > 0. The states that dominate the ther-
modynamics have larger free-energy than the paramagnetic state, but
there are so many of them that their contribution is relevant. Neverthe-
less, [f∗ − Σ(β, f∗)] is the analityc continuation of the free-energy of the
paramagnetic states.

• For T < Tc, we have again Σ(β, f∗) = 0. The number of states is subexpo-
nential. The phase transition at Tc is identified with the thermodynamic
glass transition.

3.3 Dynamics and TAP States

One may further refinate the concept of complexity, by considering the number
of states with index 0 (minima), eNΣ0(β,f), with index 1 (saddles with one
unstable direction), eNΣ1(β,f), etc.

One has above Tmc,

Σ0 = Σ1 = Σ2 = . . . .

Yet, below Tmc they may be ordered as

Σ0 > Σ1 > Σ2 > . . . .

In other words, above Tmc the typical TAP state is a saddle of FTAP, while
below Tmc they are minima.

The situation[57] is depicted in Fig. 1. Below Tmc the equilibrium TAP
states are minima, separated from each other and from other metastable states
by free-energy barriers of order N . Those barriers cannot be overcome by a lo-
cal Langevin dynamics. Precisely at Tmc the threshold states become relevant.
The spectra of eigenvalues for the Hessian of FTAP touches zero, which means
that there are flat-directions (escaping from the threshold state along a flat
direction does not cost you free energy). Unfortunately, those flat directions
only connect threshold states. For T < Tmc , the dynamics get trapped by the
threshold states, as it is not able to overcome the free energy barriers of order
N separating them from the stable minima.
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Fig. 1. Typical densities of eigenvalues for the Hessian of the TAP free energy
evaluated at TAP states, above, just at, and below the Mode-Coupling temperature.
Above Tmc the typical TAP state is unstable. At Tmc the TAP states are marginally
stable, as the spectra touch zero. The dynamically unaccesible equilibrium states
below Tmc are stable minima

4 Inherent Structures

When one tries to interpretate the Mean Field picture in 3D, difficulties are
encountered. The free energy is not a function, but a functional. It is not
obvious how to generalize the TAP states, obtained findinf the stationary
point of a function, see (16), to a finite dimension.

In the context of the physics of liquids, an operational alternative has
been proposed, namely to consider the potential energy landscape [58]. We
denote the potential energy U({ri}), which is a function (not a functional!)
of particle positions. The potential energy per particle is named u . The basic
objects are named inherent-structures and are defined in the context of a
numerical simulation. The procedure is quite simple: from your instantaneous
liquid configuration ri , i = 1, . . . N , you obtain a minimum of the potential
energy using conjugate-gradient or any other local minimization algorithm.
The reached minimum is named an inherent-structure (IS), the corresponding
potential energy density being eIS .

In the bottom part of Fig. 2 we show an example of the procedure. The
eIS is a well defined function of T : the larger the system is, the smaller the
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Fig. 2. Top: autocorrelation time (in Monte Carlo steps) for the soft-sphere system
described in Sect. versus temperature. For this system, Tmc = 0.226 . Bottom: For
the same system of top panel, average potential energy density versus temperature,
as obtained in a numerical annealing. We also plot the corresponding energy for
inherent structures (black squares), as well as the potential energy density minus the
harmonic contribution to be expected for vibrations around frozen atomic positions
(open circles)

fluctuations you find for eIS . At high-temperatures, you find eIS = eth, inde-
pendently of T . If one tries to consider the system as a solid (i.e. the energy
should have an harmonic contribution, 3

2kBT , plus the energy corresponding
to the equilibrium position of the atoms, eIS), the results are disappointing.
You find that 〈u〉 is larger than eIS + 3

2kBT . Yet, when the temperature de-
creases and approaches Tmc, you start finding IS with eIS < eth while the
difference 〈u〉 − eIS − 3

2kBT shrinks. The system starts to behave as a collec-
tion of atoms vibrating around the equilibrium positions determined by the
IS (i.e. like an amorphous solid or a very viscous liquid). As you may check in
the top part of Fig. 2, as this process progress, the relaxation time increases
quite significantly. Although it is finite at Tmc, which in 3D corresponds to
a crossover temperature rather than to a dynamical critical temperature, it
increases beyond what is measurable in present day computers. Similarly, ex-
periments cannot measure relaxation times longer than hours [18].

Note that the configuration space is partitioned in basins of attraction [58],
each basin corresponding to a IS. Assuming that the dynamics in each bassin
is made of harmonic vibrations, you may easily calculate the entropy for every
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IS, using standard formulae for solids [2]. You simply need to diagonalize the
Hessian of the potential energy function at the IS. Furthermore, you know
the equilibrium entropy of the liquid (in the limit T → ∞ it is the entropy of
an ideal gas, and you may reach finite T integrating the specific heat). The
difference between the total entropy and the entropy of a single IS is the 3D
quantity corresponding to the Mean-Field complexity, Σ.

5 The Physics of Vibrations and the Landscape

The potential energy landscape paradigm is very appealing, but its implica-
tions for experiments are not immediately obvious. We outline here a pro-
posal [59] to relate it to scattering experiments.

Glasses[18, 19] are amorphous solids, in the sense that they display elastic
behaviour. In crystals, elasticity is associated with phonons, quantized sound-
wave excitations. Phonon-like excitations exist also in glasses at very high
frequencies (THz), and they remarkably persist into the supercooled liquid
[61].

Vibrational excitations of glasses in the THz region, and the related vibra-
tional density of states (VDOS), play a crucial role in their thermodynamic
properties [60]. Recent results suggest that the VDOS is determined by the
properties of the potential energy landscape [58] (PEL). Indeed, the VDOS
and the dynamic structure factor can be qualitatively reproduced from the
(harmonic) vibrational spectrum obtained from the diagonalization of the
Hessian matrix of the potential energy evaluated at the IS of a Lennard-Jones
system [62]. The same numerical procedure led to quantitative agreement with
inelastic X-ray scattering experiments in amorphous silica [63].

The high-frequency (0.1–10 THz) excitations have been experimentally
shown to have linear dispersion relations [61, 64, 65, 66, 67, 68, 69] in the
mesoscopic momentum region (∼ 1–10 nm−1). Although clearly not plane
waves, they are highly reminiscent of phonons because they propagate with the
speed of sound and because the VDOS, g(ω), is Debye-like (g(ω) ∝ ω2) at low
enough frequency. These excitations have in fact been dubbed high-frequency
sound and a coherent theoretical picture of their properties was obtained
[70, 71, 72, 73] using Euclidean Random Matrix Theory [74] (ERMT).

However, there is more to the low frequency VDOS of glasses than the
Debye law. A characteristic feature is that the VDOS departs from the Debye
form, displaying an excess of states, which has been named Boson peak (BP).
As observed in many materials, [61, 64, 65, 66, 67, 68, 69] the BP is in a
region of frequencies where the dispersion relation for phonons is still linear
(ω ∼ a few THz). Our preferred definition of the BP is that of the authors
that extract g(ω) from their neutron scattering data and look for a peak in
g(ω)/ω2.

The origin of the Boson peak can be understood if we consider the ensemble
of generalized inherent structures (GIS): for each equilibrium configuration
the associated GIS is the nearest stationary point of the Hamiltonian. If we
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start from an equilibrium liquid configuration at low temperature, the GIS
is a local minimum, and it coincides with the more frequently used IS (i.e.
the nearest minimum of the potential energy). On the contrary, if we start
from high temperature, the GISs are saddle points (recall Sect. 3.3). In the
GIS ensemble there is a sharp phase transition separating these two regimes.
It takes place in glass-forming liquids [75, 76, 77] at Tmc . Above Tmc liquid
diffusion is no longer ruled by rare activated jumps between ISs but by the
motion along the unstable directions of saddles. Phonons are present in the
spectrum of the VDOS in the low temperature phase (IS dominated) but are
absent in the saddle phase.

The key point, following both from analytic computations in soluble mod-
els [57] and simulations,[75, 76, 77] is that the minima obtained starting from
configurations below Tmc and the saddles obtained starting above Tmc join
smoothly at Tmc. Thus we can study GIS as a single ensemble, parametrized
by the initial temperature or the final energy. We expect that the GIS ensem-
ble belong to a large universality class.

This transition from the phonon phase to the saddle phase is a quite
general phenomenon that it is not restricted to glasses. It has been studied
in the framework of the Euclidean Random Matrix Theory (ERMT) [74],
showing [70] that close to this transition, a BP is present in the phonon phase,
whose position shifts to lower frequencies on approaching the transition point,
while its height grows without bound. The BP actually signals a crossover at
frequency ωBP between a (phonon dominated) ω2 scaling of g(ω) to an ωγ

scaling (γ < 2) that is present at the phase transition point. More precisely,
at frequencies small respect to the Debye frequency, the VDOS should satisfy
the scaling law

g(ω,∆) = ωγh(ω∆−ρ) , (19)

where ∆ is the distance from the critical point and depends on the actual
laboratory control parameter (pressure, temperature, etc.) Actually, ∆ will
be proportional to the difference between the system’s eIS and the energy of
the IS at the mode-coupling temperature, eIS(Tmc). The scaling function h(x)
is such that h(x) ∼ x2−γ for x � 1 and h(x) ∼ constant for x � 1. This
scaling law implies that

ωBP ∝ ∆ρ,
g(ωBP)
ω2

BP

∝ ∆−β , (20)

where β = ρ(2 − γ). Under the resummation of a given class of diagrams,
ERMT predicts [70] that ρ = 1, γ = 3/2 and β = 1/2. Of course the actual
(universal) values of these critical exponents in three dimension may differ
slightly from the values found in this approximation.

Since we know that eIS decreases slowly with time after a quench,[79] the
above results enable us to make predictions about the ageing of the VDOS,
and in particular of the BP. With increasing time the system moves farther
from the critical point, and thus the BP should decrease in height and shift to
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higher frequencies. Moreover, at a given frequency (below the asymptotic ωBP)
g(ω) should decrease, since it will be of order ωγ at short times and of order
ω2 at very long times. Similarly, one should expect a cooling rate dependence
of the shape of the BP: the slower the cooling, the lower the asymptotic eIS

and thus a larger ωBP and less pronounced BP.

6 Swap Monte Carlo for Glass-Forming Liquids

The swap algorithm, [22, 80, 23] is an artificial modification of the standard
Monte Carlo dynamics, that has been made to work for a binary mixture of
particles, interacting though a soft sphere potential.8

We have simulated [80] this model using a non-local Metropolis Monte
Carlo algorithm (hereafter SMC) which adds swap moves (with probability p)
to standard local Monte Carlo (LMC). The LMC movement proposal consists
in shifting the position of one particle by an small amount. A Metropolis
test decides wether the proposal is accepted or rejected. The swap proposal
consists in that particles of different type, choosen at random, interchange
their positions. Again, the swap proposal is submitted to a Metropolis test.

Although swap acceptance is very low (≈ 3× 10−3) the equilibration time
is considerably shortened; e.g. at 0.89 {TMC} extrapolations estimate it [80]
to be three orders of magnitude larger for LMC than for SMC (note that
other non-local algorithms have proved useful in simulations of bidimensional
models for structural glasses [82]). We used the following protocol: Starting
from a random configuration, a system of N = 2048 particles was instanta-
neously quenched to the final temperature T , and let evolve for tw steps. This
preparation was done with the SMC algorithm with p = 0.1, which gives the
faster equilibration for this system size. After tw, the correlation and response
functions in the presence of an external field h were computed, mostly in SMC
runs with p = 0.1, but also in LMC and SMC runs with different p in order
to assess the dependence of the results on the dynamics.

To check for the Fluctuation-Dissipation ratio, (6), we need to choose ob-
servables A and B. Due to the swap moves, particle diffusion is not a conve-
nient observable. Instead, we divided the simulation box in Nc cubic subcells
and considered the quantity

A(t) =
1
N

Nc∑

α=1

εαnα(t), (21)

8 The model [81] consists in a 50% mixture of particles of type A and B of equal
mass, interacting though a pair potential Vαβ(r) = ε[(σα + σβ)/r]12 + Cαβ where
α, β = A, B. Calling σ0 to our unit length, we impose a cutoff at rc =

√
3σ0 . Cαβ

is chosen to ensure continuity of the potential at the cut-off. We take σB = 1.2σA,
with (2σA)3 + 2(σA + σB)3 + (2σB)3 = 4σ3

0 . The diameter ratio σB = 1.2σA

strongly inhibits crystallization. We simulate at constant volume, with particle
density fixed to σ−3

0 .
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where εα = ±1 randomly and nα is the occupation number of subcell α. The
side of the subcells was about 0.35σAA so that essentially nα = 0, 1. Note
that swap moves do not change A(t). To measure response, a term λNA was
added to the Hamiltonian, with λ ≡ hkBT (h is dimensionless). We considered
the correlation C(tw, tw + t) ≡ 〈NA(tw)A(tw + t)〉, where 〈. . .〉 means average
over both thermal histories and the εα, together with the integrated response
kBTχ(tw, tw + t) ≡ 〈A(tw + t)〉/h 9.
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Fig. 3. Correlation function C(tw, tw + t) vs. t for T = 0.89TMC at tw =
103, 104, 105, 106 (24 samples). Bottom, left: integrated response Tχ vs. correlation
function C at tw = 106. Top, right: Energy per particle E vs. t during a SMC quench
with p = 0.1. Error bars are of the order of point size

With SMC we can equilibrate the system down to T = 0.89TMC. The
correlation C(tw, tw + t) shows aging up to tw = 105, but does not change
between tw = 105 and 106, which is approximately the region where the
energy reaches a stationary value (Fig. 3). We conservatively estimate the
autocorrelation time as the time τ needed for C to reach the asymptotic
value N/Nc (∼ 0.04), obtaining τ = 2×105, much smaller than 106 (the total
lenght of the simulation). Hence we claim that the system has equilibrated.
This is further confirmed by the fact that the FDT holds (see Fig. 3, bottom-
left part). Indeed, if we plot the integrated response function (multiplied by
temperature) versus the correlation function for the same t and tw, a straight
line of slope -1 is found, meaning that X = 1. In contrast, well below 0.89TMC

the system is out of equilibrium up to tw = 2× 107 (our largest observational
time).

9 The center of mass (CM) was constrained to be fixed in order to avoid a spurious
fast decay of the correlation due to random fluctuations of the CM position.
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6.1 Time-Sectors Out of Equilibium

The swap also allows to addres the issue of the scaling of the correlation during
aging. We consider an example for temperature T = 0.53TMC (in general far
below Tg, e.g. for glycerol this corresponds to T ∼ 140K, while Tg ∼ 190K).
With SMC we find (Fig. 4) that the correlations for tw = 5× 105, 5× 106 can
be made to collapse by plotting them as a function of t/tµw with µ = 1.05(6),
compatible with full aging. The collapse applies to the aging part (Cag, 5),
which dominates the correlation for t/tw > 0.1 (ωtw < 10), as has also been
observed in spin glasses [39, 6]. The two shortest tw’s (inset) can instead be
scaled with µ ∼ 0.85. The same value (within errors) was found in molecular
dynamics simulations of the Lennard-Jones binary mixture,[45] so we argue
that the accelerated dynamics does not affect the scaling. If one insists on
scaling all curves, it can be done reasonably well using µ ∼ 0.9, though this
is likely an artifact of mixing two different regimes. The relevant point is that
µ ∼ 1 is seen clearly only for tw � 1 and in the t ∼ tw region.
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w, µ = 1.05(6), for tw = 5 × 105, 5 × 106 at T = 0.53 TMC from

SMC runs (24 samples). Inset: C vs. t/t0.85
w for tw = 5 × 103, 104 (48 samples)

6.2 The Fluctuation-Dissipation Ratio

An important result is that although the susceptibility and correlation are
affected by the choice of dynamics, the FDR is not. The typical fluctuation-
dissipation plot is shown in the inset of Fig. 5. Note that at short times (i.e.
correlations close to one) we have an straight line of slope -1 (equilibrium).
Only at later times, when the correlation function becomes small enough, the
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curve departs from the equilibrium straigh-line. It is from the slope of this
second step that one obtains

Teff

T
=

1
X

.

In fact, Fig. 5 shows the ratio at T = 0.89TMC during aging and up to
equilibration for both SMC and LMC algorithms, obtained measuring the
FDR in simulations that used configurations taken along the SMC quench as
a starting point.

Coming back to the comparison of LMC and SMC, note in Fig. 5 how,
after a short transient (∼ 104 steps), the FDRs become indistinguishable
within errors. At T = 0.53TMC and with LMC, we can reach the region of
FDT violations only for tw = 104, so we look at the FDR at fixed tw for LMC
and SMC with p = 0.1 and 0.3, obtaining a good agreement (Fig. 5, inset).
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6.3 The FDR and the Potential-Energy Landscape

We consider[80] now the FDR for large times at T = 0.53TMC . In Fig. 6
we plot Teff at tw = 5 × 103, 104, 5 × 105 and 5 × 106 as a function of
the instantaneous inherent structure (IS) energy EIS(tw). We also plot Teff

computed according to the IS approach,[50] T−1
eff = ∂Σ/∂f , where Σ(f) is the

logarithm of the number of IS with free-energy f , and ∂Σ/∂f is obtained as
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in [50]. Previously to swap dynamics, this idea (which makes no prediction
about the tw → ∞ limit of Teff) was confirmed only in the very early aging
regime by molecular dynamic simulations [50]. Our results show a reasonable
agreement even at quite large times.

The limiting value of Teff as tw → ∞ is of great theoretical interest. If
the system eventually equilibrates, then Teff → T , as we have found for T =
0.89TMC. Approaches that consider aging a result of critical slowing down
due to the proximity of a critical point which is never reached (beacuse it is
located at T = 0,[83], or because of the impossibility to establish a liquid long
range order [84]) predict this to be the case for all temperatures. A different
view relates the asymptotic value of the FDR to a thermodynamic transition
described by replica symmetry breaking [85]. Above the transition, X(C) is
predicted[34] to reach slowly the equilibrium value 1 (so Teff → T ) while below
the FDR should remain non trivial and

Teff tend for tw → ∞ to a constant larger than T , since the system never
equilibrates. In this scenario the asymptotic FDR is claimed to classify com-
plex systems in universality classes [17, 85]. A third possibility is that FDT
violations are due to nucleation and slow growth of the crystal phase,[86] in
which case at long times one expects the coarsening regime to be reached, and
so Teff → ∞.

Our results for 0.53TMC do not seem to support this last possibility. The
data are instead compatible with the presence of a thermodynamic replica
symmetry breaking (RSB) transition,[85] since FDR does not seem to change
between tw = 5 × 105 and tw = 5 × 106 (EIS are respectively 1.691 and
1.671). Note that this is the same regime where the system displays full aging.
It cannot be excluded that Teff → T , but it looks less likely if we note that
extrapolating EIS(tw) to tw → ∞ with a power-law gives an asymptotic EIS =
1.642. We just observe that, at the qualitative level, the fact that the measured
Teff/T in Fig. 6 levels off at a value greater than 1 in the late aging regime
supports the phase-transition scenario.

7 Rejuvenation and Memory in Spin-Glasses

Memory and rejuvenation [87, 88] are sophisticated manifestations of aging
in experiments where the temperature is not kept constant. They are rather
less understood than the previously considered problems ones. We therefore
will be more descriptive in style, presenting recent results [7].

Rejuvenation arises when changing temperature from T1 to T2 (T1 and T2

smaller than the critical temperature, Tc) a system that has spent some time
at T1, so that the a.c. suceptibility, χ(ω, tw) barely depends on tw. Just after
the T1 → T2 change, aging restarts. The imaginary part of the susceptibility
suddenly grows then relax. The tw dependency of χ′′(ω, tw) gets stronger, as
for a younger system. Rejuvenation means that the relaxation of χ′′(ω, tw)
is very similar to the one of a system just quenched from T > Tc to T2.
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Sometimes it is said that the relaxation is identical to the one of a system
instantaneously quenched to T2 from infinite temperature (in Sect. 7.3, below,
we elaborate on the different meaning of instantaneous temperature quench in
a experiment and in a computer simulation). If the susceptibility just after
the quench to T2 rises above the final value it had at T1, one speaks of
[89]. On the other hand, when the system is put back at temperature T1,
χ′′(ω, tw) continue its relaxation where it left it just before the temperature
change (memory effect). These effects can also be observed in the real part
of the susceptibility (see e.g. Fig. 1 of [90]), although rejuvenation is very
diminished as compared with the imaginary part. With the sophisticated dip-
experiment temperature-change protocol,[87] memory and rejuvenation are
truly spectacular.

Memory and rejuvenation have been found in systems quite different from
spin-glasses (see, however, [91]). Examples are structural glasses [92], poly-
mers (PMMA [94, 95]), and systems not particularly glassy (or not widely
recognized as such), like colossal magnetoresistance oxides [96]. Moreover, a
disordered ferromagnetic alloy,[93] becoming spin-glass at lower temperatures,
has shown rejuvenation and memory, through the dip-experiment protocol
(although in this case memory could be easily erased by lowering the temper-
ature). Nevertheless, spin-glasses display the quantitatively stronger effects.

The above definitions for memory and rejuvenation need qualification. Un-
der very small temperature changes [97] (say T1−T2

T1
< 5× 10−3) the behavior

of the spin-glass is rather smooth. On the other hand, sharp memory and reju-
venation can be observed [98] for T1−T2

T1
∼ 0.07 . The crossover from small to

drastic effects is rationalized using effective isothermal waiting times [97, 5].
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Consider the simplest temperature change protocol: a system is aged for time
tw at temperature T1, then its temperature is suddenly shifted from T1 to
T2. After the shift, the zero-field cooled magnetization (ZFC) is measured.10

The effective time, teff,shift
T2

, is the age of the isothermally aged system at tem-
perature T2, whose ZFC magnetization11 is most similar to the one of the
temperature-shifted system (the two relaxations are not identical[97]). Reju-
venation arises when teff,shift

T2
/tw is below experimental resolution.

Similarly, one can define [5] an effective time for the temperature cycle
protocol T1 → T2 → T1:12 one keeps the system a time tw at T1, then shifts
the temperature to T2, waits a time t2 ∼ 20tw, shifts back the temperature to
T1, switches on a magnetic field and then records the ZFC magnetization. The
effective time teff,cycle

T1
is obtained by looking to the system aged at temperature

T1 for a time tw +teff,cycle
T1

whose ZFC magnetization is most similar to the one
of the temperature-cycled system. One has memory, as we defined it above,
when teff,cycle

T1
/t2 gets below experimental resolution. In a large variety of spin-

glasses experiments find[5, 40] for T1 > T2

teff,cycle
T1

tw
= exp

[
−T1 − T2

x0T2

]
, (22)

with13

x0 ∼ 10−2 . (23)

Memory and rejuvenation can be recovered in the dynamics of abstract energy
landcsape models [99]. However, one wants to reproduce these phenomena
in the Langevin dynamics for the standard spin-glass model, the Edwards-
Anderson (EA) model, (9). This dynamics for the EA model can only be in-
vestigated by Monte Carlo simulation. Yet, difficulties have arisen in numerical
investigation of memory and rejuvenation [89, 101, 102, 103, 104]. Further-
more, the progress achieved regards only temperature-shift and temperature-
cycle experiments.

Experiments where (T2 −T1)/T1 is very small can be accounted for by the
cumulative aging scenario,[97, 5] consisting in the three following hypothesis:

(a) Aging is ruled by the growth of a coherence length,[105] signaling the
building of a spin-glass order. For isothermal aging, this length is named
ξT (t), t being the total time spent in the glass phase. This isothermal

10 You cool the spin-glass below Tc for time tw, then switch-on the magnetic field.
The magnetization, that in the presence of the field grows with time, is named
zero field cooled magnetization.

11 That is, one ages the system at T2 for time teff,shift
T2

, then switches on the magnetic
field and records the growing magnetization.

12 We somehow simplify the protocol description, for details see [5].
13 The actual value of x0 depends both on T1 and on the anisotropy of the mi-

croscopic spin-spin interaction (the more Heisenberg-like the interaction is, the
smaller x0 becomes [5]).
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growth-law has been studied in experiments [5] and simulations,[108, 109]
although the measured ξT (t) grows by an small factor in both cases. Nu-
merically, a power law

ξT (t) = AT tz(T ), z(T ) = zc
T

Tc
, (24)

fairly fits the data. However, more complicated rules has been used [97,
5, 98, 40].

(b) The coherence-length always grows with time. It behaves continuously
upon temperature changes.

(c) Effective times follow from the isothermal growth of the coherence length.
Consider a temperature shift after aging for time tw at T1. One has

ξT1(tw) = ξT2(t
eff,shift
T2

) . (25)

A time t after the shift, the coherence length is

ξshift(t) = ξT2(t + teff,shift
T2

)xs . (26)

Similar reasoning is used in the analysis of more complicated temperature-
change protocols.

Equation (25) is used in an indirect way, both in the analysis of simula-
tions [104, 89] and experiments [97, 5, 98]. Relations such as (24), obtained
in a different experiment, are used to convert the measured effective times
into length-scales and viceversa. It is difficult to find in the literature direct
data on the behavior of the coherence length upon temperature changes. A
nice exception are the simulations of [101] where (26) was directly checked.
Those simulation spanned 105 Monte Carlo steps (MCS). For comparison with
experiments, recall that 1 MCS ∼ 1 picosecond.

Memory and rejuvenation appear as hardly compatible with the cumula-
tive aging. Experiments show[97] that ξT1(tw) < ξT2(t

eff,shift
T2

) when the mea-
sured effective times are converted in length-scales, both for T2 > T1 and
T1 < T2, in contradiction with (25).

Two theoretical scenarios are currently being considered to account for
memory and rejuvenation. Rejuvenation was interpreted in terms of temper-
ature chaos,[132] namely extreme sensitivity of equilibrium states in the glass
phase to small temperature changes. An overlap-length, l0(T1, T2), is postu-
lated to exist. Features at scale smaller than l0 are unaffected by a temperature
change T1 → T2 while at larger scales the system is completely reorganized.
Rejuvenation is then attributed to large length scales and strong rejuvenation
requires small l0. The ghost-domain scenario (see [98] for a recent account)
allows to reproduce memory in the chaos scenario. The other scenario [100]
is closer in spirit to cumulative aging. Rejuvenation after a negative temper-
ature shift would arise from the so-called fast modes involving length-scales
smaller than ξT1(tw), that were equilibrated at T1 but fall out of equilibrium
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at T2. Memory would arise from time and length scales separation: back to
temperature T1, fast modes re-equilibrate very fast so that aging continues
from the previous T1 state.

However, when it comes to actual calculations, it turns out that no con-
vincing memory and rejuvenation has been found in computer simulations
of 3D spin-glass models, either with a two-temperatures [101, 103, 89, 104]
or with a dip-experiment protocol [102]. When the behavior of the coherence
length is followed for times up to 105 MCS,[101] (25) and (26) are fulfilled even
for T1−T2

T2
≈ ±0.33 . Consistently with this finding, when the temperature cy-

cle protocol is analyzed in the EA model,[104, 106] the x0 in (22) turns out to
be of order 1 rather than of order 10−2 . Should x0 not decrease significantly
for larger times, the whole low-temperature phase of the EA model could be
accounted for by cumulative aging (i.e. the low-temperature phase would not
be a spin-glass phase).

This contradiction with experiments is puzzling. It could be indicating
that the EA model lacks some crucial ingredient [102]. A more conservative
possibility is that memory and rejuvenation involve time and length scales
unaccessible to present-day simulations. Indeed, experiments are performed
on a time-scale which is about 108 times longer than typical simulations.
Yet, experimentally,[5] there are around ∼ 105 spins in a coherent cluster
(hence ξT (tw) ∼ 40 lattice spacings), while simulations achieve (see below)
ξT (tw) ∼ 10 lattice spacings. Some hope arrives from simulations [103] of the
temperature cycle protocol for the 4D EA model, taht yielded strong rejuvena-
tion (as defined in [89]). Yet, results in full agreement with cumulative aging,
(25), were reported for T1−T2

T2
≈ ±0.125 (the simulation time was smaller

than 104 MCS). In the Migdal-Kadanof lattice,[107] where rather larger times
can be simulated, rejuvenation was found for T1−T2

T1
∼ 0.1 , suggesting that x0

in (22), does depends on the age of the system. Furthermore, the extremelly
long 3D simulations of [7] that we recall below, performed with a dedicated
computer,[8] have shown clear deviations from the cumulative aging in the
EA model.

7.1 The Simulations

In [7], the EA model was considered in a (hyper) cubic lattice in 3D and 4D.
The random couplings are J = ±1 with 50% probability. The system evolved
using a sequential, local heat-bath dynamics. Our time-unit (1 MCS ∼ 1 pi-
cosecond) is a full-lattice update. For the spin-glass we studied lattice-size
L = 60 in 3D (mostly in SUE), and L = 20 for 4D (on PC clusters) with
some tests in L = 30 finding no differences. The number of disorder realiza-
tions vary within 16 and 240. Errors were estimated from sample-tosample
fluctuations. Although most of the considered magnitudes are self-averaging
(i.e. their sample-to-sample fluctuations depends on the number of spins as
N−1/2), errors are not negligible, specially at long times.
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In the following, we will call a direct-quench to the procedure of placing a
fully disordered system (infinite temperature) instantaneously at the working
temperature. This corresponds to an infinite quenching-rate.

The Fluctuation-Dissipation Theorem (FDT) relates the autocorrelation
function in zero magnetic field

C(tw, tw + t0) =
1
V

∑

i

〈σi(tw)σi(tw + t0)〉 (27)

to the real part of the susceptibility: χ(ω = 2π/t0, tw) ≈ [1 − C(tw, tw +
t0, )]/T . Yet, as we saw in Sects. 2 and 6, off-equilibrium, FDT needs to be
generalized replacing T by T/X[C] Hence, one assumes [101, 102, 103, 107]
to be in pseudo-equilibrium regime (ωtw � 1 thus X[C] = 1), which is not
always true [7].

We also obtain spatial information from the correlation function of the
overlap field, qi(t) = σ

(1)
i (t)σ(2)

i (t), built from two independently evolving
systems with the same couplings, at the same temperature:

C4(r, tw) =
1
V

∑

i

〈qi(tw)qi+r(tw)〉 . (28)

7.2 Strong Rejuvenation

In Fig. 7 is shown the time-evolution of the naive χ(ω, tw) (i.e. [1−C(tw, tw +
t0)]/T ) for the EA model in 3D (top) and 4D (bottom) for a (double) tem-
perature cycle: T1 → T2 → T1 → T2 (T1 = 0.9Tc , T2 = 0.4Tc). In 3D the
system spends ts = 2 × 108 MCS at each temperature (1000 times longer
than previous works), while in 4D ts = 106 MCS. The results of a reference
run, with temperature fixed to T1, are also shown (continuous line). When the
temperature drops to T2, χ(ω, tw) increases over the reference curve and starts
a new relaxation (strong rejuvenation [89]). When temperature is back to T1,
χ(ω, tw) catches the reference run almost instantaneously (memory). We call
trej to the time that the rejuvenated χ(ω, tw) is above the reference run (see
insets in Fig. 7), that is found to grow consistently with t0 (much faster in
4D). It is then conceivable that an effect of macroscopic time-duration could
be observed (experiments explore t0 ∼ 1013 MCS). However, specially in 3D,
trej < t0. This implies that this strong rejuvenation is confined to the regime
ωtw < 1, which is out of reach for measurements of the a.c. susceptibility
(note that strong rejuvenation is not always observed experimentally in the
real part of the susceptibility [90]).

In agreement [103], the relaxing curve after the temperature drop is inde-
pendent of ts on the explored range (ts = 106, 2 × 107 and 2 × 108 MCS in
D = 3). Also shown in Fig. 7 is the relaxation of χ(ω, tw) for a direct-quench
to T2 (dashed-line). Such a infinitely-fast temperature drop is not realistic
(see Sect. 7.3). Anyhow, the relaxation is not identical to the one after the
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Fig. 7. Top: Naive χ(ω = 2π/t0, tw), t0 = 5.3 × 106 for the 3D EA model vs. time.
The T -cycle is T1 → T2 → T1 → T2, each step lasting ts = 2× 108. The full line is a
reference run at 0.9Tc. The inset shows the rejuvenation time (see text) vs. t0. The
dashed line is a direct-quench to T2. Bottom: as top part for D = 4, t0 = 1.6 × 104

and ts = 106

temperature shift, but the two become very similar (in D = 3, this happens
for tw ∼ 4t0). This is in marked contrast with previous simulations where
ts ∼ 104 and t0 = 64 [89]. For such a short times, one needs tw ∼ 500t0 for
the two relaxation curves to approach each other.

7.3 Comparison with Experimental Direct-Quench

In view of (22) and (23), and the large temperature drop that we are studying,
one would expect a perfect rejuvenation effect. However, Fig. 7 show that the
relaxation after the first step at 0.9Tc considerably differs from the direct-
quench (although this difference is smaller than for shorter simulations [101,
89]). This seems in plain contradiction with experiments (see e.g. Fig. 4 of
[98]). Yet, upon reflection, one realizes that the experimental direct-quench
bears little resemblance with the simulational one. In fact, the experimental
sample that is “instantaneously” quenched to 0.4 Tc, expends at least 10
seconds (∼ 1013 MCS!) in the spin-glass phase.

In order to make a fair comparison with experiments, one should study the
relaxation after a “soft” quench (Fig. 8) from high-temperature to the working
temperature below the glass transition. Yet, the fastest quenching rate that
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phase)

can be achieved in experiments is far too slow to be reproduced in present-day
computers. To achieve a very slow temperature drop from high temperature
to working temperature, it is useful to consider Fig. 7 in a different way. One
realizes that the system that has spent ts = 2×108 MCS at 0.9Tc, then suffers
an instantaneous temperature drop to 0.4Tc is a better approximation to the
experimental direct-quench to 0.4Tc. In fact, the system spends quite a long
time close to the critical temperature, where the time evolution –recall (24)–
is faster. When looking to the double temperature cycle in Fig. 7, one needs to
compare the relaxation in the first and in the second steps at 0.4Tc, the first
corresponding to the reference direct-quench, the second being looked at as
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the temperature-cycled system. This comparison is shown in Fig. 8, together
with the relaxation after a soft-quench.

The frequencies shown in Fig. 8 span three orders of magnitude. In all
cases, the relaxation for the softly-quenched system,14 that has spent 1.2×104

MCS in the spin-glass phase, is much closer to the one of the cycled-system
than the one of infinite quenching rate. Furthermore, the relaxations for the
first and the second steps at 0.4Tc are identical, up to our statistical accuracy
(see Fig. 9). This you may wish to call perfect rejuvenation.

In Fig. 9 we perform a detailed comparison between the soft-quench (with
two quenching rates) and the two-steps protocol. To have a feeling of the
frequency dependence, we show the smallest and the largest frequencies in
Fig. 8. For very short times, in the two-steps protocols we find a quick decay

14 Soft-quench in this context actually means not infinite quenching rate, but dra-
matically faster than in experiments.
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of the susceptibility due to the sharp temperature drop. On the other hand,
the softly-quenched system shows a basically constant behavior (the slower
the quench, the lower the intial plateau is). When time becomes of the or-
der of the total time spent in the spin-glass phase during the soft-quench,
the susceptibility starts to decay and becomes very similar to the two-steps
protocol. At t0 = 8192, the two soft-quenches catch the relaxation of the
two-step protocol and become identical. At the smallest frequency, the fastest
quench approaches but does not catch the two-steps relaxation. On the other
hand, for the smallest quenching rate, the relaxation curve becomes identical
to the one of the two-steps protocol for tw

>∼ t0, which corresponds to the
experimentally accessible time range.

7.4 The Coherence-Length

The coherence-length may play a crucial role [100] in this physics, and should
be followed in detail during temperature changes. This was done previously in
[101], for times up to 105 MCS. Results in agreement with (26) were reported.
A much longer simulation [7] in 3D show qualitatively different results.

The coherence-length may be obtained from C4(r, tw) (which is self-
averaging for not very large r). The resulting curve has been fitted to [108]

C4(r, tw) =
A

rα
exp

[
−
(

r

ξ(tw)

)β]
. (29)

In 3D, we find fair fits in the range 2 < r < 20, fixing α = 0.65 and β = 1.7
for all times and temperatures. The constant behavior of α does not agree
with the results for the 4D model with Gaussian couplings [103]. To estimate
errors in the three parameters fit (29) is very difficult. To have a feeling of
their magnitude, let us report that α = 0.7 yields good fits as well, with a
10% increased ξ estimate.

See in Fig. 10 (top), ξ(tw) for a direct-quench to T2 = 0.4Tc and for a
thermal cycle T1 → T2 → T1 with T1 = 0.9Tc and ts = 2 × 107. A power law
with exponent ∼ 0.144 fits nicely ξT1(tw) for tw < ts, while the exponent for
the direct-quench to T2 is ∼ 0.065 (full-lines in Fig. 10-top). During the T2-
step, ξ grows over the T1 value, and it is larger than for the direct-quench to
T2. However, ξ decreases when the system is back to T1 . Memory is striking:
data for the second T1 step, if translated back ts MCS, are on top of the fit
(obtained for tw < ts !). Let us stress two points regarding this result:

(a) The coherence-length can decrease upon temperature changes, violating
cumulative-aging, (26), and in contradiction with the time and length
scales separation scenario [100, 133]. However, the effect is not symmetri-
cal for negative and positive temperature shifts, as it was inferred exper-
imentally from effective-time measurements [97].
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this factor. Inset: same as main plot for the step at T2 of the thermal-cycle in the
top part

(b) The effective time for the temperature cycle is compatible with zero
(within our accuracy). This implies that, for ts ∼ 107, x0 in (22) is not of
order one, as it was found[104] for ts ∼ 104 .

A rather crucial feature of aging [17] is that two time-scales, t0 and tw, are
involved. One would like to relate the one time quantity ξT (tw), to the two
times correlation function. A crude estimate for t0 � tw is

C(tw, tw + t0) ∝
ξD/2(tw)

ξD/2(tw + t0)
, (30)

i.e. the coherent cluster that at time tw + t0 has linear size ξ(tw + t0), at time
tw was composed of mutually incoherent clusters of linear size ξ(tw).

Indeed, (Fig. 10, bottom), the factor ξ3/2(tw +t0)/ξ3/2(tw) absorbs almost
all the tw and t0 dependency of C(tw, tw + t0), both for a direct-quench to T2

and for the T2 part of the thermal cycle. Note that even the constant value
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for C(tw, tw + t0)ξ3/2(tw + t0)/ξ3/2(tw) is equal for the direct-quench and for
the thermal cycle. Also at T1, C(tw, tw + t0)ξ3/2(tw + t0)/ξ3/2(tw) is constant
within a band of width 5% of its mean-value [131]. In spite of the crudeness
of the argument leading to (30) and the uncertainty in the determination of
ξ, the results are surprisingly clear.

Thus, memory and rejuvenation are driven by the rate-growth of ξT (tw)
rather than by its value or by the short-distance behavior of C4(r, tw) [100,
103]. In our simulation, rejuvenation is due to a growth of ξ upon cooling
(probably, because of a sudden fall into a nearby energy minima), provoking
a change in the evolution of C(tw, tw + t0). When temperature is shifted
back to T1, ξT1 continues its growth as if it had never being at T2 with
analogous consequences for the correlation-function (memory). This implies
a non monotonic behavior of ξT (t), in contradiction with cumulative-aging,
(25) and (26).

8 Conclusions

The aim of this contribution to this volume on Quantum Annealing, is to pro-
pose difficult problems that cannot be solved using classical annealing, namely
the behaviour of glass-forming liquids and of spin-glasses. In both cases, the
important low energy structures are not reachable even on experimental time
scales, let alone computer simulations. The alternative of using artificial (clas-
sical) Monte Carlo moves, not present in physical systems, has been made to
work only for a restricted family of models for glass-forming liquids. Both
spin-glasses and glass-forming liquids, in low temperature experiments, are
out of thermodynamic equilibrium and age.

In the case of glass-forming liquids, we have a well developed concep-
tual framework. The framework is inheritated from infinite-dimensional Mean-
Field calculations. In spite of the difficulties, the potential energy landscape
paradigm allows to give flesh to the Mean-Field concepts in 3D. The implica-
tions of this paradigm for scattering experiments can be worked out. These
implications are expressed as scaling laws for the universal spectral feature
known as the Boson Peak. The potential energy landscape paradigm allows
as well to quantitatively describe aging at long times, and temperatures well
below the experimental glass transition.

The study of aging for spin glasses, is less developed. The properties of
memory and rejuvenation were not reproduced in most numerical simulations.
The question arises of wether our microscopic 3D models are sensible or not.
A simulation longer by a factor of 1000, has shown more optimistic results.
Although the behaviour of the Edwards-Anderson model investigated in this
timescale is still not exactly as in experiments, memory and rejuvenation are
observed. The issue of the correctness of the Edwards-Anderson model is still
open, but we are closer to a positive answer.
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