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Preface

Quantum annealing employs quantum fluctuations in frustrated systems or
networks to anneal the system down to its ground state or to its minimum
cost state, tuning the quantum fluctuation down to zero eventually. Often this
can be more effective in multivariable optimization problems, over classical
annealing performed utilizing tunable thermal fluctuations. The effectiveness
comes from the fact that unlike in classical annealing, where the system scales
the individual barrier heights by utilizing thermal fluctuations, in quantum
annealing, fluctuations can help tunneling through these (even infinite but
narrow) barriers. Apart from the recent theoretical demonstrations, this has
been demonstrated experimentally.

In this book, we discuss the problems and the recent achievements in de-
tail. This book grew out of an international workshop on quantum annealing,
held in March 2004 in Kolkata under the auspices of the Centre for Applied
Mathematics and Computational Science, Saha Institute of Nuclear Physics,
India. With contributions from all the leading scientists/groups involved in
its development so far, this first ever book on quantum annealing is expected
to become an invaluable primer and also a guidebook for all researchers in
this important field.

The book is divided into three parts. In the first part, tutorial materials are
introduced. B.K. Chakrabarti and A. Das introduce the transverse Ising model
and quantum Monte Carlo techniques, following which most of the theoretical
studies on quantum annealing have been made so far. The decomposition
of exponential operators used for the Suzuki—Trotter classical mapping in
quantum Monte Carlo techniques is discussed in detail by N. Hatano and M.
Suzuki. Latest quantum Monte Carlo and other numerical investigations and
developments in quantum spin glasses are reviewed by H. Rieger. The question
of ergodicity and consequent replica symmetry restoration in quantum spin
glasses and ferroelectric glasses, experimental indications included, is reviewed
by J.-J. Kim. A. Fisher reviewes the theory of quantum systems coupled
to noisy condensed-phase environments and describes how to tailor response
functions so as to optimize the coherent evolution of the system.



VI Preface

In the next part, quantum annealing techniques are developed and em-
ployed. G. Aeppli and T.F. Rosenbaum describe the experimental realization
where the ground state of a glassy sample can be reached faster by tun-
ing the external field (inducing changes in the tunneling field) rather than
by tuning the temperature. D. Battaglia, L. Stella, O. Zagordi, G. Santoro,
and E. Tosatti discuss the effectiveness of quantum annealing algorithms in
solving hard computational problems such as the traveling salesman problem
or a satisfiability problem and also in solving some very simple illustrative
problems for a basic comparative study with thermal annealing. S. Suzuki
and M. Okada investigate the prospect of adiabatic quantum annealing us-
ing real-time quantum evolution. A. Das and B.K. Chakrabarti discuss the
application of quantum annealing in a kinetically constrained system and in
an infinite range quantum spin glass. J.-I. Inoue reviewes the applicability
of quantum annealing techniques in restoring informations and images after
transportation through corrupted channels.

In the last part some of the classical optimization studies are reviewed
and discussed. H. Rieger reviewes the classical algorithms for solving various
combinatorial optimization problems. P. Sen and P.K. Das discuss classical
annealing in the context of the ANNNI model and make a comparative study
with quantum annealing in the same system. V. Martin-Mayor reviewes the
problem of annealing and relaxation in the context of classical glasses and
supercooled liquids.

With these firsthand and detailed reviews by the poineers in this field, this
book on an analog version of quantum computation, we hope, will immediately
inspire further research and development.

We are extremely grateful to all the contributors for excellent support
and cooperation. We are also grateful to J. Zittartz for his encouragement
regarding the publication of this lecture note volume.

Kolkata Arnab Das
May, 2005 Bikas K. Chakrabarti
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Transverse Ising Model, Glass
and Quantum Annealing

Bikas K. Chakrabarti and Arnab Das

Theoretical Condensed Matter Physics Division and Center for Applied
Mathematics and Computational Sciences, Saha Institute of Nuclear Physics,
1/AF, Bidhannagar, Kolkata, India

bikask.chakrabarti@saha.ac.in

arnab.das@saha.ac.in

1 Introduction

In many physical systems, cooperative interactions between spin-like (two-
state) degrees of freedom tend to establish some kind of order in the system,
while the presence of some noise effect (due to temperature, external trans-
verse field etc.) tends to destroy it. Tranverse Ising model can quite succeess-
fully be employed to study the order-disorder transitions in many of such
systems.

An example of the above is the study of ferro-electric ordering in Potta-
sium Dihydrogen Phosphate (KDP) type systems (see, e.g., [1]). To under-
stand such ordering, the basic structure can be viewed as a lattice, where in
each lattice point there is a double-well potential created by an oxyzen atom
and the hydrogen or proton resides within it in any of the two wells. In the
corrosponding Ising (or pseudo-spin) picture the state of a double-well with
a proton at the left-well and that with one at the right-well are represented
by, say, | 1) and | |) respectively (see, for a portion of the lattice, Fig. 1).
The protons at neighbouring sites have mutual dipolar repulsions. Hence had
proton been a classical particle, the zero-temperature configuration of the
system would be one with either all the protons residing at their respective
left-well or all residing at the right-well (corrosponding to the all-up or all-
down configuration of the spin system in presence of cooperative interaction
alone, at zero-temperature). Considering no fluctuation at zero temperature,
the Hamiltonian for the system in the corrosponding pseudo-spin picture will
just be identical to the classical Ising Hamiltonian (without any transverse
term). However, proton being a quantum particle, there is always a finite
probability for it to tunnel through the finite barrier between two wells even
at zero-temperature due to quantum fluctuations. To formulate the term for
the tunnelling in the corrosponding spin-picture, we notice that ¢” is the right
operater. This is because

B.K. Chakrabarti and A. Das: Transverse Ising Model, Glass and Quantum Amnnealing, Lect.
Notes Phys. 679, 3-36 (2005)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2005
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oiz:+l o;=-1 ch2+1 c

Fig. 1. The double wells at each site (e.g., provided by oxygen in KDP) provide
two (low-lying) states of the proton (shown by each double well) indicated by the
Ising states | 1) and | |) at each site. The tunnelling between the states are induced
by the transverse field term (I'¢”). The dipole-dipole interaction J;; here for the
(asymmetric) choice of one or the other well at each site induces the ‘exchange’
interaction as shown

o’ =11) and o ])=|1), (1)

where | 1) represents the state where the proton is in the left well, while | |)
represents that with the proton in the right well. Hence the tunelling term
will exactly be represented by the tranvere field term in the transverse Ising
Hamiltonian. Here the transverse field coefficient I' will represent the tun-
nelling integral, which depends on the width and height of the barrier, mass
of the particle, etc.

2 Transverse Ising Model (TIM)

Such a system as discussed above, can be represented by a quantum Ising
system, having Hamiltonian

H=-) Jioic; =T of. (2)
{i.4) i

Here, J;; is the coupling between the spins at sites ¢ and j, where ¢®’s (o =
x,y, z) are the Pauli spins satisfying the commutation relations

0", Uﬁ = 2idij€apy0] (3)

Here, 0;; is the Kronecker’s 6, and enpy is the Levi-Civita symbol, and (i, j)
in (1) represents neighbouring pairs.
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The Pauli spin martices being representatives of spin-1/2, % has got two
eigenvalues (+1) corrosponding to spins aligned either along z-direction or
along the opposite direction respectively. The eigenstate corrosponding to
eigenvalue (+1) is symolically denoted by | 1), while that corrosponding to

(1) is denoted by | 1) .
e (y)

e (1) 0

then taking these two eigen-vectors as basis, Pauli spins have following matrix
representations

) IR () B R B

With these, one can see that relations in (3) are easily satisfied and the
tunnelling required in (1) can be easily accommodated. The order parame-
ter for such a system is generally taken to be the expeectation value of z-
component of the spin, i.e. (0%). Needless to say that in such a system ab-
solute ordering (complete alinement along z-direction ) is not possible even
at zero-temperature, i.e., (6%)r—g # 1, when I' # 0. In general, therefore,
the order ({(c*) # 0) to disorder (¢%) = 0 transition can be brought about
by tuning either of, or both of the tunnelling field I" and the temperature T
(see Fig. 2).

If we represent

and

3 Mean Field Theory (MFT)
(a) For T =0
Let,
o =lo|cosh, and o] =|o|sing, (6)

where 6 is the angle between o and z-axis. This renders the two mutually non-
commuting part of the Hamiltonian (2) commuting, since both are expressed
in terms of |o| operator only. If o is the eigen-value of |o| (¢ = 1 for Pauli
spin), then the energy per site of the semi-classical system is given by [2]

E = —oI'sinf — ¢*J(0)cos? @, (7)

J(0) = Ji(0) = >, j Jij, where j indicates the j-th nearest neighbour of the
i-th site. And the average of the spin-components are given by
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T/(0) .

<0?> 70
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Fig. 2. Schematic phase diagram of the model represented by Hamiltonian (2)

(o%) = cos @

(o) =sinf .
The energy (7) is minimized for
sinf = I"/J(0) or, cosf =0. (8)

Thus we see that if I' = 0, (¢®) = 0 and the order parameter (c%) = 1,
indicating perfect order.

On the other hand, if I" < J(0), then the ground state is partially polar-
ized, since none of (0*) or (o) is zero. However, if I' > J(0), then we must
have cosf = 0 for the ground state energy, which means (c*) = 0, i.e., the
state is a completely disordered one. Thus, as I" increases from 0 to J(0), the
system undergoes a transition from ordered (ferro)- phase with order parame-
ter (¢*) = 1 to disordered (para)-phase with order parameter (c%) = 0 (see
Fig. 2).

(b) For T #0

The mean field method can also be extended to[3, 4] obtain the behaviour
of this model at non-zero temperature. In this case we define a mean field
h; at each site i, which is, in some sense, a resultant of the average coopera-
tive enforcement in z-direction and the applied transverse field in x-direction.
Precisely, we take, for general random case,

. 1 P
h,=Iz1+ §;Jij<aj> z, (9)

and the spin-vector at the i-th site follows h;. The spin-vector at i-th site is
given by
o, =0iT+0%,

and Hamiltonian thus reads
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H=-> hio;. (10)
i

For non-random case, all the sites have identical ambience, hence h; is
replaced by h = I't 4+ (0*)J(0). And the resulting Hamiltonian takes the

form

The spontaneous magnetization can readily be written down as

h
o= tanh(ﬁ|h|).w

k| = /T2 + (J(0){0%))? . (11)

Now if h makes an angle 6 with z-axis, then cos = J(0)(c*)/|h| and sin§ =
I'|h|, and hence we have

(0°) = |R] cos 0 = [tanh(5[R)) (W) |

and

r
|
Here, 8 = (1/kgT). Equation (12) is the self-consistency equation which can
be solved or graphically or otherwise, to obtain the order parameter (o*)

at any temperature 7" and transverse field I'xs. Clearly, the order-disorder
transition is tuned both by I" and T (see Fig. 2).

{0%) = [tanh(]|h[)] (12)

I' = 0 (Transition driven by T):

) = o (202)

(0) =0

Here,

and

One can easily see graphically, that the above equations has a nontrivial so-
lution only if kT < J(0), i.e.,

(67) #£0 for kT < J(0)

(07) =0 for kT > J(0).

This shows that there is a critical temperature 7. = J(0) above which, there
is no order.
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For kT — 0 (Transition driven by I'):

Here,
J(0)(%) )
VT + (T0)(0)? —

From this equation we easily see that in the limit I'/J(0) — 1, the only real
nontrivial solution is

(0%) =

(since, tanh x

{(0%) =0

and
r r

T\ — I
R e " I

Thus we see that their is a critical transverse field I, = J(0) such that
for any I' > I, there is no order even at zero temperature. In general one
sees that at any temperature T' < T, there exist some transverse field I, at
which the transition from the ordered state ({c*) # 0) to the disordered state
((¢%) = 0) occurs. The equation for the phase boundary in the (I' — T) —
plane is obtained by putting (¢*) — 0 in equation (12). The equation gives
the relation between I, and T, as follows

fanh ( kf; T) _ Jfg) . (13)

One may note that for ordered phase, since (%) # 0,

1 1
— tanh(8|h|) = —— = Constant .
] IR =)

Hence, (0%) = (I'/|h|) tanh(5|h|) = I'/J(0); independent of temperature in
the ordered phase. While for the disordered phase, since (c%) = 0,

(o) = tanh(08T") .

Using magnetic mapping, mean field theory of this type was indeed applied
to (the BCS theory of) superconductivity [5], as shown in appendix A.

4 Dynamic Mode-Softening Picture

The elementary excitations in such a system as described above are known as
spin waves, and they can be studied using Heisenberg equation of motion for
o” using the Hamiltonian. The equation of motion is then given by

o7 = (ih) (o7, H] (14)

or,
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o7 =2Ic) (with h=1)

Hence,
57 =2I¢! =AY Jijoiof — A0} . (15)
J

With Fourier transforms and random phase approximation (of0? = o7 (07) +

J
(of)os , with (0%) = 0 in para phase), we get

wy =40 = J(g)(o")) , (16)
for the elementary excitations (where J(g) is the Fourier transform of J;;).
The mode corrosponding to (¢ = 0) softens, i.e., wy vanishes at the same
phase boundary given by equation (13).

5 Suzuki-Trotter Formalism

Exact analysis for the quantum fluctuation can indeed be tackled by using
renormalization group theory; see appendix B for real space quantum RG
theory for one dimensional chain (cf [6]). However, such formalisms have seri-
ous limitations in applicability and the Suzuki-Trotter formalism to map the
quantum problem to a classical one has been of enormous practical importance
(e.g. in simulations).

Suzuki-Trotter formalism [7] is essentially a method to transform a d-
dimensional quantum Hamiltonian into a (d+1)-dimensional effective classical
Hamiltonian giving the same canonical partition function. Let us illustrate
this by applying it to transverse Ising system. We start with Transverse Ising

Hamiltonian N
H = —FZO"Z? - Z Jijoios
i=1 (4,5)

=Ho+V (17)
The canonical partition function of H reads

7 = Tre=BHotV)

Now we apply the Trotter formula

exp (A + As) = [exp Ay /M eXpAg/M]M ,

lim
M —o0
even when [Aq, As] # 0. On application of this, Z reads

Z=3" lim (sl lexp (~FHo/M)exp (=FV/M)] Y |si) . (18)
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Here s; represent the i-th spin configuration of the whole system, and the
above summation runs over all such possible configurations denoted by i.
Now we introduce M number of identity operators

I:Z|5i7k><8i’k|’ k:1727M

in between the product of M exponentials in Z, and have

M
—BH -8V
Z = lim_ Trkl_[ <0'1,k oNk|exp ( ﬁ/l 0) exp (%) okt - "UN,k+1> :

and periodic boundary condition would imply on41,, = 01,p. Now,

M
II (o onrlexp Zcr oF ot ks1 - oON k41
N M
= CeXp Zziazko'], ) (19)
1,7=1k=1

where o; j, = 1 are the eigenvalues of 0* operator. Also,

M
H Ulk"'UNk|eXp ﬂlz(ﬂ |Ulk+1"'UNk+1
k) B M - K3 k) k)

N M

= <; sinh {2]@]1] ) N exp [ In coth ( > Z Z 0i,k0j k+1‘| . (20)

=1 k=1

The last step follows because

e = e711997) — ¢og (jao™) — isin (iao®) = cosh (a) 4+ o sinh (a) ,
and therefore
1 1/2
(a]e® |0’y = [2 sinh (Qa)] exp (00’ /2) Incoth (a)] ,
since

. . 1 1/2
(Tle* |1y =(l1]e" | |l) =cosh(a) = [2 sinh (2a). coth (a)]

and

. . 1 1/2
(1127 1) = (1 [et" 1) = sinh (@) = |3 sinh (20)/coth ()]
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Thus the partition function reads

2817
7 = O Tro(—fHupslol) € = g sinh 200

where the effective classical Hamiltonian is

0ii GBI
Heps(o Z Z [ O'dejk 25 In coth (M>Uik0ik+1:| . (21)

(i,g) k=1

The Hamiltonian H.ys is a classical one, since the variables oy ’s involved
are merely the eigen-values of 0%, and hence there is no non-commuting part
in Heyp. It may be noted from (21) that M should be at the order of A3
(we have taken i = 1 in the calculation) for a meaningful comparison of
the interaction in the Trotter direction with that in the original Hamiltonian
(see Fig. 3). For T — 0, M — oo, and the Hamiltonian represents a system
of spins in a (d+1)-dimensional lattice, which is one dimension higher than
the original d-dimensional Hamiltonian, as is evident from the appearence
of one extra label k for each spin variable (see Fig. 3). Thus corrosponding
to each single quantum spin varible ¢; in the original Hamiltonian we have
an array of M number of classical replica spins ;. This new (time-like)
dimension along which these classical spins are spaced is known as Trotter
dimension. From the explicit form of H.rs, we see that in addition to the
previous interaction (J) term (— Zivj Jijoio;), there is an additional near-
est neighbour interaction (J’) between the Trotter replicas corrosponding

01 M ON,M
=l
2 S1j ON ji+1
D
[a) .
= .= (j-th-
£ 07 j | NiJ  Trotter-
e, : -_._E_._,,Slice)
01,2 N,2
01 02 Oj G|+1 ON |5
— o - 0—o- o 11 P21 i1 Pl . N,1
J !
J

Fig. 3. The Suzuki-Trotter equivalence of quantum one dimensional chain and a
(1+1) dimensional classical system. J' indicates the additional interaction in the
Trotter direction
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to the same original spin, along the Trotter direction, given by the term
(Zf\; 224:1 —(655/2B) Incoth (BI'/M)0o;,0ik+1) (as shown in Fig. 3). For fi-
nite temperature, the optimal width of the lattice in the Trotter direction is
finite and the critical behaviour remains d-dimensional.

The calculations, and consequently the effective Hamiltonian (21), is valid
for any general interaction J;;; of course, I" has been taken to be nonrandom.
Figure 4 describes a situation where J;; were nonrandom (we had J;; = J).
For random J;;, where J;; were nonrandom (we had .J;; = J). For random
Jij, remain identical (J') wheras the spatial randomness in interactions for
various Trotter slices get correlated as indicated in Fig. 4. Such equivalence of
d-dimensional quantum system with a (d+ 1)-dimensional classical model can
also be seen from the renormalization group study of the quantum models (say,
one-dimensional transverse Ising model and its equivalent critical behaviour
of two-dimensional classical Ising system) as shown in Appendix B.

A

1 d2 0 d3 G42J420520
1012 7022 103> | !
Jn . ! I

(O] (0] O3 Oy O3

............. :Gl 1 :621 :63 1 :04’1 '65,1
QTW T, WJ: T Ll 8

3 J4 J4

Trotter Direction

Fig. 4. At the left is a portion of a one dimensional quantum Ising chain with random
exchange interactions and at the right is a part of its Suzuki-Trotter equivalent
classical lattice with randomness correlated in Trotter direction

6 Classical Spin Glasses: A Summary

Spin glasses are magnetic systems with randomly competing (frustrated) in-
teractions [3]. Frustration is a situation where all of the spins present in the
system cannot energetically satisfy every bond associated to them. Here the
frustration arises due to competing (ferromagnetic and anti- ferromagnetic)
quenched random interactions between the spins. As a result there arise huge
barriers (O(N), N = system size) in the free-energy landscape of the system.
In thermodynamic limit, height of such barriers occassionally go to infinity.
These barrieres strongly separate different configurations of the system, so
that once the system gets stuck in a deep valley in between two barriers, it
practically gets trapped around that configuration for a macroscopically large
time. Because of frustration, the ground state is largely degenerate; degeneracy
being of the order of exp (N). As discussed above, these different ground state
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configurations are often separated by O(N) barriers, so that once the system
settles down in one of them, it cannot visit the others equally often in course
of time, as predicted by the Boltzmann probability factor. The system thus
becomes ‘nonergodic’ and may be described by a nontrivial order parameter
distribution [8] in the thermodynamic limit (unlike the unfrustrated coopera-
tive systems, where the the distribution becomes trivially delta function-like).
The spins in such a system thus get frozen in random orientations below a cer-
tain transition temperature. Although there is no long range magnetic order,
i.e., the space average of spin moments vanishes, the time average of any spin
is nonzero below the transition (spin-glass) temperature. This time average is
treated as a measure of spin freezing or spin glass order parameter.

Several spin glass models have been studied extensively using both analytic
and computer simulation techniques. The Hamiltonian for such models can
be written as

H=-Y Jjoio; (22)
i<j
where S7 = +£1,2,..., N, denote the Ising spins, interacting with random

quenched interactions J;;, which differs in various models. We will specifically
consider three extensively studied models.

(a) In Sherrington-Kirkpatrick (S-K) model J;; are long-ranged and are dis-
tributed with a Gaussian probability (centered around zero), as given by

N 2 ~NJ2
P(Jﬂ) - (27TJ2) eXp ( 2.2 . (23)

(b) In Edward-Anderson (EA) model, the J;;’s are short-ranged (say, between
the nearest neighbours only), but similarly distributed with Gaussian proba-
bility (23)

(c) In another kind of model, the J;;’s are again short-ranged, but having a
binary (£J) distribution with probability p:

P(Jij) =pd(Jij — J) + (1 =p)é(Jij — J) . (24)

The disorder in the spin system being quenched, one has to perform
configurational averaging (denoted by overhead bar) over InZ, where Z(=
Trexp —3H) is the partitation function of the system. To evaluate (In Z), one
usually employs replica trick based on the representation In Z = lim,,_,o[(Z" —
1)/n]. Now for classical Hamiltonian (with all commuting spin components),
Z" =11h_ Za = Z(>._, Ha), where H, is the a-th replica of the Hamil-
tonian H in equation (22) and Z, is the corrosponding partition function.
The spin freezing can then be measured in terms of replica overlaps, and

Edward-Anderson order parameter takes the form
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N
NZ (SEOSZ(0)) oo = WZ: (Sz,57) .

where o and 3 corrosponds to different replicas.

Extensive Monte Carlo studies, together with the analytical solutions for
the mean field of S-K and EA models, have revealed the nature of spin glass
transition. It appears that the lower critical dimension dj for EA model, below
which transition ceases to occur (with transition temperature 7, becoming
zero), is between 2 and 3: 2 < df < 3. Thu upper critical dimension dS, at and
above which mean field results (e.g., those of S-K model) apply, appears to be
6: df = 6. Within these dimensions (df < d < d, ), the spin glass transitions
occur (for Hamiltonians with short-ranged interactions) and the transition
behaviour can be characterized by various exponents. Although the linear
susceptibility shows a cusp at the transition point, the nonlinear susceptibility

c = (1/N)>_, g(r), where g(r) = (1/N)>_, ((57S7,,))?, diverges at the
spin glass transition point :

xsa ~ (T =T.) 7%, g(r) ~r~ 4200 f (2) ;o §~|T=Te™  (25)

Here £ denotes the correlation length which determines the length scaling in
the spin correlation function g(r) (f in g(r) denotes the scaling function).
Numerical simulation gives v, = 1.3+0.1, 0.80£ 0.15, 1/2 and . = 2.94+0.5,
1.84 0.4, 1 for d = 2,3 and 6 respectively for the values of exponents. One
can define the characteristic relaxation time 7 through the time dependence
of spin auto-correlation

o0 =TSN ~ 20 (L) e~ -T2

where z = (d — 2+ 1.)/2z., and z. denotes the classical dynamical exponent.
Numerical simulations give z. = 6.1 £ 0.3 and 4.8 £ 04 in d = 3 and 4
dimensions respectively. Of course, such large values of z. (particularly in lower
dimensions) also indicates the possibility of the failure of power law variation
(26) of 7 with T' — T, and rather suggests a Vogel-Fulcher like variation:
T ~ exp[A/(T —T.)]. In the +J spin glasses (type (c¢) above), some exact
results are known along the ‘Nishimori Line’ [8], and the nature of the phase
transition there is precisely known.

7 Quantum Spin Glasses

Quantum spin glasses [9, 10, 11, 12, 13] have the interesting feature that the
transition in randomly frustrated (competing) cooperatively interactimg sys-
tems can be driven both by thermal fluctuations or by quantum fluctuations.
Quantum spin glasses can be of two types: vector spin glasses introduced by
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Bray and Moore (see [1]), where of course quantum fluctuation cannot be
tuned, or a classical spin glass perturbed by some tunable quantum fluctua-
tions e.g., as induced by a non commutative transverse field [1, 9]. The amount
of quantum fluctuation being tunable, this Transverse Ising Spin Glass (TISG)
model is perhaps the simplest model in which the quantum effects in a ran-
dom system can be and has been studied extensively and systematically [4, 13].
Precise realization of TISG in LiHo, Y _yF4, with magnetic Holonium ion con-
centration around x = 0.167 [12], has led to several important developments.

The interesting in such quantum spin glass models is about the possibility
of tunnelling through the (infinitely high) barriers of the free energy land-
scape in the classical spin glass models (e.g., S-K model) due to the quantum
fluctuations induced by the transverse field. In classcal system, the overrid-
ing of an infinitely high barrier is infinitely hard for thermal fluctuations at
any finite temperature. But quantum fluctuation can make a system tunnel
through such a barrier, if its width is infinitessimally small. The barrier widths
are actually seen to decrease with system size indicating to an ergodic (replica
symmetric) picture for the free-energy landscape.

7.1 Models
Sherrington-Kirkpatrick Model in a Transverse Field

The sherrington-Kirkpatrick (S-K) model in presence of a non-commutating
tunnelling field, given by the Hamiltonian

H:— E JijUfU;—F E 0?7 (27)
ij i
where the follows the Gaussian distribution
N O\ 12 —NJ2
P(J) = ——= *J 2
(i) (2m2> P ( a2 (28)

was first studied by Ishi and Yamamoto [9].

Phase Diagram

Several analytical studies have been made to obtain the phase diagram of the
transverse Ising S-K model (giving in particular the zero-temperature critical
field). The problem of S-K glass in transverse field becomes a nontrivial one
due to the presence of noncommuting spin operators in the Hamiltonian. This
leads to a dynamical frequency dependent (spin) self-interaction.
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(i) Mean Field Estimates

One can study an effective spin Hamiltonian for the above quantum many
body system within the mean field framework. A systematic mean field the-
ory for the above model was first carried out by Kopec (see e.g., [1]), using
the thermofield dynamical approach and the short time approximation for
the dynamical spin self-interaction. Before going into the discussion of this
approach, we shall briefly review the replica-symmetric solution of the classi-
cal S-K model (I' = 0) in a longitudinal field given by the Hamiltonian

H=-> Jijoioc;—hY of (29)
(i3)

where J;; follows the Gaussian distribution given by (56). Using the replica
trick, one obtains for configuration averaged n-replicated partition function
Z™, given by

7"= Y /D;P(Jij)dJijexp [52JijZafao—ja+ﬁhzafa-}

(0ia==£1)" "

Performing the Gaussian integral, using Hubbard-Stratonovich transforma-
tion and finally using the method of steepest descent to evaluate integrals for
thermodynamically large system, one obtains free energy per site f, given by

BA2 1 9 1
1—— —InT L
1 - Top+ ~In r(exp L) ,

a,B

A=,

where L = (8J)% Y, 3 4ap0i05+08 20—y 05 and gap is self-consistently given
by the saddle point condition (9f/dqa3) = 0. Cosidering the replica symmet-
ric case (¢ag = ¢), one finds

2 o0 2
—Bf = (ﬂﬁ) (1_q)+\/127r/oodr e~ T In[2cosh {Bh(r)}]

where 1 is the excess static noise arising from the random interaction J;; and
the spin glass order parameter ¢ is self-consistently given by

9= \/% /,OO dr e~'F tanh? {Bh(r)}

and h(r) = A,/qr +h can be interpreted as a local molecular field acting on a
site. Different sites have different fields because of disorder, and the effective
distribution of h(r) is Gaussian with mean 0 and varience AZq.

At this point we can introduce quantum effect through transverse field
term —I") ", o (with longitudinal field A = 0). The effective single particle
Hamiltonian in the transverse Ising quantum glass can be written as
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Hs = —h*(r)o® — ['o”

where h.(r), as mentioned earlier, is the effective field acting along the z
direction arising due to nonzero value of the the spin glass order parameter.
Treating h*(r) and o as classical vectors in pseudo-spin space, one can write
the net effective field acting on each spin as

ho(r) = h*(r)z — I'is  |ho(r)| = V/h=(r)2 + T2 .

One can now arrive at the mean field equation for the local magnetisation,
given by
|7 (r)]
m(r) = p(r) tanh [Bho(r)];  p(r) = :
lho(r)]

and consequently, the spin glass order parameter can be written as

4= \/% /_Oo dr e /2 tanh? {Bho(r)}p*(r) .

The phase boundary can be found from the above expression by putting g —
0(h*(r) = J\/qr and hg = I'), when it gives

r r

From above we get I'. = J. Ishi and Yamamoto used the ‘reaction field’
technique to construct ‘TAP’ like equation for free energy of the Hamiltonian
(27) and perturbatively expanded the free energy in powers of I upto the
order I'? to obtain

kpT. = Al —0.23(I'/A)?] .

(i) Monte Carlo Studies

Several Monte Carlo studies have been performed [9, 13] for S-K spin glass in
transverse field. Applying Suzuki-Trotter formulation (as discusseed earlier) of
effective partition function, one can obtain the effective classical Hamiltonian
in Mth Trotter approximation as

M

1 o & 1 A\ &
Heff = _M Z Z Jijgiko'jk - % In coth <M> Z OikOik+1
i,7=1k=1 i=1 k=1
NM 1 26T
—Tln {2 sinh ]@} , (31)
where o, denotes the Ising spin defined on the lattice (i, k), ¢ being the
position in the in the original S-K model and k denoting the position in the
additional Trotter dimension.
Ray et al. [10] took I' < J and their results indeed indicate a sharp
lowering of T (I'). Such sharp fall of T,.(I") with large I is obtained in almost
all theoretical studies of the phase diagram of the model.
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Edward-Anderson Model in a Transverse Field

The Hamiltonian for the Edward-Anderson spin glass in presence of transverse
field is that given by (27), where the random interaction this time is restricted
among the nearest neighbours and satisfies a Gaussian distribution with zero
mean and variance J, as given by

2

With I' = 0, the above model represents the E-A model with order parameter
q = (07)? =1 (at T = 0). When the transverse field is introduced, ¢ decreases,
and at a critical value of the transverse field the order parameter vanishes. To
study this quantum phase transition using quantum Monte Carlo techniques,
one must remember that the ground state of a d-dimensional quantum model
is equivalent to the free enery of a classical model with one added dimen-
sion which is the imaginary time (Trotter) dimension. The effective classical
Hamiltonian can be written as

H= ZZKijaik"jk - ZZKUikUz’k+1 ) (32)
ki :

k i

with

K;; = BJij . K= %lncoth (ig) ;

where o, are classical Ising spins and (4, j) denotes the original d-dimensional
lattice sites and k = 1,2, ..., M denotes a time slice. Although the equivalence
between classical and the quantum model holds exactly in the limit M —
o0, one can always make an optimum choice for M. The equivalent classical
Hamiltonian has been studied using standard Monte Carlo technique. The
numerical estimates of the phase diagram etc. are reviewed in details in [13]

7.2 Replica Symmetry in Quantum Spin Glasses

The question of existence of replica-symmetric ground states in quantum spin
glasses has been studied extensively in recent years. Replica symmetry restora-
tion is a quantum phenomena arising due to the quantum tunnelling between
the classically ‘traped’ states seperated by infinitely high (but infinitessimally
narrow) barriers in the free energy surface, which is possible as the tunnelling
probability is proportional to the barrier area, which remains finite. To inves-
tigate this aspect of quantum glasses, one has to study the overlap distribution
function P(q) given by

P(q) =Y PPus(qg—qi"), (33)
L
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where P is the Boltzman weight associated with the state [ and q”/ is the
overlap between the sates [ and I

N

/ 1 ’
ay — E NOFFNG!
q ) N <UZ>( )<Jz> . (34)

i=1

One can also define the overlap distribution in the following form (for a finite
system of size N)

Pn(q) = (d6(qg — q1?)) , (35)

where ¢(1?) is the overlap between two sets of spins a( ) and 052), with identical
bond distribution but evolved with different dynamlcs,

(12) = Za 1)0 ) (36)

Pn(q) — P(q) in the thermodynamic limit. In quantum glass problem one can
study similarly this overlap distridution Py(g); and if the replica symmetric
ground states exists, the above function must tend to a delta function in
thermodynamic limit. In para-phase, the the distribution will approach a delta
function at ¢ = 0 for the infinite system.

Ray, Chakrabarti and Chakrabarti [10], performed Monte Carlo simula-
tions, mapping the d-dimensional transverse S-K spin glass Hamiltonian to
an equivalent (d 4 1)-dimensional classical Hamiltonian and addressed the
question of stability of the replica symmetric solution, with the choice of or-
der parameter distribution function given by

Pn(q) = < <q - <7 ZZ% Uf§)>> : (37)

zlkl

where, as mentioned earlier, subscripts (1) and (2) refer to the two identical
samples but evolved through different Monte Carlo dynamics. It may be noted
that a similar definition for ¢ (involving overlaps in identical Trotter indices)
was used by Guo et al. [11]. Lai and Goldschmidt performed Monte Carlo
studies with larger system size (N < 100) and studied the order parameter
distribution function

Pn(q) = < ( Zo‘” f§?>>, (38)

where the overlap is taken between different (arbitrarily chosen) Trotter in-
dices k and k’; k # k’. Their studies indicate that Py (q) does not depend upon
the choice of k and k' (Trotter symmetry). Rieger and Young (see [1]) also
defined ¢(*?) in similar way (¢ = (1/NM)Y Y Z%/)Ufi)afi;. There are
striking differences between the results Lai and Goldschmidt obtained with
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the results of Ray et al. [10]. For I' <« I, P(q) is found to have (in [10]) an os-
cillatory dependence on ¢ with a frequency linear in N (which is probably due
to the formation of standing waves for identical Trotter overlaps). However,
with increase in IV, the amplitude of oscillation decreases and the magnitude
of P(q = 0) decreases, indicating that P(g) might go over to a delta function
in thermodynamic limit. The envelope of this distribution function appears
to have an increasing P(q = 0) value as the system size is increased. Ray
et al. [10] argued that the whole spin glass phase is replica symmetric due to
quantum tunnelling between the classical trap states. Lai and Goldschmidt
on the other hand, do not find any oscillatory behaviour in P(g). In contrary
they get a replica symmetry breaking (RSB) in the whole spin glass phase
from the nature of P(q), which in this case, has a tail down to ¢ = 0 even
as IV increases. According to them their results are different from Ray et al.
[10] because of different choices of the overlap function. Goldschmidt and Lai
have also obtained replica symmetry breaking solution at first step RSB, and
hence the phase diagram.

Biittner and Usadel (see e.g., Chakrabarti et al. [4]), have shown that
the replica symmetric solution is unstable for the effective classical Hamil-
tonian (58) and also estimated the order parameter and other thermodynamic
quantities like susceptibility, internal energy and entropy by applying Parisi’s
replica symmetry breaking scheme to the above effetive Hamiltonian. Using
static approximation, Thirumalai et al. (see [1]), found stable replica symmet-
ric solution in a small region close to the spin glass freezing temperature near
the phase boundary. But as mentioned earlier, in the region close to the criti-
cal line, quantum fluctuations are subdued by the thermal fluctuations. Thus
the restoration of replica symmetry breaking, which is essentially a quantum
effect, perhaps connot be prominent there.

All these numerical studies are for equivalent classical Hamiltonian, ob-
tained by applying the Suzuki-Trotter formalism to the original quantum
Hamiltonian, where the interactions are anisotropic in the spatial and Trotter
direction and the interaction in the Trotter direction becomes singular in the
limit 7" — 0. Obviously one cannot extrapolate the finite temperature results
in zero temperature limit. The results of exact diagonalization of finite sys-
tems (N < 10) at T' = 0 itself do not indicate any qualitative difference in the
behaviour of the (configuration average) mass gap A and the internal energy
E, from that of a ferromagnetic transverse Ising case, indicating the possi-
bility that the system might become ‘ergodic’. On the other hand, the zero
temperature distribution for the order parameter does not appear to go to
delta function with increasing N as is clearly found for the corrosponding fer-
romagnet (random long range interaction without competition). In this case
the order parameter distribution P(q) is simply the number of ground state
configuratons having the order parameter value as g. This perhaps indicate
broken ergodicity for small values of I". The order parameter distribution also
shows oscillations similar to that obtained by Ray et al. [10].
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Kim and Kim [14] have very recently investigated the S-K model in trans-
verse field using imaginary time replica formalism, under static approxima-
tion. They have shown that the replica-symmetric quantum spin glass phase
is stable in most of the area of the spin glass phase, as have been argued by
Ray et al., in contrary to the results of Lai et al. and Thirumalai et al. (see
e.g., Chakrabarti et al. [4]).

8 Quantum Annealing

8.1 Multivariable Optimization and Simulated Annealing

Multivarable optimization problems consists of finding the maximum or min-
imum values of a function (known as cost function) of very many independent
variables. A given set of values for the whole set of independent variables
defines a configuration. The value of the cost function depends on the con-
figurations, and one has to find the optimum configuration that minimizes or
maximizes the cost function. The explicit evaluation of the cost function for
all possible configurations in this context, generally turns out to be absolutely
impracticable for most systems.

One can therefore start from an arbitrary state and go on changing the con-
figuration following some stochastic rule, unless an extremum is reached. For
example, in a minimization problem, one may start from an arbitrary config-
uration, change the configuration according to some stochastic rule, evaluate
the cost function of the changed configuration, and then compare its value
with that of the original configuration. If the new cost function is lower, the
change is retained, i.e.,the new configuration is accepted. Otherwise the change
is not accepted. Such steps may be repeated for times unless a minimum is
reached. But in most cases of multivariable optimisation problem, there are
many local extrema in the cost function landscape, and one cannot be sure
that the extremum that has been reached is the global one. Kirkpatrick et al.
[15] proposed a very ingenious physical solution to this mathematical problem,
now known by the name simulated annealing. The basic underlying principle
of simulated annealing as follows. It is known that an ergodic physical system,
at any finite temperature resides in the global minimum of its free energy. The
minimum of the free energy is a thermodynamic macro-state corrosponding to
a maximum number of accessible microcsopic configuration. Hence at thermal
equilibrium an ergodic system explores its configuration space randomly with
equal apriori probability of visiting any configuration, and consequently is
found most of the time at one or other of the configurations that corrosponds
to the free energy minimum (since the number of configurations corrospond-
ing to such minimum is overwhelmingly large compared to that of any other
macro-state). Now if the system starts from an arbitrary macrostate (not the
minimum of free energy) then due to thermal fluctuation it reaches the free
energy minimum within some time 7 known as the thermal relaxation time of
the system.
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For an ergodic system (away from critical point) this relaxation time in-
creases linearly with system size (which is logerithmically smaller a number
compared to the corrosponding number of all possible configurations). Hence
if one follows the random dynamics of the thermal relaxation of a system,
then he will be able to reach the minimum of cost function (zero temperatur
free energy) in a substancially smaller time. What one needs to do is to view
the cost function E as the internal energy of some system and start from
an arbitrary configuration. Then one changes the configuration according to
somestochastic rule, just as before. Now if the energy is lowered by the change,
the change is accepted, but if it is not, the change is not thrown away with
certainity. Instead it is accepted with a probability equal to the Boltzmann
factor e AE/kBT  where AE = E(atter change) — E(before change) (since this is
the way how systems relax thermally to their free energy minimum). Tem-
perature T here is an artifically introduced parameter which has a high value
initially, and is reduced slowly as time goes on, finally tending towards zero.
At zero temperature the free energy is nothing but the internal energy of the
system, and thus at the end of the final stage of annealing the system can be
expected to be found, with a very high probability, in a configuration that
minimizes the internal energy (cost function).

However this simulated annealing technique can suffer severe set back when
the system is ‘nonergodic’, like the spin glasses we discussed earlier. In such
cases configurations corrosponding to minimum of the cost function are sep-
arated by O(N) sized barriers, and at any finite temperature thermal fluc-
tuations will take practically infinite time to relax the system to the global
minimum crossing these barriers in thermodynamic limit N — oo.

8.2 Ergodicity of Quantum Spin Glasses and Quantum Annealing

The non-ergodicity problem makes the search of the ground state of a classical
spin glass a computationally hard problem (no algorithm bounded by some
polynomial in system size exists for such NP-hard problems). The problems
of simulated annealing of spin glass-like systems can be overridden (atleast
partially) by employing the method of quantum annealing [16, 17]. The basic
idea is as follows: First the problem has to be mapped to a corrosponding
physical problem, where the cost function is represented by some classical
Hamiltonian (say Hp) of the form (22). Then a suitably chosen noncommuting
quantum tunnelling term (say H’(t)) is to be added so that the Hamiltonian
takes the form of (27). One can then solve the time dependent Schrodinger
equation
oy

ihor = [Ho +H @)Y (39)

for the wave-function () of the entire system Ho+H’(t). The solution of the
time dependent schrodinger equation approximately describes a tunnelling dy-
namics of the system between different eigenstates of Hg. Like thermal fluctua-
tions in (classical) simulated annealing, the quantum (tunnelling) fluctuations
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owing to H’ in (39) help the system to come out of the local ‘trap’ states. If
H'(t) — 0 for t — oo, the system eventually settles in one of the eigen-
states of Hg; hopefully the ground state. The introduction of such a quantum
tunnelling is supposed to make the infinitely high (but infinitessimally thin)
barriers transparent to the system (see, e.g., Appendix C), and it can make
transitions to different configurations trapped between such barriers, in course
of annealing. In other words, it is expected that application of a quantum tun-
nelling term will make the free energy landscape ergodic, and the system will
consequently be able to visit any configuration with finite probability. Finally
the quantum tunnelling term is tuned to zero (H'(t) — 0) to get back the
classical Hamiltonian. It may be noted that the success of quantum annealing
is directely connected to the replica symmetry restoration in quantum spin
glass [10, 141] due to tunnelling through barriers (see Fig. 5 and the discussion

in the preceeding section).

Thermal Annealing

energy ------>

Quantum Annealing

configurations ------ >

Fig. 5. Schematic indication of the advantage of quantum annealing over classical

annealing

Here, the d-dimensional quantum Hamiltonian (27) (to be annealed) is
mapped to the (d 4 1)-dimensional effective Hamiltonian

M [N N
_ k__k ! k_k+1
His1 = — E E Jijoioj +J E 0;0; ,
E+1 \ i i=1

where MT r
I _ —_—
J' = > lntanh(MT) >0
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is the nearest neighbour ferromagnetic coupling in Trotter direction, between
the Trotter replicas of the same spin. In course of annealing, the temperature
is kept constant at a low but nonzero value, and the tunnelling field I" is
tuned slowly from a high initial value to zero. The decrease in I" amounts to
the increase in J' (as casn be seen from above expression of J’). Initially at
high I, J’ is low, and each Trotter replica behaves almost like an independent
classical spin system. The tunnelling field is then lowered in small steps. In
each such step, the system is annealed in presence of the small temperature.
Finally as I' — 0, J' — oo, forcing all replicas to coinside at the end. As
mentioned already, quantum annealing possibility directly rests on the replica
symmetry restoration feature of quantum spin glasses, discussed in earlier sec-
tion. In fact ergodicity in quantum spin glasses, as suggested in Fig. 5 was
attributed by Ray et al. to the “quantum fluctuations due to transverse field.
Quantum tunnelling between the classical ‘trap’ states, separated by infinite
(but narrow) barriers in the free-energy surface, is possible as quantum tun-
nelling probability is proportional to the barrier area which is finite.” (Sect. V,

[10]).

8.3 Quantum Annealing in Kinetically Constrained Systems

It is largely believed that apart from the complexity associated to the non-
trivial ground state structure of a glassy system, the occurance of certain
kinetic constraints (blockings) during relaxation also contributes substancially
to the slowness of its low temperature dynamics. The Kinetic constraints or
blockings can be viewed as infinitely high energy barriers appearing in the
relaxation path of the system. In order to relax to the minimum of the free
energy, the system has to jump over these high barriers thermally, which they
fail to do at any finte temperature. However if such barriers are infinitessimally
narrow, then the system might be able to tunnel through them quantum
mechanically if sufficient quantum fluctuation I' is present in the system.
Thus if one tries to anneal such a system down to its ground state starting
from an arbitrary state, then quantum annealing might turn out to be much
superior to the thermal annealing (see e.g., [18, 19]).

We have studied [20] the annealing of a kinetically constrained Ising spin
chain of N spins, starting from a disordered state (with negligible initial mag-
netization), to its (external field induced) fully ordered ground state. At any
finite temperature 7' (in the classical model) the system takes an exponen-
tially long time to relax to the ordered state because of the kinetic constraints,
which act like an infinite potential barrier, depending on the neighbouring spin
configurations. Quantum mechanically, this infinite barrier is taken to be pen-
etrable, i.e. with finite tunnelling probability, depending on the barrier height
x and width a (a — 0 faster than y~2). The introduced noise, required for
the annealing, is reduced following an exponential schedule in both the cases:
T =Toe V7, I' = Iye /7@, with Ty ~ I. For our simulation for the quan-
tum case, we have taken the tunnelling probabilities P (for cases I-IV) and
employed them in a semi-classical fashion for the one dimensional spin chain
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considered. We observe that for similar achievement in final order (my ~ 0.92
starting from m; = 1073), ¢ ~ 1037g for N = 5 x 10%. For even larger order
(my ~ 1), quantum annealing works even better (1o ~ 1037, for the same
value of N). These comparison are for g = 10? and y = 10? for the constraint
barriers [20].

In this picture, we considered the collective dynamics of a many particle
system, where each one is confined in a (field) induced asymmetric double
well potential for which we considered only the low lying two states (the wave
packet localized in one well or the other), representing the two states (up and
down) of an Ising spin discussed above. The tunnelling of the wave packet
from one well to the other was taken into account by employing a scattering
picture and we used the tunnelling probabilities as the flip probabilities for the
quantum Ising spins. As such, the reported simulation for the one dimensional
quantum East model is a semiclassical one. It may be noted however that,
because of the absence of inter-spin interaction, the dimensionality actually
plays no role in this model except for the fact that the kinetic constraints
on any spin depend only on the left nearest neighbour (directedness in one
dimension). Hence the semiclassical one dimensional simulation, instead of a
proper quantum Monte Carlo simulation (equivalent to a higher dimensional
classical one [4]), is quite appropriate here.

9 Summary and Discussions

We have introduced the transverse Ising model for discussing the order-
disorder transition (at zero temperature) driven by quantum fluctuations.
Mean field theories are discussed next in Sects. 3 and 4. Application to BCS
superconductivity theory is discussed in appendix A. Renormalization group
technique for study of critical behaviour in such quantum systems is discussed
in appendix B (for a chain). Next we have discussed the Suzuki-Trotter map-
ping of the d-dimensional quantum system to d 4+ 1 dimensional classical sys-
tem (in Sect. 6). We introduce then the transverse Ising spin glass models,
namely, the S-K model in transverse field and the E-A model in transverse
field (Sect. 8.2). The existing studies on their phase diagrams are discussed
briefly. We then discuss about the problem of replica symmetry restoration
in quantum spin glasses (in Sect. 8.3). The application of the quantum an-
nealing technique to capture the near-global minima of NP-hard problems is
then discussed, and the effectiveness of quantum tunnelling over the thermal
barrier hopping is discussed (Sect. 9).

It may be noted in this connection that some recent attempts have been
made to apply similar annealing, induced by quantum fluctuations, to the
optimization problems like the travelling salesman problem, image restoration,
ete. [18, 19]. Like the near-global minima in free energy landscape of such spin
glasses, the barriers are often globally contributed and these barrier heights
grow as the system size grows (unlike the locally optimized configurations and
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the barriers between them). Classically, the system becomes nonergodic due
to these macroscopically high barriers (NP-hard to reach the ground state),
as thermal fluctuations have to wait until they can scale such macroscopically
high barriers. Quantum tunnelling does not necessarily look for barrier height
[10] to overcome them (by tunnelling through; see appendix C, see Fig. 5) and
helps restoring replica symmetry as well as annealing [16, 17].
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10 Appendix

Appendix A

MFT of TIM and BCS Theory of Superconductivity

The phonon mediated effective attractive interaction between electrons
give rise to a cooperative quantum Hamiltonian. Although the quantum phase
transition in such a system is not physical or meaningful, the finite temper-
ature superconducting phase transition can be studied easily following the
mean field theory discussed here (using a pseudo-spin mapping [5]). The rele-
vant part of the Hamiltonian of electrons that take part in superconductivity
has the following form

H= Z%(CLCk + ctkc,k) — VZCL,cik/c,kck (A1)
k Kk’

Here the suffix k indicates a state with momentum k and spin up, while
(—k) indicates a state with momentum —k and spin down and V is a posi-
tive constant that models the attractive coupling between electrons through
phonons. We will solve this equation following spin-analog method [4]. Here
we are considering low-lying states containing pair of electrons (k, —k). For a
given k, there are two possible states that come into consideration: either the
pair exists, or it does not. Thus we enter into a spin-like two-state picture as
follows.

Let us introduce the number operator n; = c,tck . This reduces the Hamil-
tonian (A1) to

Hred = 726[6(1 — ’flk — ’fl_k) — VZCZ,CT_k,C_ka . (AQ)

k kK’

Here we have introduced a term — ), €, with the choice ), ¢, = 0 in mind,
for all k’s (basically these sums are over the states within energy +wp about
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the fermi level, where wp is the Debye energy) that partictpates in pair forma-
tion. As stated earlier, if nj denotes the number of electrons in k-state, then
we are considering only a subspace of states defined by ny = n_j, where ei-
ther the both of the states in the pair (k,—k) are occupied, or both are empyt.
Now if we denote by [1x1_) a (k,—k) pair-occupied state and by |[050_) an
unoccupied one, then

(I—ng —n_p) gl o) =1 —1—=D|1plg) = =1l k),

and
(1 =7 — ) |0x0—p) = (1 = 0 = 0)|0x0—x) = [0x0_)

Thus we switch over to our good old pseudo-spin picture through the following
corrospondences
Melok) & | Dk,

10£0—k) < | T
and (I —np—n_g) < o; . (A3)
Since

e I Me=1Dr el De=0 & corerl i=1|Mr corel =0,

we immediately identify its corrospondence with raising and lowering operator

ot /o™ :
o = o% —ig¥ = 0 0
2 0

0 2
+ —
= (%)

1 _ 1
cJ,rCcT_k = 5% C_1CL = 50;2 . (A4)

Hence in terms of these spin operators, Hamiltonian (A2) takes the form

and

and therefore

1 _
H=- E €,O} — EV g Loy (A5)
i

kk’

Since the term Y, ,, (0%, 0} — o}, 0%) vanishes due to symmetric summing done
over k and k', the Hamiltonian finally reduces to

1
H=— Zekol’i - ZV Z(Jz,ai +ol,07) . (A6)
k Kk

To obtain the energy spectrum of the pseudo-spin BCS Hamiltonian (A6) we
apply now the mean field theory developed in earlier section.
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Weiss’ Mean Field Solution

Just as we did in case of TIM (see Sect. 3), here also we introduce an average
effective field hy for each pseudo-spin oy as

L1 o\~ .
hk = €Lz + §V ;(<0’k/>$ + <0_Z/>y)

and conseqently the Hamiltonian (A6) takes the form
H=-— Z hk.O'k .
k

Here for each k there is an independent spin o which interacts only with
some effective field hy, and our system is a collection of such mutually non-
interacting spins under a field hy.

Now if redefine our x-axis along the projection of hy on the x-y plane for
each k, then with all (o},) = 0 we get

x lv A%,
tang, — 1k — 2V 2w (7l (47)
hk €L
where 6, is the angle between z-axis and hy.
Excitation Spectra at T = 0
Since at T' =0 (¢”) =1,
(o) = |o|sin by, = sin Oy (A8)
Thus from (A7) we get
tan 0, = (v/2ex) Z sin 0},
k/
Now let us define
A= V Z sin Oy ,
so that tan 0y = A/ex. Then simple trigonometry gives —
A
sin 0, = cos ), = k (A9)

Substituting for sin 6, into the above equation we get

Z \/A2 +e,
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Assuming the spectrum to be nearly continuous, we replace the summation by
an integral and note that V is attractive for energy within +wp on both sides
of fermi level; wp being of the order of Debye energy. Then the last equation
becomes

1 wD dE . 1
1= §VPF o \/AQj_i_eQ = VpF sinh (WD/A) .

Here pp is the density of states at fermi level. Thus

WD

- D ~gypeVVer if prV <1 A10
sinh(1/Vpp) wbe ’ (i prV<1) (410)

We see that A is positive if V is positive. To interprate the parameter A, one
may notice that at first approximation, the excitation spectrum is obtained
as the energy & to reverse a pseudo-spin in the field hyg, i.e.,

1/2

Ex = 2|hy| =2 (& + A?) (A11)

From this expression we clearly see that the minimum excitation energy is
2A, i.e. A gives the energy gap in the excitation spectrum.

Estimating Transition Temperature T,

To find the critical temperature for BCS transition, we just extend here the

non-zero temperature version of mean field theory done for Ising case. We
should have (unlike that in (A11), where (o) = 1) for T = 0:

(of) = tanh (Blhg]) - (A12)
Equation (23) accordingly modifies to

tan @y = <2‘;> Ztanh (Blhir|) sin Oy = %}? , (A13)
kl

where A(T) = ¥ 3", tanh (\th/\) sin 0. From equation (A11l) we have

(| = [ef + A%(T)] -

The BCS transition is characterized by the vanishing of the gap A, since
without such a gap in the spectrum, infinite conductance would not be possible
except at T = 0. Hence, as T — T., A — 0, i.e., using (A11), |hg| = €; and
putting this and relations like (A9) in (A13), we get

1 €k
1=V tanh . Al4
Yo (%) (a4

Above relation is correct if we consider an excited pair as a single entity. How-
ever, if we extend our picture to incorporate single particles excited symmetri-
cally in momentum space, then we double the number of possible excitations,
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thereby doubling the overall entropy. This is exactly equivalent to a doubling
of the temperature in free energy. The energy contribution to the free energy,
however, remains unaltered, since two single particle excitations of same |k|
have same energy as that of a pair of equal |k|. Hence we replace T, by 2T,
and in the continuum limit, get

2 “P de € wp/2Te tanh g
Vor /—wD ¢ <2Tc> /0 z

with (x = €/2T,) This is the equation from which we obtain 7. on integration.
If T, < wp, then we may approximate tanhz ~ 1, for x > 1, and for z < 1, we
set tanh « &~ x. This readily reduces the integral to the value 1+ log(wp/2T),
from which we have

T. = (e/2wpe /Vrr

Grphical integration gives a closer result
T. = 1.14wpe~Y/Vrr | (A15)
Comparing (A10) and (A15) we get the approximate relationship
9A ~ 3.5T., . (A16)

This result is quite consistent with the exprimental values for a number of
materials. For example, the value of 2A/T, are 3.5, 3.4, 4.1, 3.3 for Sn, Al
Pb, and Cd superconductors respectively.

Appendix B

Real Space Renormalization for Transverse Ising Chain

Here the basic idea of real space block renormalization [4, 6] is illustrated
by applying it on an Ising chain in transverse field. Taking the cooperative
interaction along x-axis, and the transverse field along z-axis, the Hamiltonian
reads

N N—-1
H = *FZUZ-Z —-J Z oo
i=1 i=1
=Hp+ HiB (Say) . (Bl)

Here
N/b

b b—1
Hp = ZHP ; Hp =~ Zfaip - Z Joi p0i1p (B2)
=1 i—1 i1

and
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N/(b—1)
Hip = Z Hpp+1 3 Hppt1 = _Jalf,pggf,erl . (B3)
p=1

The above rearrangement of the Hamiltonian recasts the picture of N spins
with nearest-neighbour interaction into one in which there are N/(b—1) blocks,
each consisting of b number of spins. The part Hp represents the interaction
between the spins within the blocks, while H;p represents the interactions
between the blocks through their terminal spins(see Fig. 6).

Gl,p GZ,p Gl,p+1 02'p+1
Hp
SN
AN
AN
./ ‘\
[ N | |
-------- @ @ @ @ @ Q®-----------
p-th Block AN (p+1)th Block-
Hp,p+1

Fig. 6. The linear chain is broken up into blocks of size b (= 2 here) and the
Hamiltonian (B1) can be written as the sum of block Hamiltonians H,, and inter-
block Hamiltonians Hp,p+1. The Hamiltonian H, is diagonalized exactly and the
lowest lying two states are identified as the renormalized spin states in terms of
which the inter-block Hamiltonian is rewritten to get the RG recursion relation

Here we will consider b = 2, as shown in the figure. Now H, has got 4
eigen-states, and one can express them in terms of the linear superposition of
the eigen-states of of , ® 03 ,; namely,

Considering the orthonormality of the eigen-states, one may easily see that
the eigenstates of H,, can be expressed as

0 = Z==5(1 1)+l 11)

1) = <501 +111)

2 = 2511 =11D)

3 = (el 1) = L) (B4)
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Here a is a coefficient required to be chosen properly, so that |0) and |3) are
eigenstates of H,. One gets,

0} =y | 1) ] L)
z z xr X 1
=[-I(of +03) - J(Ulgz)]ﬁﬂ 1) +al 11)
= == T 1) = 2] 1) = J( L1) + al 1)

= (2 + Ja)ﬁ {I T+ (‘H) al li)}

Thus |0) to be an eigenstate of H,, one must have

2I' — J/a

oI +Ja
=> Ja? —4Tl'a—J =0
_ EvAI? 4 J2-2r

B5
or, a 5 (B5)
To minimize the energy, we have to choose,
VA2 + Jj2 —2r
a = .
J

One can now see, applying H,, on its eigen-states,

Hpl0) = Ep|0), Eo=—4I?+ J?

Hpll) = E4|1), Ey=-J

Hpl2) = Bal2), By =-+J

Hp|3) = E3|3), Es=+4I?+ J%. (B6)

Now we define our new renormalized spin variables ¢’’s, each replacing a block
in the original Hamiltonian. We retain only the two lowest lying states |0) and
|1) of a block and define corrosponding 077 to have them as its two eigenstates,
| 1Yy =10) and | |) =|1). We also define

o ol RIT+I®oj
B —
where 7 is the 2 x 2 identity matrix. Now since

1+a

V20 +a?)’

(0" 1) =

we take our renormalized J to be
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2
J,*J(l—’_a)

=g (B7)

and since the energy gap between |0) and |1) must be equal to 21" (This gap
was 2[" in the unrenormalized states), we set

Ei—Ey VAT 2+J J
r==o20 J; + = VAR F 4], (B8)

where a = v4A%2 + 1 — 2]\, defining the relevant variable A = I'/J.
The fixed points of the recurrence relation (rewritten in terms of \) are

A =0
A — oo

and A\* ~ 1.277. (B9)
Now if correlation length goes as
5 ~ ()‘ - )‘C)V )
in the original system, then in the renormalized system we should have
é-/ ~ ()\/ _ )\C)V
€ (NN (e
N € \A= X\ N 13 S d)
Now since the actual physical correlation length should remain same as we
renormalize, £ (correlation length in the renormalized length scale) must be

smaller by the factor b (that scales the length), than £ (correlation length in
original scale). i.e., £'/€ = b, or,

. B10
A=A=A* ( )

ax
b = <> =0 (say),
AA ) x=x =a-
hence, v= In& = In & ~ 1.47, (for b=2), (B11)
Inb /,_y., In2

compared to the exact value v = 1 for (d + 1 =) 2 dimensional classical Ising
system. Similarly E, ~ w ~ (time)™! ~ £7%; 2z = 1. But for b = 2, we donot
get z = 1. Instead, A'/A ~ b~ % gives z ~ 0.55. Energy gap

AN ~ [Ae = AP~ €77 ~ A= A2 (B12)

Hence s = vz = 0.55 x 1.47 >~ 0.81 (compared to the exact result s = 1).
Results improve rapidly for large b values [6].
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Appendix C

Tunnelling Through Asymmetric Barrier

Let us consider an asymmetric potential energy barrier in one dimension, (as
shown in Fig. 7). It is essentially a rectangular barrier of height x and width
a between two different energy levels with a potential difference h between
them. The potential energy V is zero at the left of the barrier (z < 0),

—_————
<

)

r
h
v=0—1+--S------1___ - X

Fig. 7. Quantum tunnelling thruogh asymmetric barrier

and it is h (h may be negative as well) at the right of the barrier (z >
a). If a beam of free particles of mass m with kinetic energy I' incidents
on the barrier from the left, then one can calculate the probability for a
particle in the beam to get transmitted through (or reflected by) the barrier by
solving the time-independent Schrédinger equation (with a time-independent
V). The transmission coefficient 7' (defined below) describes the probability
of transmission for a single particle, as well as the average transmission of the
incident beam.

The incident wave function 7 (z), the intermediate wave function s (x)
and the transmitted wave function 13(z) then takes the form

Y1 (z) = Ae”hre, x <0,
Yo(x) = Bek2® 4 Cemh22 0<z<a
V3(x) = Detks®, T >a
where,
k2 =T; k3=T—x and ki3=T1—h,

setting 2m/ h? = 1. Here A and D are the amplitudes of the incident and the
transmitted wave respectively. At this point one may note that for I' < h
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transmission is trivially zero. Hence we consider the case for I" > h i.e., for
real k3. In that case, applying the condition of continuiety of the wave function
and its space derivatives at the boundaries, one obtains the relation (cf. [21])

1.
A= 5De“%a[(l + k3/ky1) cosh ka + i(k/k1 — ks/k)sinh ka] ,

where k? = —k2 = x — I'. We now consider the limit of very high but narrow
barrier, such that y — oo, a — 0, with ¢ = xa finite. We also assume
that y > I, so that k? ~ y, and of course & is real. Since I' > 0, ki is
also real. Hence under this condition the transmission coefficient defined as
T = |D|?*k3/|A|*k; is given by (cf. [21])

Aks [k

2 2 :
(1 + i—f) cosh? (ka) + (ﬁ - k—3) sinh? (ka)

K

In the limit of high but narrow barrier specified above, one has ka < 1. Hence
neglecting terms quadratic or of higher order in ka and linear in 1/x, one gets

Ak Jr
2 2
(1 + z?i’) + (ﬁ) (ka)?
4/T(T =h)
VTV =iR g
putting k; = VT, ks = /T — h and k?a ~ ya = ¢. The transmission coeffi-

cient 7" is thus finite even when the barrier height y diverges keeping g = ya
finite.

T ~
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1 Introduction

In the present article, we review the progress in the last two decades of the
work on the Suzuki-Trotter decomposition, or the exponential product for-
mula. The simplest Suzuki-Trotter decomposition, or the well-known Trotter

decomposition [1, 2, 3, 4] is given by

eac(A—i—B) _ egcAexB + O(-'172) , (1)

where z is a parameter and A and B are arbitrary operators with some com-
mutation relation [A, B] # 0. Here the product of the exponential operators
on the right-hand side is regarded as an approximate decomposition of the ex-
ponential operator on the left-hand side with correction terms of the second
order of z. Mathematicians put (1) in the form

emAe:cB — em(A+B)+O(mz) (2)

and ask what correction terms appear in the exponent of the right-hand side
owing to the product in the left-hand side. They hence refer to it as an ex-
ponential product formula. (The readers should convince themselves by the
Taylor expansion that the second-order correction in (1) is the same as that
in (2). The higher-order corrections take different forms.)

We here ask how we can generalize the Trotter formula (1) to decomposi-
tions with higher-order correction terms. We concentrate on the form

ea:(A+B) _ eplmAepQwBep3erp4zB . eprB + O(merl) , (3)
or equivalently

m+1
P17AGp2TB (p3xA pazB | puTB _ ew(A-i-B)-i-O(ac ) ) (4)

N. Hatano and M. Suzuki: Finding Exponential Product Formulas of Higher Orders, Lect. Notes
Phys. 679, 37-68 (2005)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2005
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We adjust the set of the parameters {p1,pa,...,pa} so that the correction
term may be of the order of ™. We refer to the right-hand side of (3) as
an mth-order approximant in the sense that it is correct up to the mth order
of x. (See Appendix A for another type of the exponential product formula.)

One of the present authors (M.S.) has studied on the higher-order approx-
imant continually [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. The present
article mostly reviews his work on the subject. We first show the importance
of the exponential operator in Sect. 2 and the effectiveness of the exponential
product formula in Sect. 3. We demonstrate the effectiveness in examples of
the time-evolution operator in quantum dynamics and the symplectic integra-
tor in Hamilton dynamics. Section 4 explains a recursive way of constructing
higher-order approximants, namely the fractal decomposition. We present in
Sect. 5 an application of the fractal decomposition to the time-ordered expo-
nential. We finally review in Sect. 6 the quantum analysis, an efficient way
of computing correction terms of general orders algebraically. We can use the
quantum analysis for the purpose of finding approximants of an arbitrarily
high order by solving a set of simultaneous equations where the higher-order
correction terms are put to zero. We demonstrate the prescription in three
examples. We mention in Appendix A, a type of the exponential product for-
mula different from the form (3); it contains exponentials of commutation
relations. We give in Appendix B, a short review on the world-line quantum
Monte Carlo method with the use of the Trotter approximation (1).

2 Why Do We Need the Exponential Product Formula?

First of all, we discuss as to why we have to treat the exponential operator and
why we need an approximant in order to treat the exponential operator. The
exponential operator appears in various fields of physics as a formal solution
of the differential equation of the form

0
o (0 = MI@) )

where f is a function or a vector and M is an operator or a matrix. Typical
examples are the Schrodinger equation

.0
i@ 1) = Hu(a, ) ©)

(we put i = 1 here and hereafter), the Hamilton equation

i (o) = (50) "

(see (14) below) and the diffusion equation with a potential
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d
&P(x,t) = LP(z,t) . (8)

A solution of (5) is given in the form of the Green’s function as

f(t) = G(t;0)£(0) = "M f(0) , (9)

although it is only a formal solution; obtaining the Green’s function G(t;0) =
e!M is just as difficult as solving the equation (5) in any other way. Another
important incident of the exponential operator is the partition function in
equilibrium quantum statistical physics:

Z =Tre P, (10)

where H is a quantum Hamiltonian.

The exponential operator, however, is hard to compute in many interest-
ing cases. The most straightforward way of computing the exponential opera-
tor e*M is to diagonalize the operator M. In quantum many-body problems,
however, the basis of the diagonalized representation is often nontrivial, be-
cause we are typically interested in the Hamiltonian with two terms or more
that are mutually non-commutative; for example, the Ising model in a trans-

verse field,

H=-> Jijoio; =T of, (11)
(4.) @

and the Hubbard model,

H=—t Z Z (c;rgcjg + c}(,cw> + UzniTnil . (12)

o=T1,1(i,5)

In the first example (11), the quantization axis of the first term is the spin
z axis, while that of the second term is the spin = axis. The two terms are
therefore mutually non-commutative. In the second example (12), the first
term is diagonalizable in the momentum space, whereas the second term is
diagonalizable in the coordinate space. In both examples, each term is easily
diagonalizable. Since one quantization axis is different from the other, the
diagonalization of the sum of the terms becomes suddenly difficult.

The same situation arises in chaotic Hamilton dynamics. Consider a clas-
sical Hamiltonian

H(p,q) = K(p) +V(q) , (13)

where K (p) is the kinetic term and V' (q) is the potential term. The Hamilton
equation is expressed in the form

S0 -(Ee)=Ge ). o

where the operators K-and V- are symbolic ones standing for the operations
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K~pz%[((p) and V.q

d
@V(Q) : (15)

Although each operation of K- and V- is simple enough, the “Hamiltonian”

operator R
—V.
= - 1
(s ™)

is not easily tractable. This is because the kinetic part and the potential part,

KE(K ) and v5< V) (17)

do not commute with each other; see an example in Sect. 3.2 below.

To summarize this section, we frequently encounter the situation where
the exponential operator of each term, e* and e*?Z, is easily obtained and
yet the desired exponential operator e*At5) is hard to come. This is the
situation where the Trotter decomposition (1) becomes useful.

3 Why is the Exponential Product Formula
a Good Approximant?

We discussed in the previous section the importance of the exponential oper-
ator and the necessity of a way of treating it. We here discuss a remarkable
advantage of the Trotter approximant to the exponential operator.

Let us first confirm that the Trotter approximant (1) is indeed a first-order
approximant. By expanding the both sides of (1), we have

"B = [ 4 2(A+ B) + %xQ(A + B)? + 0(z?)
=I+z(A+B)+ %xz (A*+ AB+ BA+B*)+0(z%), (18)
e AetB = (I +zA+ %x2A2 + O(x3)> (I +xB+ %x2B2 + O(x?’))
=I+x2(A+B)+ %:& (A*4+2AB+ B%) + 0(2%) , (19)
where [ is the identity operator. The difference between the two comes from

the fact that in the approximant (19), the operator A always comes on the
left of the operator B. Hence we obtain

eerzB _ em(A+B)+%x2[A,B]+O(z3) ) (20)

In the actual application of the approximant, we divide the parameter x
into n slices in the form
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(eh428Y" _ [r(armna (2 1aso((2))]” _ etassriZiasio(s)

(21)
Thus the correction term vanishes in the limit n — oo. We refer to the integer
n as the Trotter number.

Now we discuss as to why we should be interested in generalizing the Trot-
ter approximation. The Trotter approximant (1) and the generalized one (3),
in fact, have a remarkable advantage over other approximants such as the
frequently used one

B — I L 2(A+ B) +0(z?) . (22)

The approximant of the form (3) conserves an important symmetry of the
system in problems of quantum dynamics and Hamilton dynamics.

In problems of quantum dynamics, the exponential operator, or the
Green’s function e™** is a unitary operator; hence the norm of the wave
function does not change, which corresponds to the charge conservation. We
here emphasize that the exponential product

7itp1Aefitpr —itps A |

e e ceitpm B (23)

is also a unitary operator. The perturbational approximant (22), on the other
hand, does not conserve the norm of the wave function; in fact, the norm
typically increases monotonically as the time passes as we demonstrate in
Sect. 3.1 below.

In problems of Hamilton dynamics, the time evolution of the Hamilton
system conserves the volume in the phase space {p,q}, which is called the
symplecticity in mathematics. The exponential product formula, in general,
also has the symplecticity.

The time evolution of the Hamilton equation (14) is described by the

exponential operator
(ZSD = (ZES%) ’ (24)

where H is the “Hamiltonian” operator (16). The Trotter decomposition ap-
proximates the time evolution with the operator

et ~ (e%’ce%v) (25)

with K and V given by (17). The operator =X describes the time evolution
over the time slice t/n of a Hamilton system with only the kinetic energy
K (p). It thereby conserves the phase-space volume, so does the operator en.
The whole Trotter approximant therefore conserves the phase-space volume.
This holds for any exponential product formula in the form (3) as well. Hence
the exponential product formula, when used in the Hamilton dynamics, is

sometimes called a symplectic integrator.
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In equilibrium quantum statistical physics, the operator e % does not
have a particular symmetry except the symmetries of the Hamiltonian itself.
The above advantage of the exponential product formula is hence lost when
applied to numerical calculations of the partition function Z = Tre #*. In
fact, in applying the higher-order decomposition (3) to the world-line quantum
Monte Carlo simulation, some of the parameters {p1, pa, ..., par} are negative,
which causes the negative-sign problem in systems that usually do not have the
negative-sign problem [38]. The negative-sign problem is the problem that the
Boltzmann weight of the system to be simulated becomes negative for some
configurations.

Thanks to a recent development of the world-line quantum Monte Carlo
simulation [39], the higher-order decomposition is not necessary anymore in
some cases; the simulation is carried out in the limit n — oo from the very
beginning and hence the order of the correction term does not matter in such
cases. See Appendix B for a brief review over the recent development.

3.1 Example: Spin Precession

The fact that the exponential product formula keeps the symmetry of the sys-
tem is one of its remarkable advantages. In the present and next subsections,
we demonstrate that this indeed affects numerical accuracy strongly. In the
present subsection, we use a simple example of quantum dynamics, namely
the spin precession.

Consider the simple Hamiltonian

1 I
H—JerFJ:,;—(F _1). (26)

If we start the dynamics from the up-spin state

w0 =(g) (27)

the spin precesses around the axis of the magnetic field H = (I',0,1) with

the period
T

T=——= (28)

Although it is easy to compute the dynamics exactly, we here use the
Trotter approximant

G(t + At;t) ~ e~ 1Ato= 1A o, (29)
and the perturbational approximant
Gt+ At;t) ~ I —iAtH =1 —iAt(o, + Toy) . (30)

The exact dynamics should conserve the energy expectation (H). Figure 1
shows the energy deviation due to the approximations. The error in the energy
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Fig. 1. The energy deviation due to the approximations given by (a) the Trotter
approximant (29) and (b) the perturbational approximant (30). In both calculations,
we put I' = 3/4 and At = 0.0001. The initial state is the one in (27) with the energy
expectation (H) =1

of the Trotter approximation (29) oscillates periodically and never increases
beyond the oscillation amplitude. The period of the oscillation in Fig. 1(a) is
equal to that of the spin precession. We can understand this as follows: when
the spin comes back to the original position after one cycle of the precession,
it comes back accurately to the initial state (27) because of the unitarity of
the Trotter approximation, and hence the oscillation.

In contrast, the error in the energy monotonically grows in the case of the
perturbational approximant as is shown in Fig. 1(b). This is because the norm
of the wave vector increases by the factor

[1—1iAtH |~14+ At H|>1. (31)

The remarkable difference between Fig. 1(a) and Fig. 1(b) thus comes from
the fact that the Trotter approximant is unitary.

3.2 Example: Symplectic Integrator

We next demonstrate the Trotter decomposition (25) in an interesting example
of chaotic dynamics. We again emphasize that keeping the symplecticity of
the Hamilton dynamics has an important effect on numerical accuracy.

Let us first notice that the operators in (17) satisfy

K?=V?=0. (32)

We therefore have

oAt (5) = (I + KAt) <§) - <Z+At£)K(p)), (33)
oV (Z) = (I + VAt) (fl’) = (p_ Atfqv(‘”) : (34)

q
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Note that applying the two operators in the order e<4teVA?

is different from
applying them in the order eV2*ef4t: in the former, the update of q in the
application of ¢©2? is done under the updated p, whereas in the latter, it is
done under p before the update.
Umeno and Suzuki [11, 12] demonstrated the use of symplectic integrators
for chaotic dynamics of the system

K(p) = % (p*+p2®) and V()= %qqu : (35)
The equipotential contour is given by |g1¢2| =constant; hence the system is
confined in the area surrounded by four hyperbolas as exemplified in Fig. 2(a).
The exact dynamics should conserve the energy. The Trotter approximation
of the dynamics, (25), gives the energy fluctuation shown in Fig. 2(b). The
energy, though deviates from the correct value sometimes, comes back after
the deviation. In fact, the deviation occurs when the system goes into one of

2.004 T T T

2.003
2.002
2.001

Energy

Fig. 2. Simulations of the sys-
tem (35). The initial condition is p1 =
p2 =0, 1 = 2 and ¢2 = 1 with the
energy /' = 2. The time slice is At =
0.0001. (a) The movement of the sys-
tem in the coordinate space (qi,q2)
for 700 < ¢t < 900. The broken curves
indicate the hyperbolas |gig2| = 2.
(b) The energy fluctuation due to the
Trotter approximation (25). We plot- (c)

ted a dot every 1,000 steps. (c) The 0 : : :
energy increase due to the approxi- 0 50 100 150 200
mant (36) time

Energy
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the four narrow valleys of the potential; it is suppressed again and again when
the system comes back to the central area.
This is in striking contrast to the update due to the perturbational ap-

proximant
P P p— AtgV(g)
— (I + AtH) = 4 , (36)
q q q+ At K(p)
which yields the monotonic energy increase shown in Fig. 2(c¢). The reason
of the difference between the approximants, though less apparent than in the

case of the previous subsection, must be keeping the symplecticity, or the
conservation of the phase-space volume.

4 Fractal Decomposition

We emphasized in the previous section the importance of the exponential
product formula. In the present section, we describe a way of constructing
higher-order exponential product formulas recursively [5, 6, 7, 8, 9, 10, 11, 12,
13, 14].

The easiest improvement of the Trotter formula (2) is the symmetrization:

Sy(z) = e2Ae™BetA = #(A+B)+a’ Rata® Ryt (37)

The symmetrized approximant has the property
So(x)Sy(—x) = e2Ae™PeAe 24 ®Be"24 = T | (38)

because of which the even-order terms vanish in the exponent of the right-hand
side of (37). We can thereby promote the approximant (37) to a second-order
approximant.

Now we introduce a way of constructing a symmetrized fourth-order ap-
proximant from the symmetrized second-order approximant (37). Consider a
product

S(x) = Sa(sx)S2((1 — 2s)x)Sa(sx) (39)

Ep N 1—s . _ 924\ 1—s . - S
ZQEJ:AG‘SIBQ > .LAe(l 26).LBe o J,Ae&J,BGQ.LA, (40)

where s is an arbitrary real number for the moment. The expression (37) is
followed by

S(x) = So(sx)Sa2((1 — 28)x)S2(sx)
_ esx(AJrB)+53m3R3+O(m5)e(172s)x(A+B)+(1725)3I3R3+O(15)
« sT(A+B)+s°a” Rs+0(a”)
_ ea:(A+B)+[253+(172s)3]R3+O(a:5) ) (41)
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(The readers should convince themselves by the Taylor expansion that the
third-order correction in the exponent of the last line is just the sum of
the third-order corrections in the exponents of the second line. This is not
true for higher-order corrections.) Note that we arranged the parameters in
the form {s,1 — 2s,s} in (39) so that (i) the first-order term in the exponent
of the last line of (41) should become x(A + B) and (ii) the whole product
S(z) should be symmetrized, or should satisfy S(x)S(—x) = I. Because of the
second property, the even-order corrections vanish in the exponent of the last
line of (41). Making the parameter s a solution of the equation

253 +(1-25)%=0, or = 1.351207191959657 - -- ,  (42)

1
s— 1
2-V2

we promote the product (39) to a fourth-order approximant [5].
Following the same line of thought, we come up with another fourth-order
approximant [5] in the form

54(1‘) = 52(52.23)252((1 — 482)33)52(821‘)2 (43)

so 1—3so
— 73 mAQSQ:cBestAeSQmBe 5—=xA

e(1—432)mBe$rA

sy
% e(SQxBeSQerssze 5 TA , (44)
where the parameter s, is a solution of the equation

1

P 0.414490771794375--- . (45)
We can compare the fourth-order approximants (39) and (43) using the fol-
lowing diagram. Suppose that the exponential operator e*(“+5) is a time-
evolution operator from the time ¢ = 0 to the time ¢t = 2. In the product (39),
the term Sa(sz) on the right approximates the time evolution from ¢ = 0 to
t = sx ~ 1.35z, the term S3((1 — 2s)z) in the middle approximates the time
evolution from ¢t = sz to t = sz + (1 — 2s)x = (1 — s)x ~ —0.35z, and the
term Sy(sx) on the left approximates the time evolution from ¢ = (1 — s)x to
t = (1—s)x+ sz = x. Let us express this time evolution as in Fig. 3(a). The
product (43) is similarly represented as in Fig. 3(b).

As is evident, the first product (39) has a part that goes into the “past,”
or t < 0. This can be problematic in some situations; in the diffusion from
a delta-peak distribution, for example, there exists no “past” of the initial
delta peak. The second product (43) does not have the problem and hence is
recommended for general use.

Once we know how to construct the fourth-order approximant from the
second-order approximant, the rest is quite straightforward [5]. Following the
construction (43), we construct the sixth-order approximant in the form

489% + (1 —459)> =0, or s
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{ —

0 —

(@)

Fig. 3. Diagrams that represent the time evolution of (a) the fourth-order approx-
imant (39) and (b) the fourth-order approximant (43)

Se(x) = Su(542)2S4((1 — 454)x)S4(547)>
= (52(54521:)252(54(1 - 482)1‘)52(548256)2)2
xSa((1 — 454)802)2So((1 — 484) (1 — 452)x)S2((1 — 4s4)s2)?
x (Sa(sa52w)282(s4(1 — 4s2)) Sa(s4502)?) (46)
with

4854+ (1 —4s4)° =0, or s4

1
= = 0.373065827733272--- , (47
1= (47)
and further construct the eighth-order approximant in the form

Sg(l‘) = 56(8633)256((1 — 486)$)56(56l‘)2 (48)

with

dsg+ (1 —4s6)" =0, or s5= = 0.359584649349992 - - . (49)

1
4— /4
These approximants are represented by the diagrams in Fig. 4. We can con-
tinue this recursive procedure, ending up with the exact time evolution, where
the diagram ultimately becomes a fractal object. This is why the series of the
approximants is called the fractal decomposition. It is an interesting thought
that the back-and-forth time evolution in a fractal way reproduces the exact
time evolution.

5 Time-Ordered Exponential

Before going into another way of constructing higher-order exponential prod-
uct formulas, let us introduce, as an interlude, an important application of the
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Fig. 4. Diagrams that represent the time evolution of (a) the six-order approxi-
mant (46) and (b) the eighth-order approximant (48)

exponential product formula. We show how to approximate the time-ordered
exponential [10].

We have considered until now only the case where the operators A and
B do not depend on z, or in other words, only the time evolution of a time-
independent Hamiltonian. The fractal decomposition introduced in the previ-
ous section needs modification when applied to problems such as the quantum
dynamics of a time-dependent Hamiltonian; in quantum annealing [40, 41, 42],
for example, the transverse field I" in the Hamiltonian (11) is changed in time.

The time-evolution operator of the quantum Hamiltonian

H(t) = A(t) + B(t) (50)

It Hhut a time-ordered exponential in the form

Gltaity) = T [eXp <1/: H(s)dsﬂ . (51)

It is quite well-known that

is not simply e

Gt + Aty 1) = o IOTAU+AD —IALB(t+50) (52)
is an approximant of the first order of At and
Go(t+ At;t) = o~ BALA(t+FAL) —IALB(t+§AL) ,— S ALA(t+3AL) (53)

is an approximant of the second order. How do we construct higher-order
approximants? We here show that a slight modification of the fractal decom-
position gives the answer.

The key is to introduce a shift-time operator [10] defined in

F(t)e "M G(t) = F(t + AHG(t) . (54)

Note that the operator acts on the function on the left. The shift-time operator
is expressed in the form
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—

.0

in the case where F'(t) is an analytic function, but the definition (54) does
not limit its use to the analytic case. If we have two shift-time operators, the
result is

F(t)e AT G(t)e M H(t) = F(t + AH)G(t)e AT H(t)
= F(t+2A)G(t + At)H (t) . (56)

With the use of the shift-time operator, the time-ordered exponential (51)
is transformed [10] as

t+At .
exp (—i / H(s)ds)] = ¢ TIAHHMFT) (57)
t

We can prove this by using the Trotter approximation as follows:

T

e AL HWFT) _ |5 (e—i%H(t)e—i%T)n

n—oo
s At s At s At s At s At At
— lim e—le'H(t)e—lT"Te—le'H(t)e—leT . e_leH(t)e_‘TfT
n—oo
s A P A n—1 P A 1
— lim e iSHFAY GSISEH(tH T AL) | —iSEH (4 At)
n—oo

=T

exp <—i/tt+ tH(s)ds)} . (58)

Decomposing the Hamiltonian into two parts as in (50), we have now three
parts in the exponent of the time-evolution operator as in

t+At _
T |exp —i/ H(s)ds | | = e AAD+BOFT) (59)
t

We then approximate the exponential in the right-hand side of (59). The
first-order approximant is given by

Gi(t + At; 1) = ¢ IAtAM) o —IALB() o —IALT
— o IALA(t+AL) (—iALB(t+At) (60)

and the second-order approximant is given by
GQ(tJr At;t) _ ef%AtTef%AtA(t)efiAtB(t)eféAtA(t)ef%AtT

— o BAtA(tHAL) (SIALB(t+ 5 AL) (— 5 AtA(t+FAL) (61)
Higher-order approximants are given by the fractal decomposition of the three
parts, A, B, and 7. The fractal decomposition of three parts is easily obtained
by substituting
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So(z) = 05465BtCo5Bo5A _ z(A+B+C)+O(zS) (62)

for (37). The fourth-order approximant is thereby obtained [10] as

Gy(t + Atst)

. . . . 2
_ (e* $so AT (=5 oo AtA(t) (—isa AtB(t) ;= 3 52 ALA(E) o — 552At7)

L(1—dsp) AtT |~ 5 (1—-452) ALA(E)

X e e
—i(1—4s2)AtB(t) 7%(17452)AtA(t)ef%(17432)At7’

X e
. . . . 2
% (e—;stTe—;SQAtA(t)e—iSQAtB(t)e—;SQAtA(t)e—;SZAtT)

— 552 AtA(tH2F2AL) —is2 AtB(t4+ 252 At)  — Fs2 AtA(t+ 252 At)

=€
éSQAtA

% o (42572 At) —iso AtB(t4+ 252 At)  — Fso AtA(t4+ 252 At)
— 452 AtA(t+5AL) —isa AtB(t+5AL) —Fsa AtA(t+5At)

(t+
(t+

Soa AtA(t+ 22 At) —isa AtB(t+ 232 At) — L s2 AtA(t+ 232 At)

F52 M At F At) —is2 AtB(t+F At)

X e

o352 AtA(t+F At) (63)

with the coefficient sy given by (45).

6 Quantum Analysis — Towards the Construction
of General Decompositions

In the last section before the summary, we discuss the calculus of the correction
terms. In the fractal decomposition, we construct higher-order approximants
recursively. Is it possible to construct higher-order approximants directly, not
recursively? In fact, Ruth [43] found (not systematically) a third-order formula
e—%mBe—ﬁerrB _ ex(A+B)+O(z4) 7 (64)
which would not be found within the framework of the fractal decomposition.

For the purpose of finding higher-order formulas directly, we need to com-
pute the correction terms in the exponent as

2 3
eplmAepngep3erp4zB . epM:cB — e:v(AJrB)Jra: Ro+x° R3+ ) (65)

This is one of the aims of the quantum analysis developed by one of the present
authors (M.S.) [29, 30, 31, 32, 33, 34, 35]. Then we can put the correction terms
to zero up to a desired order and solve the set of non-linear simultaneous
equations

Ry =0, R3=0,...,R,, =0, (66)

thereby obtaining the parameters {p; }.
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6.1 Operator Differential

The main feature of the quantum analysis is to introduce operator differential.
In order to motivate the readers, suppose that we can write down an identity

df(4) dA(x)

d
A ==

(67)

where f(A) is an operator functional. The derivative with respect to = on
the right-hand side is well-defined; for example, dA(z)/dz = B + 2z2C for
A(z) = xB+ 2%C. Now, is it possible to define the differentiation df(A)/dA?
Let us discuss as to what should be the definition of the operator differ-
ential in order for the identity (67) to hold. The definition of the x derivative
is expressed as
dA(z)
dx
The left-hand side of the identity (67) is given by the definition of the deriv-
ative as

Az +h) = A(z) +h +0O(h?) . (68)

[(A(z + h)) = [(Alx))

d .
— J(A()) = Jim

h—0 h
Az) + h4A@) _ #(A(z
:hmf(<>+ ) fA@) )
h—0 h

The identity (67) suggests that the operator differential df(A)/dA must be
a hyperoperator that maps the operator dA(z)/dx to the operator given by
(69).

Thus we arrive at the definition of the operator differential within the
framework of the quantum analysis [29]: if we can express the operator given
by

A+ hdA) — f(A
A504) = i T4 1IN =1

(70)

in terms of a hyperoperator mapping from an arbitrary operator dA as in
dA — df(A), then we refer to the hyperoperator as an operator differential
df(A)/dA and denote it in the form

df(4)
dA

We stress here that the operator differential df(A)/dA must be expressed in

terms of A and the commutation relation of A, or the “inner derivation”

df(A) = LA . (71)

5A = [A7 ] 3 (72)

but not in terms of the arbitrary operator dA. The convergence of (70) is
in the sense of the norm convergence which is uniform with respect to the
arbitrary operator dA.
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Let us consider the application of the above in a simple example f(A) =
A%, The definition (70) is followed by

2 A2 9 )
f(A) = lim ATHA? — 42\ hAdA+hdAA+ h2(dA)

h—0 h h—0 h
=AdA+dAA=2AdA - (AdA—dA A)
=(2A—-04)dA. (73)
Thus we have [29]
d(A?)
=2A—04 . 4
qA 0a (74)

If A= 2B+ 2%C, we use the result (74) for (67) and have

%(mB +2%0)? = (22B 4 22°C — 8,5442¢) (B + 220)

= (22B 4 22°C)(B + 22C) — (2B + 2*C, B + 2zC]
= 22B? + 42’ BC + 22°CB + 423C?
—22*(BC — OB) — 2*(CB — BC)
= 22B?* 4+ 32°BC + 32°CB + 42°C*? | (75)

which is indeed identical to the result of straightforward algebra.

We cannot see in this simple example any merit of the use of the quantum
analysis. The readers should wait for more complicated examples given later
in Sect. 6.3, where we show that the differential of exponential operators is
given in terms of the inner derivation. The Lie algebra is defined by commu-
tation relations, or the inner derivation; it is hence essential to obtain results
in terms of the inner derivation, not in terms of naive expansions such as the

right-hand side of (75).

6.2 Inner Derivation

We here provide some of the important formulas of the inner derivation (72)
as preparation for the next subsection, where we give the differential of expo-
nential operators.

First, we have linearity: for any c-numbers a and b, the inner derivation
of the operators A and B satisfies

Sansss = [aA+bB, ]=alA, ]+b[B, ]|=ads+bg. (76)

Any powers of the operator A are commutable with the inner derivation of
any powers of the same operator:

[A™ 540] = 0, (77)

because
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A" 40 B = A™ [A" B] = [A", A"B] = 64, A™B (78)

for an arbitrary operator B and any integers m and n. We can generalize the
identity (77) to the case of any analytic functions of the operator A:

[f(A),04)] =0, (79)

where f(A) and g(A) are defined by the Taylor expansion as
f(A) = Z an A" and g(A) = Z b A™ . (80)
n=0 n=0

Next, we prove the identity [29]

Spayg(a) = f(A)0g(a) + g(A)dp(ay — Og(ayds(a) - (81)

The proof is as follows: for an arbitrary operator B, we have

J(A)dg(a)B + g(A)dp(a)B — dg(a)05(a)B

= f(A)[9(A), Bl + g(A) [f(A), B] — [9(A), [f(A), B]]

= f(A)[g(A), B] + [f(A), B] g(A) = [f(A)g(A), B]

= Op(a)ga)B - (82)

Note that we can rewrite the identity (81) as

Gf(ayg(a) = Oga)f(A) + g(A)dr(a) = dg(a)05(a)

= dga) (f(A) = dp(a)) + 9(A)d5(a) (83)
because of the identity (79). In the special case f(A) = A, we have
Sag(a) = Og(a) (A —ba) +9g(A)da . (84)

With the repeated use of the identity (84), we then prove the identity [29]
San = A" — (A—64)" (85)

for any integer n. This is proved by means of mathematical induction. The
identity (85) indeed holds for n = 1. Assume now that

San1 = A" —(A—6)"" . (86)
Then the identity (84) yields

(SAn = 6AAn—1 == (SAn—l (A - 6A) + An_l(;A
— [A" = (A= 64)" (A= 6a) + A 164
= A" — (A—54)" . (87)
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An interesting and quite well-known identity is
e®ABe ™A = ™4 B (88)

We can prove this by differentiating the left-hand side by z. First, note that

d
d—exABe_”A =" ABe™ ™" — " BAe™ " =" [A, Ble " | (89)
T

We thereby have the following in each order of x:

d A —zA A —zA
e Be » = e""[A,Ble |;c=0 =048, (90)
d2
@eIABe_””A = " [A,[A, B]] e_g”A|m=0 =64’B, (91)
=0

which proves the identity (88). As a corollary, we obtain the following identity:
ed4ede = ¢ if el =e? . (92)
The proof is straightforward; for an arbitrary operator C', we have

2420 = eAePCe Bem A = ePCe? = %7C . (93)

6.3 Differential of Exponential Operators

We are now in a position to discuss the differential of exponential operators.

We begin with the differential of the power of an operator, f(A4) = A", a

generalization of the identity (74). The result is [29]
d(A™) A" —(A—64)"  dan

(94)

dA 5 oa

An important comment is in order. The identity (94) does not claim that the
inverse of § 4 is well-defined. In fact, the inner derivation ¢ 4 in the denominator
is canceled when we expand the numerator of the second expression. The
denominator is well-defined only in such cases.

We use the identity (85) in the derivation of the identity (94). The defini-
tion (70) is followed by

aF(4) = tim (A + hdA)

n_An oo )
_ J—1 n—j
lim - ;1 AT"1(dA)A

= |nA"t =Y A6, | dA

Jj=1
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—{part — iAH [A"*j —(A- 5A)"—j] dA

j=1
noo . A"~ (A= 54)"
=S ATN (A A= S DT 0 gy
]2:21 ( A) A= (A= o0
_ AT (A0 A gy (95)
oA oA

Note again that the transformation in the fourth line is well-defined only
because the expansion of the numerator cancels the denominator.

We can generalize the identity (94) to any analytic functions defined by
the Taylor expansion (80). The result is

df(A)  f(A) = f(A—=0a) Iy

dA 0A 64 (96)

It is interesting to note that the operator differential or the quantum deriva-
tive [10] is expressed by a difference form of hyperoperators. As a special case,
we arrive at the identity [29]

deft _efl—ef™h  sl-em™ (97)
dA o o4

6.4 Example: Baker-Campbell-Hausdorff Formula

We now use the formula (97) for the derivation of the Baker-Campbell-
Hausdorff formula, or the derivation of higher-order terms of the exponent
&(x) given in

e?(®) = guAgrB (98)

The differential of the left-hand side of (98) gives

d b(z) _ de¢ d@(ﬂj) - e@(m)l — ef‘;‘f’m dfp(ﬂf)

=-—. = 99
az’ @ dr So@  dw (99)
owing to (97), while the differential of the right-hand side of (98) gives
die;cAexB _ exAAeacB + eera:BB _ egcAeacB (e—xBAech 4 B)
x
=e?™ (e7™P A+ B) (100)

where we have used the identity (88). Equating the both sides, we have
do(z) O ()

der 1 —e 2@

0 ()

—xd .
(e BA+B) = e 1

(A+e™2B) . (101)

The second equality is due to the identity (92).
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We can expand the right-hand side of (101) as follows. Note here that
edr(@) = gt04¢08 yields Op(z) = log (e™04e™5) . (102)
Thus we transform (101) as

d@(l‘) B log (ew5Aew5B)

o = et 1 (A+e™4B)

o (_1\k

_ Z (ki)l (exéAea:éB _ 1)k (A + ex(SAB> . (103)
k=0

We finally arrive [30] at
— (=DF [T s s k t5
@(m)zzm/ (e"4eB —1)" (A+e"B)dt . (104)
k=0 0

It is very important to notice here that all the expansion terms are given by
commutation relations. One of the merits of the quantum analysis is to be
able to express the expansion in terms of commutation relations.

Let us derive, for example, the term of the third order of x, or the second
order of ¢ of (104). Up to the second order, we have

2
e%4e!8 — 1~ t (54 +65) + % (64 + 20405 +05°)
t2
:t5A+B+§(5A+BQ+5A(SB—5B(5A), (105)
(et‘;Aet‘;B — 1)2 ~ t25,4+32, (106)

and hence
t2
(167 —1)° (A+ ¢4 B) = (A+ B) + 10, B+ 704°B,  (107)
(et‘s“‘et‘SB - 1)1 (A+ et‘SAB) ~tdarp (A+ B)

t2
+5 (041" + 0405 = 0p0a) (A+ B) +* (54 + 0p) 0a B

2
- % (04054 — 556AB) + 12 (54 + 05) 4B, (108)

(e94¢195 —1)* (A + e B) ~ 1264, 5% (A + B) = 0. (109)

Summing up the second-order terms with the coefficient (—1)*/(k + 1), we
have

2, t2 t2 2, 5
5614 B - Z (6A(SBA - (SB(SAB) - 5 (6A +(SB)(5AB = Z ((SA B +6B A) 5
(110)
which we integrate to obtain
23 23
T3 (04°B+095%4) = 12 ([A,[A,B)] + [[A, B, B]) . (111)
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6.5 Example: Ruth’s Formula

We now extend the above computation to the exponential product

ep1erpgmBepngep4xBep5zAemeB _ e@(z) (112)

and seek Ruth’s formula (64) as a specific solution of the general formula. We
compute the second-order and third-order correction terms of @(z), defined
in

&(z) =x(A+ B) + 2°Ry + 2°R3 + O(x?) , (113)

and put Ry = Rz = 0.
The same computation as from (99) through (104) produces

o~ (DR [T k
&(x) = Z P / (ep1t5Aep2t5Bep3t5Aep4t5Bep5t5AeP5t5B _ 1)
k=0 0
% (P1A + epltéAsz + epltéAepztﬁBpBA .. ) dt . (114)

Note again that all the terms are given by commutation relations.
For the term k = 0, we have up to the second order of x,

p1A 4 eplt(sAPQB 4 ep1t5Aepzt5Bp3A ..

t2
~prA+ (1 +tp1da + 2p125A2> p2 BB

t2
+ |:1 +t(p10a + pedp) + 5 (p12(5,42 + 2p1p20Adp —|—p22(532) p3A+ -

= (p1+p3+ps) A+ (p2+ps+ps) B
+ t [p1p20aB + pap3dp A+ (p1 + p3) padaB
+ (p2 +pa) psdBA + (p1 + p3 + ps) Peda Bl
.2
+ 5 [P?Pz(SAQB + P30 A+ 2p1pap3dadp A+ (p1 + p3)’ pada’B
+ 2popspadpdaB + (P2 + pa)’ psdp’A
+ 2(p1pa + prpa + pspa) PsOaOBA + (p1 + 3 + ps)’ peda’B

+2 (p2ps + p2ps + P4P5)P65B5AB} . (115)

The zeroth-order term with respect to ¢ appears only here and hence we have
the conditions

p1+p3+ps=1 and  po+pst+ps=1. (116)

Using (116) and the identity 65 A = —d4 B, we can reduce the right-hand side
of (115) as

2
A+ B+t(1—2)5.B + % [(1—q—3r)642B + (¢ — 3s)05%4]  (117)
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with
q = p2p3 + p2ps + paps (118)
T = p1P2P3 + P1P2Ps + P1PaPs + P3paps (119)
S = pap3p4 + P2psPe + P2Ds5Pe + PaPsPe - (120)

For k = 1, we first have

eP1t04 o p2tdB (P3tda (Patdp (P5tda \petdn _
t2
~tdarp + 5 [5,42 + 532 + 2(1 — q)5A5B + 2(]535A] s (121)

where we already used the conditions in (116). Applying (121) to (117) and
dropping higher-order terms, we note that the first-order term vanishes and
have

(epl t6 A eb2 top ePs toa ep4t5B ePs t0a ePs top __ 1)

% (p1A + ep1t6Ap23 + epltéAepztt?BpgA . )

t2
~t2(1 —2¢)044504B + 5 (647 + 65> +2(1 — q)6adp +2q6504] (A+ B)
=12(1—2q) (04°B - 65°A)

2
+% [5A2B +6p°A— 2(1— q)éAQB - 2q532A]

=1 (; — q) (64°B — 65°A) . (122)

The second-order term of ¢ in the term k = 2 vanishes just as in (109).
Thus we arrive at

&(z) =x(A+ B) + %2(1 —2q)0aB

+§—T K; - 37") 542B + (; - 33) 63214} +0(z') . (123)

Putting the second-order and third-order terms to zero, we have a set of
simultaneous equations of the parameters as

pr+ps+ps=1, (124)
p2+pa+tps=1, (125)

2q =2 (p2ps + paps +paps) =1, (126)
(127)

(128)

0

67 = 3 (p1 + 2pspaps) =1, 127

0
6s = 3 (2pap3ps +ps) = 1. 128
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Fig. 5. The solution line of the set of simultaneous equations (124)—(128)

We can confirm that Ruth’s formula (64), or

7 2 3 2 1

Pr= 57, P2= 3, P3= 7, Pa= —5, P5 = —

— -1 (1
24 3 1 3 TR (129)

is indeed a solution of the above set of simultaneous equations. With six
variables for five equations, the solution is in fact a continuous line; Ruth’s
solution (129) is just a point on the line. By adjusting the last variable pg, we
have the continuous solution shown in Fig. 5.

(We can solve the set of equations with five parameters by putting pg = 0,
but the solution is complex.)

6.6 Example: Perturbational Composition

We finally present an interesting exercise, motivated by the “perturbational
composition” [44]. Suppose that we apply a weak transverse field to an Ising
spin. We ask what is the correction term in the exponent of the right-hand

side of
057000805 03700 _ (P(27) _ o7 (0:+7C1(2)+0(v?)) (130)

Notice that we expand the exponent with respect to the perturbation para-
meter 7, not with respect to x as in the preceding sections The first-order
perturbation term Cj(z) in turn contains higher orders of . We could ex-
plicitly compute the 2 x 2 matrices on both sides of (130), expand them with
respect to v and compare them term by term, but the quantum analysis pro-
vides a more elegant way of computation.

We differentiate the both sides of (130) with respect to v:

@ loesmcrasonty _ 4ot 0) _ y1 e oo

dy 49 oy ¢ op O

(131)
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3 V02gT0z2o5V0s — (Jzegvazemzegvaz + egwxemzegvazgx)

dy

e? (e*QSUxe@ + ax)

2
T
2

57 (e 1) (132)

Equating the both sides, we have

0P
87’}/ = zCi(z) + O(7)
x 5@ —5
= 1o (IHe™™)oe
T 14 e 0
=3 (@5, +0O(7)) T o500 (133)

Putting v = 0, we have

1 1+ exp (—xd,.) 1 &
= — - = .= — n "y 134
Cy () 23:502 T oxp (—xdgz)% 5 7;:0 anz"d, "o, (134)

owing to the fact dg = xd,, +O(7), where we have made the Taylor expansion

1 —X
R (135)

with ag = 1. We also note that the function (135) is even with respect to x
and hence a,, = 0 for odd integers n.

The right-hand side of (134) is explicitly calculated as follows. In each
order, we have

05,04 = [0, 0,] = 2i0y , (136)
8520, = 2i[0,,0,] = 4o, (137)
5%3095 =4o.,0,] = 8io, , (138)

-
or in general,

(139)

"
5 "o — 2"ig, for odd n,
7z T 2"g,  for evenn .

We substitute (139) for each even-order term of the right-hand side of (134)
and arrive at

1 e 1 —2z
Cy(x) = 3 Z an(2z)"o, = xliriz_%_az = (zcothx) o, . (140)
n=0

(In the second equality, we used the Taylor expansion (135) in the reverse
direction.)
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In summary, we have

eg'ya—mezo—ze%'yom _ eac[az+'y(:ccothac)om+0('y2)] ] (141)

The coefficient x coth x behaves as shown in Fig. 6. We have x cothx ~ 1 for
small z as is expected, but x cothx ~ z for large =, and hence the first-order

perturbation term grows as x2.

x coth x

NN W S

%4 2 0 2 4
X

Fig. 6. The coefficient of the first-order perturbation of (141)

7 Summary

In the present article, we have reviewed a continual effort on generalization
of the Trotter formula to higher-order exponential product formulas. As was
emphasized in Sect. 3, the exponential product formula is a good and useful
approximant, particularly because it conserves important symmetries of the
system dynamics.

We focused on two algorithms of constructing higher-order exponential
product formulas. The first is the fractal decomposition, where we construct
higher-order formulas recursively. The second is to make use of the quantum
analysis, where we compute higher-order correction terms directly. As inter-
ludes, we also have described the decomposition of symplectic integrators, the
approximation of time-ordered exponentials, and the perturbational compo-
sition. It is our hope that the readers find the present article a useful and
tutorial “manual” when they numerically investigate dynamical systems. For
more practical applications of the exponential product formulas, we refer the
readers to the review articles found in [15, 46, 47, 48].
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8 Appendix

Appendix A

Hybrid Exponential Product Formula

I3

We mention here another kind of the exponential product formula [20, 21, 22].
Consider the Trotter approximant

eerzB _ em(AJrB)Jr%a:Q[A,B]JrO(x:}) ) (142)

We can cancel out the second-order correction term in the form

oAt B =32’ [A,B] _ 2(A+B)+0(%) (143)

If, in some problems, the commutation relation [A, B] is easily diagonalized,
(143) may be a useful approximant.
A more complicated one is the fourth-order approximant [20, 21, 22]

23 23 5
B s, (3) 8 (5) 8 (5) TP AA = A r0lh (g

Sa(z) = e3%4e"BezA and Sp(x) = e2%BetAez® B | (145)

In fact, the diffusion equation is described by
1
A= fiA and B=V(q) (146)

and we have
[Bv [A,BH = (vv(q))Q . (147)

The above type of the exponential product formula was referred to as
the hybrid exponential product formula. We do not give its details in this
article, since commutation relations are not easily diagonalized except for a
few specific problems.

Appendix B

World-Line Quantum Monte Carlo Method

In the present appendix, we give a short review of the world-line quantum
Monte Carlo method. The world-line quantum Monte Carlo method is to
transform the partition function (10) of a quantum system H into the partition
function of a classical system by means of the path-integral representation and
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simulate the latter system. We explain the method using the transverse Ising
model (11), or H = A+ B with

A=->"Jyoioc; and B=-TI'Y of. (148)
(i,5) i

The starting point is the Trotter decomposition (21) of the partition func-
tion, namely the Suzuki-Trotter transformation [3], of the form:

Z=Tre "M = lim Tr (e_gAe_§B>

n—oo

= tim 3 ({7 eme)

(e}

S R (L e R [ e

)

In the second line, we have taken the trace with respect to a complete basis
set by using the spin z axis as the quantization axis:

(o) = |7} i

where the eigenvalue is a,(eo) = £1. The meaning of the superscript (0) becomes

self-evident just below. We further insert the resolution of unity in between
each pair of the exponential operators in the last line of (149), obtaining

2o Y Y Y Y
(R CR Tl S G
S PN G e
L) D) ] )
(oY e 8] {01 (151)

In the above expression, we used the fact that the operator A is diagonal in
the representation of {agm)} and hence made the complete set on the both

T

sides of each operator e~ 74 identical. In contrast, the operator e~ 7B has
off-diagonal elements.

Let us calculate the matrix elements in (151). The matrix element of the
Ba

operator e~ = is easy:

({erm et o) = e | 250 2o ) s
(1,3)
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This is because the operators {07} are all diagonal in the present represen-

tation as in (150). On the other hand, the operator e~ %5 has off-diagonal
elements as well as diagonal ones in the following form:

(e o)) - TL

with each matrix element given by

a§m+1>> (153)

<0§m) oot g§m+1>>
) S
I I
_ (o =1 cosh % sinb % . (154)
m I I
<‘7§ )= _1‘ sinhﬁ— cosh 6—
n n

These matrix elements are expressed in a single equation

(o

where the parameters ~, and §,, are defined in

sI

x
en i

U§m+1)> = exp (’ynagm)afmﬂ) + 5,,) , (155)

r
e'Yn+6n — COSh [ and e_'y”-‘rén = Sinh /87 s (156)
n n
or more explicitly defined by
1 r 1 1 2617
~Yn = —= log tanh AL and 0n = = log = sinh L . (157)
2 n 2 2 n

The expressions (152) and (155) give the partition function (151) in the
form [3]
= lim Y e (158)

=)

with the resulting classical Hamiltonian [3]

n—1 n—1
_ ﬂHn = g z:o Z Jijoz(m)o-j(.m) -+ Yn Z Zo-l(m)o-EW%H) , (159)
m=0 (i.j)

m=0 1

where we dropped a constant term due to J,,. Note that the periodic boundary
conditions, JZ(“) = JEO), must be required in the second term of (159) because
the trace operation in (149) demands it.

The classical Hamiltonian (159) is interpreted as follows (Fig. 7). Suppose

that the original quantum system (148) is defined on a square lattice. The
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A 22

layer n—1 == =

= =
=

g e =

5 ==

E layer 2 é?‘

layer 1 ﬁ?‘

layer 0 ’5’?‘

site [

Fig. 7. The three-dimensional classical system (159) mapped from the two-
dimensional quantum system (148)

first term of (159) indicates that the two-dimensional system is replicated
into n layers with the intra-layer interaction reduced by n times. The second
term of (159) represents the inter-layer interactions. The coupling is —v,, /3 as
defined in (159). Thus the quantum system on a square lattice is mapped to an
Ising model on a cubic lattice. In general, a d-dimensional quantum system
is mapped to a (d + 1)-dimensional classical system. The additional axis is
called the Trotter direction. The physical quantities of the quantum system
can be estimated by Monte Carlo simulation of the mapped classical system.
This is the basic idea of the world-line quantum Monte Carlo method [3].

We can use this mapping in order to study the quantum annealing [40, 41,
12]. Suppose that we look for the ground state of the diagonal part A of the
system (148). Random exchange interactions {J;;} may produce many local
minima that are only slightly above the ground state in energy but far apart
from the ground state in the phase space. The simulated annealing, a well-
known method of ground-state search, is often trapped in a local minima and
does not reach the ground state. In quantum annealing, we use the transverse
field I in order to induce tunneling from local minima to the ground state.
We first apply the off-diagonal part B of (148) strongly and turn it off grad-
ually, hoping to end up with the ground state of the diagonal part A. This
corresponds to a Monte Carlo simulation of the mapped classical system (159)
with the intra-layer coupling -, being infinitesimally weak at the beginning
and infinitely strong at the end. Each layer of the system (159) is first inde-
pendent of each other and is gradually frozen into an identical configuration,
which we hope is the ground state.
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An annoying problem inherent in the algorithm of the quantum Monte
Carlo method is the systematic error due to the finite Trotter number n.
It used to be that simulations were carried out for various finite values of
n, quantities were estimated in each simulation, and then the limit n — oo
was taken in the process of the data analysis, which was called the Trotter
extrapolation. A recent development of the quantum Monte Carlo method
dramatically changed the situation. We here mention the development briefly;
see [39] for a tutorial and exhaustive review of the topic.

In the most recent quantum Monte Carlo algorithm, it is possible for some
systems to take the Trotter limit before we set up the classical system for
simulation. Taking the Trotter limit n — oo, we have a continuum Trotter
axis (Fig. 8). (Note again that the boundary conditions are required in the
Trotter direction.) The interaction is described as follows (Fig. 9). Instead of
Ising spins on lattice points of a Trotter axis, we have up-spin domains and
down-spin domains on the axis. Instead of intra-layer interactions between a
pair of nearest-neighbor spins, we have parallel-spin areas and anti-parallel-
spin areas. In Monte Carlo simulation, we update the up-spin domains and
down-spin domains on the basis of the energy of the parallel-spin areas and
anti-parallel-spin areas.

It is thus possible in such situations to carry out a simulation in the Trotter
limit n — oo. Monte Carlo estimates of such a simulation are free of the
systematic error of the order 3%/n in (21), and hence do not need the higher-
order exponential product formula for such systems.

layer n—1

layer m l l

layer 2

layer 1

layer 0
site i site j site i sitej site i sitej

Fig. 8. In the Trotter limit n — oo, the Trotter axis becomes a continuum. The
intra-layer interaction becomes an interaction between two continuum axes
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f--§

site i site j site i site j

Fig. 9. Spins on lattice points become domains on Trotter axes in the Trotter limit

n — 0o
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1 Introduction

In this chapter of this monograph we want to provide an overview on the
current status of our knowledge on the theory of quantum spin glasses. Spin
glasses are frustrated magnetic systems and a hallmark of their “glassiness” is
the presence of a rugged energy landscape with many local minima. It appears
obvious that in such an environment quantum effects might play an impor-
tant role by opening new routes for relaxation due to quantum mechanical
tunneling and indeed one observes experimentally a significant acceleration
of the dynamics at low temperatures if quantum fluctuations are enhanced.
Here we will first focus more on the equilibrium properties of disordered quan-
tum magnets, with and without frustration, in particular to what is expected
(theoretically) to happen at and close to a quantum critical point.

A quantum spin glass is a magnetic system that can be described by a
quantum mechanical Hamiltonian with spin-glass like features (randomness
and frustration). In such a system, a spin glass phase may exist while at the
same time quantum fluctuations play an important role, possibly a dominant
role, in particular, in the absence of thermal fluctuations at zero temperature.
Such a Hamiltonian is, for instance, the spin-1/2 Heisenberg spin glass

H:ZJij(ofaf—I—afo;’—Fan;) , (1)
(i5)
where ¢™¥* are Pauli spin-1/2 operators, .J;; random exchange interactions

(e.g., Gaussian), and the sum runs over all nearest neighbors on some d-
dimensional lattice. Another example is the Ising spin glass in a transverse

field
H=-Y Jjoio; +I'> of, (2)
(i)

where I" denotes the transverse field strength. This Hamiltonian becomes di-
agonal if I" is zero, in which case it reduces simply to the classical Ising spin

H. Rieger: Quantum Spin Glasses, Lect. Notes Phys. 679, 69-99 (2005)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2005
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glass that we have discussed in the previous sections. Thus the role of the pa-
rameter I is to tune the strength of quantum fluctuations, they do not play
a role in the equilibrium statistical physics of a diagonal Hamiltonian. An
important experimental realization of this model Hamiltonian is the system
LiHo,Y1_,F4,[5] an insulating magnetic material in which the magnetic ions
(Ho) are in a doublet state due to crystal field splitting. The interactions be-
tween Ho ions can be described by an Ising model with dipolar couplings. For
x = 1 the system is a ferromagnet with a critical temperature of T, = 1.53 K
at I' = 0 and as z is reduced the critical temperature decreases. For concen-
trations below 25% Ho and above 10% Ho a thermal phase transition to a
spin glass phase occurs indicated by a diverging nonlinear susceptibility (for
instance at x = 0.167 the spin glass transition temperature is Ty = 0.13K at
I' =0). If a transverse field is applied (I" > 0) the spin glass transition tem-
perature decreases monotonically to zero (see Fig. 1). This particular point,
at zero temperature and at a critical field strength is what we denote as a
quantum-phase-transition point [1].

L R PM
4.
x \
L 05 Crossover |
0800 0.05 0.10 0.15

T(K)

Fig. 1. Phase diagram of LiHog.167 Yo0.833F4 according to the measurement of the
nonlinear susceptibility. From [5]

Earlier reviews on quantum spin glasses and in particular the Ising spin
glass in a transverse field can be found in [2, 3, 4]. Here we try to focus on a
number of new developments that have been made since then.

2 Random Transverse Ising Models in Finite Dimensions

The generic phase diagram for the EA Ising spin glass model in a transverse
field I" is shown in Fig. 2 for two dimensions and for three dimensions. In
the three-dimensional case, starting from the classical spin glass transition
temperature T, for I" = 0 the critical temperature decreases monotonically
with increasing transverse field strength I" until it reaches 7" = 0. One expects
that the universality class of the transition at any non-vanishing temperature
is the same as the one of the classical Ising spin glass transition at T,.. The
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Fig. 2. Left: Generic phase diagram for the two-dimensional Ising spin glass in
a transverse field I'. Since no spin glass phase is present in d = 2 for T > 0,
only a quantum spin glass phase and a quantum phase transition at 7" = 0 exists.
Approaching the quantum critical point at I'. by decreasing the temperature T', the
correlation length diverges like T~'% where z is the dynamical critical exponent
(if z is formally infinite, it increases logarithmically). Right: Generic phase diagram
of a three-dimensional Ising spin glass in a transverse filed. The classical transition
temperature (at I" = 0) is Tc and the corresponding classical correlation length
exponent is v

zero-temperature quantum phase transition, however, establishes a new uni-
versality class. This transition exists in any dimension, including one and two
dimensions. A critical value I, for the transverse field strength separates a dis-
ordered or paramagnetic phase for I" > I'. from an ordered phase for I' < I.
This transition is characterized by a diverging length scale & ~ |I'—I.| ™" and
a vanishing characteristic frequency w ~ AE ~ £7%. The latter is the quan-
tum analog of “critical slowing-down” in the critical dynamics of classical,
thermally driven transitions. The new and most important property occur-
ring at zero temperature in the random transverse Ising model is the infinite
randomness fized point (IRFP) that governs the quantum critical behavior at
the critical value I, of the transverse field [13]. One feature of the IRFP is
that the dynamical exponent z is formally infinite, the relation between length
and energy scales is not algebraic but exponential: AE ~ exp(—A&Y).

To describe this scenario we generalize the discussion of the transverse
Ising spin glass by including also random ferromagnetic interactions J;; >
0, because many more analytical and numerical results are available for the
ferromagnetic rather than the spin glass case and the same main features are
expected to hold in both cases.

2.1 Random Transverse Ising Chain
and the Infinite Randomness Fixed Point

Let us start with a review of the one-dimensional case, in which the sign (if it
can be negative) of the nearest neighbor couplings can be gauged away so that
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all interactions are ferromagnetic and the resulting model is the random Ising
chain in a transverse field or a random transverse-field Ising model (RTIM)
in one dimension:

H==> Jiojoj + Y hiof . (Ji>0) (3)

A uniform transverse field is represented by h; = I" for all sites. Since this
case and the case of random transverse fields turn out to belong to the same
universality class, we also consider random transverse field here. The couplings
Ji and the transverse fields h; are random variables with distributions m(.J)
and p(h), respectively. The Hamiltonian in (3) is closely related to the transfer
matrix of a classical two-dimensional layered Ising model, which was first
introduced and studied by McCoy and Wu [9]. Extensive researches on this
model were initiated by D. Fisher[10] with an application of the Ma-Dasgupta-
Hu renormalization group scheme,|[14] followed by numerical and analytical
work [15, 16, 17, 18, 19, 20, 21, 22]. We briefly summarize the results. The
quantum control-parameter of the model is given by

[Inh]ey — [InJ] g
~ var[lnh] + var[InJ] ’

(4)

For § < 0 the system is in the ordered phase with a non-vanishing aver-
age magnetization, whereas the region § > 0 corresponds to the disordered
phase. There is a phase transition in the system at § = 0 with rather special
properties, which differs in several respects from the usual second-order phase
transitions of pure systems. One of the most striking phenomena is that some
physical quantities are not self-averaging, which is due to very broad, loga-
rithmic probability distributions. As a consequence the typical value (which is
the value in an frequent event) and the average value of such quantities can
be drastically different. Thus the critical behavior of the system is primarily
determined by rare events that give dominating contributions to the averaged
values of various observables.

The average bulk magnetization is characterized by an exponent (3, which
is 3 =2 — 71 where 7 = (1 +/5)/2 is the golden-mean. The average spin-
spin correlation function C'(r) = [(0707, )]y involves the average correlation
length &, which diverges at the critical point as £ ~ [§|7"v, and v,, = 2.
On the other hand, the typical correlations have a faster decay, since &iyp ~
|0 7er with vy, = 1.

Close to the critical point the relaxation time t, is related to the corre-
lation length as ¢, ~ &7, where z is the dynamical exponent. The random
transverse-field Ising spin chain is strongly anisotropic at the critical point,
since according to the RG-picture[10] and to numerical results[23]

Int, ~ &2, (5)

which corresponds to z = co. On the other hand the relaxation time is related
to the inverse of the energy-level spacing at the bottom of the spectrum ¢, ~
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(AE)~!. Then, as a consequence of (5), some quantities (such as specific
heat, bulk and surface susceptibilities, etc.) have an essential singularity at
the critical point, and the correlation function of the critical energy-density
has a stretched exponential decay, in contrast to the usual power law behavior.

Away from the critical point in the disordered phase the rare events with
strong correlations still play an important role, up to the point, § = §5. Above
this point, all transverse-fields are bigger than the interactions. In the region
0 < 0 < d¢, which is called the Griffiths-McCoy phase [9, 8], the magnetization
is a singular function of the uniform longitudinal field H, as mging ~ |H LV,
where the dynamical exponent z varies with d. At the two borders of the
Griffiths-McCoy phase it behaves as z ~ 1/2§ x (1 4+ O(4)) [10] as 6 \, 0 and
z=1asd / g, respectively.

All these results could be obtained and understood by the application of
a Ma-Dasgupta-Hu renormalization group scheme [10], in which strong bonds
or fields are successively decimated either by elimination of spins (in case of
large transverse fields) or formation of strongly coupled clusters (in case of
large ferromagnetic bonds). With decreasing energy scale A of the bonds and
fields to be decimated the typical size L of these strongly coupled clusters
increases as

L~ |InAMY (6)

defining an exponent 1 that is 1/2 in the random transverse-field Ising chain.
Such a cluster typically contains

p~ L (= [In A7) (7)

spins that essentially behave collectively (for instance in response to the ap-
plication of a longitudinal magnetic field H — and thus generating a huge con-
tribution to the spin susceptibility). This defines another exponent ¢, which
is (1++/5)/2 in the RTIM. Finally there is the correlation length exponent v
that defines the characteristic length scale of spin-spin correlations away from
the critical point.

The RG runs into a fixed point that is fully determined by the geometri-
cal features of the clusters that are generated asymptotically — very much in
reminiscence of the percolationndexpercolation fixed point inconventional per-
colation. This picture is expected to hold also for higher-dimensional RTIMs,
and even for the spin glass case. Therefore we summarize its essence here.
The distribution of the random bonds and fields not yet decimated during
the RG procedure becomes broader and broader. Hence the name, infinite
randomness fized point (IRFP). It is characterized by the three exponents 1),
¢ and v and the critical behavior of the physical observables is determined
by them. For instance the correlation function (at criticality) for two spins
at site ¢ and j with a distance r from each other is simply given by their
probability to belong to the same cluster of size r: [Cyjlay ~ |r; —1;|2(1=¢¥),
Other relations follow straightforwardly from this scheme[l3]:
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lowest energy scale: —InA ~ LY

magnetic moment: i ~ (—InA)?

average correlations: [Cijlay  ~|ri— rj|_2(d_¢w)
typical correlations: —[In Cyjlay ~ Kijlri — rj|¢

finite T-susceptibility: X ~ T~ (=InT)2¢-d/v

finite H-magnetization: M ~ (—In H)*¢+d/w

Away from the critical point (§ # 0) the correlation length is finite and its
average and typical value scale differently:

average correlation length: &,y ~ §77
typical correlation length:  &yp ~ EL7Y
spontaneous magnetization: My ~ (—4)¥(d=¢%)

In spite of the finiteness of the average correlation length away from the
critical point still arbitrarily large strongly-coupled clusters exist — though
with an exponentially small probability — leading to algebraically decaying
correlations in imaginary time. Phenomenologically, one can understand that
as a consequence of the appearence of Griffiths singularities [8] close to a
quantum critical point [7, 11]: Let L be the size of a region of strongly coupled
spins. In a random system in the paramagnetic phase they occur with an ex-
ponentially small probability P(L) oc exp(—AL?). For instance in the diluted
ferromagnet strongly coupled regions are connected clusters and their proba-
bility is p¥', where V is the region’s volume and p is the site occupation prob-
ability (0 < p < 1). Then, A is given by A = |Ilnp| > 0. The special feature of
transverse-field Ising systems is that in first order perturbation theory the gap
of a finite system containing L? spins is exponentially small: Ay ~ exp(—sL?).
An exponentially small gap means an exponentially large tunneling time,
and combining the two observations on cluster probability and relaxation
time one obtains an algebraical decay for the spin-spin correlation function:
C(1) = [(0:(1)0i(0))]ay ~ 77 = 774/#@) The parameter z(5) = s/dX is
called the dynamical exponent in the Griffiths phase and it varies continuously
with the distance from the critical point. The consequences, e.g., for the sus-
ceptibility are dramatic: x(w = 0) = OI/T dr C(1) oc T~1*4/209) \yhich implies
that for z > d the susceptibility diverges for 7' — 0 even away from the crit-
ical point. Since in random transverse-field Ising system z(d) grows without
bounds for 6 — 0 (and thus merging with the critical dynamical exponent at
0 = 0, which is infinite), there is always a region around the critical point,
where the susceptibility diverges.

In general the dynamical exponent z(d) introduced above is expected to
determine all singularities occurring in the Griffiths-McCoy phase close to an
IRFP[13]:
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dynamical exponent: 2(0) o<V
lowest energy scale: A

finite H-magnetization: M ~ H1/7(9)
susceptibility: X(w=0) ~ T—1+d/2(5)
nonlinear susceptibility: y,;(w = 0) ~ T~ 1+d4/32(9)
specific heat: c ~ T/%(0)

The last three tables summarize the scaling predictions at and close to
a IRFP and in 1d they have been confirmed many times, analytically and
numerically [15, 16, 17, 18, 19, 20, 21, 22].

2.2 Diluted Ising Ferromagnet in a Transverse Field

In higher dimensions d > 2 the randomly diluted Ising-ferromagnet in a trans-
verse field is a show-case for a quantum phase transition governed by an IRFP.
The site diluted model is defined by the Hamiltonian

H=-J]) eijoio; =TIy o} (8)
(i) @
and the bond diluted model by

HZ—JZEijUfU;—FZU? (9)
(i5) i

where g; and €;; are random variables that take on the values 1 with proba-
bility p and 0 with probability 1 — p. Its phase diagram is depicted in Fig. 3

Along the vertical line starting from the point (p, ") = (pc,0) up to the
multi-critical point the transition from the paramagnetic to the ferromagnetic
phase is a classical percolation transition [24, 25]. Denoting the distance from
the critical point with § = p. — p the connectivity correlation length diverges

r
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- Multicritica:l point
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0 1-p¢ 1 1-p

_ - Griffiths-
_ phase

Fig. 3. Phase diagram of the diluted Ising ferromagnet in an transverse field I" at
zero temperature T' = 0
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upon approaching the percolation point 1 — p. as £ ~ || ¥rerc. The num-
ber of spins M in the percolating cluster at p = p. scales with the linear
system-size L as M ~ LPrere where Dpere is the fractal dimension of the
percolating clusters. For small values of the transverse field I' one expects
the percolating cluster to be fully magnetized, which implies that the gap
scales as A ~ exp(—LPrere). This means that 1) = Dy, in the IRFP scenario
described above. Moreover, the connectivity correlation function at the per-
colation threshold p, decays as C(r) ~ r—(4=2+7vere) - which means that the
exponent ¢ is given by the relation 2(d — 1 ¢) = (d — 2+ fperc). To summarize
the exponents characterizing the IRFP in the randomly diluted ferromagnet
in a transverse field are related to the classical percolation exponents (which
are exactly known in dimensions d = 2 and in d > 6) via:

V = Vperc » 1/) = Dp@!‘Ca ¢ = (d +2- nperC))/Dperc . (10)

2.3 Higher Dimensional Random Bond Ferromagnets
in a Transverse Field

Let us consider now to the random bond ferromagnet in a transverse field in

dimensions d > 2
H=-Y Jjoio; =Y hio} (11)
(i5) i

where the sum runs over all nearest neighbor pairs (ij) of a d-dimensional
lattice, the random couplings J;; and transverse fields h; are all positive and
obey some distribution. Here one has to rely on numerical calculations. In
quantum Monte-Carlo simulations the IFRP-scenario manifests itself in a non-
conventional finite size scaling behavior with In 3/L¥ as one scaling varibale
(instead of §/L* in conventional scaling scenarios) and a different scaling of
average and typical correlation functions. For instance for the Binder cumulant
gav one would expect the following scaling form

Gav = 05[3 - <M4>/<M2>2]3V = g((SL—l/V’lnﬁ/Ld’> ’ (12)

where M is the magnetization and ¢ is the distance from the critical point.
In Fig. 4 we show numerical data for g,, at the critical point (hg = 7.5 for
h; uniform over [0, ho] and J;; uniform over [0, 1]) of the 2d random bond
ferromagnet in a transverse field, and we observe that they scale accordingly
with ¢ =~ 0.6.

In Fig. 5 we show numerical data for the average and typical correlation
functions Cyy(r) = [(0707,)]av and Cay(r) = exp(In[(cfo7,,)]av), respec-
tively. On one hand C,y(r) decays algebraically with an exponent —2.3, im-
plying 2(d—¢y) = 2.3, i.e ¢ = 1.41 when we use the estimate ) = 0.6 obtained
from scaling of the Binder cumulant. On the other hand Cly,(r) decays with
a strechted exponential, i.e oc exp(—cr?), with 1 &~ 0.58, compatibel with the
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Fig. 4. 2d random bond Ising ferromagnet: Scaling plot of the Binder cumulant at
the critical point using activated dynamics scaling wth 1 = 0.6. Data obtained by
quantum Monte Carlo simulations using a continuous time cluster algorithm [26, 27]

. 2d - hy=7.5 24 hy=75
10 v lo-l

1071 &

10—2 L

Cay(r)

5eL=12,4 = 2003
x—x L =16, = 400 4
104 [0-©L=20,5 = 400 S ] 104
iAA L =24, = 200
— C r ~r—2.3

ay(") : 105
1 10 1 2 3 4
r r

103

10°

Fig. 5. 2d random bond Ising ferromagnet: Left: Average correlation function Ch,y
in a log-log plot. The straight line has slop —2.3. Right: Typical correlation function
Ciyp as a function of r%-°%. The data tend to approach a straight line for I — oo.
Data obtained by quantum Monte Carlo simulations using a continuous time cluster
algorithm [26, 27]

estimated for v obtained before. Both results, the activated dynamics scal-
ing for gav as well as the different scaling of Cyy(r) and Ciyp(r), the latter
compatible with the exponent 1 estimated from the activated dynamics scal-
ing, indicate strongly that the quantum critical point in the 2d random bond
ferromagnet in a transverse field is an IRFP.

A numerical implementation of the Ma-Dasgupta-Hu RG scheme indeed
provided another evidence for an infinite randomness fixed point[28, 29] with
estimate for ¢ and 1 that are compatibel with those mentioned above obtained
in quantum Monte Carlo simulations. For random Ising ferromagnets in a
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transverse field the existence of the IRFP dominating the quantum critical
behavior thus appears to be confirmed for finite dimensions. Strictly speaking
detailed numerical studies have only be performed for d =1 and d = 2 up to
now, but there seems to be no strong argument against the existence of the
IRFP also in higher, finite, dimensions although one expects the numerical
and experimental visibility of the IRFP to diminish for increasing dimension
d. In the mean field limit (d — oo) the quantum phase transition is not
described by an IRFP and obeys conventional scaling laws. In particular z is
finite and Griffiths-McCoy singularities are absent.

2.4 Quantum Ising Spin Glass in a Transverse Field

What about the spin glass case? Within the SDRG picture of the quan-
tum phase transition in disordered systems with a discrete symmetry, as
for instance Ising systems, one would also expect an IRFP in quantum spin
glasses [13]. Quantum Monte Carlo simulations of the Ising spin glass with a
transverse-field have been performed for the cases d = 2[6, 7] and d = 3,[31, 32]
they are reviewed in [3, 4]. The main result is that the numerical data ap-
peared to be compatible with a finite value for the dynamical exponent in
d = 2 and 3 and that the critical behavior can be described by conventional
scaling laws. However, the existence of a Griffiths-McCoy phase away from
the critical point has been uncovered, with a continuously varying dynamical
exponent describing the singularities of the susceptibility and non-linear sus-
ceptibility. In contrast to the quantum Monte-Carlo simulations of the random
bond ferromagnets no cluster-algorithm could be used in the quantum spin
glass case, which restricted the system sizes and in particular the temperatures
to rather small values (note that anisotropic finite size scaling demands that
the temperature has to decrease exponentially with the system size at a quan-
tum critical point described by an IRFP). In addition a homogeneous rather
than a random transverse field has been used, which causes strong cross-over
effects and the true asymptotic scaling behavior might be more difficult to
extract. Therefore it might very well be that the indications found for the ab-
sence of a IRFP in the 2d and 3d quantum spin glass are still pre-asymptotic
and that studies using larger system sizes and more sophisticated simulation
methods could detect evidence for the IRFP also here.

Finally a word about the consequences of the aforementioned theoretical
developments for the experiments. There it was observed that upon approach-
ing the quantum critical point the divergence of the non-linear susceptibility
was drastically suppressed indicating even the absence of a divergence at zero
temperature. The numerical results, on the other hand, hint at a strong di-
vergence of the non-linear susceptibility at the quantum critical point — even
more than the IRFP scenario. Up to now no clear reason for the discrepancy
has been pinned down. The possibility of a second-order transition turning
a first-order one at low temperatures has been raised,[42] but this possibil-
ity can definitely be ruled out for a system that can be described by the
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Hamiltonian (3) that we discussed here. We do not think that dipolar interac-
tions of a magnetically diluted system cause substantial modifications of the
picture that emerged for short range interactions. At this point one cannot rule
out the possibility that the transverse field Ising Hamiltonian with quenched
disorder is simply not a sufficiently detailed description of LiHog. 147 Y0.833F 4.

3 Mean-Field Theory for Quantum Ising Spin Glasses

As a mean-field model of quantum Ising spin glass, we consider the Sherring-
ton-Kirkpatrick model in a transverse field

HI*ZJiijdjfl—‘ZO'f. (13)

(4.9) i
The first sum is over all pairs of spins and the couplings .J;; are quenched
random variables that obey the Gaussian distribution with zero mean and
variance J2?/N, where N is the number of spins. I" is the strength of the
transverse field. Although no exact solution has been found for finite I', the
phase diagram of this model has been well delineated. At zero transverse
field the transition is the well-known classical transition of the SK model at
T.(I' = 0) = J. For sufficiently high temperature and/or sufficiently large I,
thermal and/or quantum fluctuations destroy the spin glass order, yielding a
paramagnet [30]. For low T and small I" one finds a SG ordered phase, appar-
ently with broken replica symmetry [33]. Monte Carlo calculation, numerical
spin summation[34] and perturbation expansion[35] in 1/I" have determined
the phase boundary to some precision. As in the classical model, the infinite
range interactions apparently wipe out the Griffiths singularities discussed in
the last subsection. The critical behavior along the line T.(I") is expected to
be the same as the classical critical behavior, i.e., the non-linear susceptibility
diverges as xn; ~ (T — T.(I'))~” with v = 1, the specific heat exponent is
a =0, etc.

3.1 Quantum Phase Transition

The zero temperature quantum critical point I.(T° = 0) is in a differ-
ent universality class and has been studied in [37, 38, 39]. The static ap-
proximation — the approximation usually applied to small field values in
which the imaginary time correlation function C(7) = (o;(7)0;(0)) is as-
sumed to be time independent — is not valid at 7' = 0 (large fields)
and the full functional form of C(7) has to be explored. The dynami-
cal self-consistency equations obtained via standard manipulations[30, 30]
was analyzed at T = 0 at the quantum critical point in [37, 38, 39],
and it turned out that the quantum critical point is located at I, =
0.7J. At I > I. (and zero temperature) C(7) decays exponentially with
T as T — 00, indicating a gap A in the corresponding spectral density;
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at I' = I., C(7) decays as 1/72, and in the ordered phase, C(7) — qga.
The Fourier transform of C(7) has the form C'(w) ~ const. — vw? — A? for
I' > I, which is responsible for the 1/72 behavior at I'. and it turned out
that the correlation time diverges as &, ~ 1/A ~ [(I" — I.) "' In(I" — I.)]"/2.
Thus we can define an exponent zv, anticipating anisotropic scaling in space
and time in the short range model, which takes the value zv = 1/2 in the
infinite-range model. Since C(7 — 00) = ¢ga is the Edwards-Anderson order
parameter, we may also define qga = (I'. — I')? and it was found that 8 = 1.
At I' = I, one expects C(1) ~ 77%/#¥ which is satisfied with the values
obtained. The non-linear susceptibility diverges as 1/A, which implies with
Xni ~ (I' = I.)~7 that v = 1/2. Studying Gaussian fluctuations around the
saddle-point solution valid for infinite range one finds[39] for the correlation
length exponent above the upper critical dimension (i.e. d > 8) that v =1/4
and therefore z = 2. Moreover 7 = 0 in mean field theory. The complete
collection of critical exponents obtained so far in comparison with the classical
model (T" > 0, where we assume to cross the phase boundary under a non-
vanishing angle) are as follows:

| 8|~ ] v]-=
quantum (T =0) 1/2 [ 1/2 [ 1/4 ] 2 (14)
classical T=0)| 1 | 1 [1/2] —

Note that as a consequence of the absence of Griffiths-singularities in mean-
field models the dynamical exponent z is finite in contrast to the IRFP scenario
that is supposedly valid for the finite-dimensional models. In a longitudinal
field one obtains, in analogy to the classical case, an AT manifold in the T, I', h
phase diagram below which replica symmetry is broken and the system is in
the SG phase.

The dynamics of the model (13) in the paramagnetic phase has been stud-
ied in [40], where the dynamical single-site self-consistency equations have
been iteratively solved using a quantum Monte Carlo scheme developed in
[11]. They mapped the spin-glass transition line in the I'-T plane using the
stability criterion 1 = Jxoc, Where xioe = foﬁ dr C(1) is the local suscepti-
bility. They found a second-order transition line ending at a quantum critical
point at 7' = 0 in agreement with the argument presented above. Going down
in temperature to 7" ~ 0.01J and extrapolating the results to T' = 0 they
determined a precise value for the critical field I, = 0.76 £0.01, which lies be-
tween previous estimates [33, 37]. The asymptotic form of C(7) ~ 72 found
in [37] was also confirmed. A comparison of the results for the low-frequency
susceptibility with the experimental curves obtained for LiHog. 167 Yo.833F4 in
[5] yields a good agreement.

A different class of mean-field spin-glass models has been studied in [42] —
simplified in so far as spherical spins rather than Ising spins were considered
and more general in so far as p-spin interactions were considered. The quan-
tum fluctuations are introduced via a kinetic energy rather than the trans-
verse field. The corresponding quantum spherical p-spin-glass Hamiltonian is
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defined by

N
1 .2
H= g 20 2 Jniysi sy (15)
1= L1yee05lp

where s; are “soft-spins” fulfilling the spherical constraint va:l 5i(t)? = N
for all times ¢. Quantum mechanics is introduced into the classical p-spin
glass via the canonical momenta p; that fulfill the commutation relation
[Di, s;] = —ihd;j. The multi-spin coupling constants are taken from a Gaussian
distribution with zero mean and variance Jp!/(2N?~1) with J being a con-
stant of O(1).

Before we discuss this model we want to clarify the connection to the SK
model in a transverse field discussed above. The replacement of Ising spins
S; = £1 by continuous spins s; € [—o00, +00] is often performed in the theory
of critical phenomena — the discrete symmetry is then enforced by a quartic
term Y, s} in the Hamiltonian (this is just the usual #* Ginzburg-Landau
theory for critical phenomena with a discrete symmetry), which also restricts
automatically the spin length. Analytically the quartic term causes extra com-
plications in all computations, saddle point evaluations, RG calculations, dy-
namical formalism etc. — for which reason one often skips it and replaces it by
a spherical constraint (either strictly or via a Lagrangian parameter having
the same effect as a chemical potential). Unfortunately the classical spherical
mean-field spin-glass model with the usual 2-spin interactions does not have a
non-trivial spin glass phase. Therefore, generalizations to p-spin interactions
are sometimes considered. [56] At this point a clear connection to the original
magnetic system of interest is already lost. Nevertheless, one might expect
that one can learn something about possible scenarios.

Finally spherical spins cannot be quantized in the same way as Ising spins
via the application of a transverse field. Therefore they are usually quan-
tized via the introduction of a kinetic energy term as in (15). In addition,
various analytical techniques available for interacting soft spins with kinetic
energy, such as the Schwinger-Keldysh formalism [54], are not available for
spin operators. The microscopic details of the quantum dynamics described
by either a transverse field or a kinetic energy term might be very different,
on large timescales, however, one expects a similar behavior for the following
reason. To see this, let us consider a model that consists of two terms; an ar-
bitrary classical Hamiltonian, H.j, that is diagonal in the z-representation of
the spins, and the transverse-field term. Performing a Trotter decomposition
of the partition function of this model, one obtains

L.
Tre AT HHa()) = Jim <S
Ar—0 -4 T
e

e*AT[FUI’%»HC](UZ)]‘ ST+1>

L,
x Alirgo Z exp <—AT {Z K(S; — Sr41)* + Hd(k%)}) (16)

S1,..,5L T=1
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where L. is the number of Trotter slices in the imaginary time direction, A7 =
B/L, and K given by e 25X = tanh(ATI'). For AT < 1it is K = | In(A7I")|/2.
In the last step we neglected a constant factor cosh(A7I)Er. If we choose
A7 as a small time cut-off (representing the typical spin flip time) we can
approximate the last Trotter sum as the imaginary time path integral

7~ /DS(T) exp (/05 dr lﬂj (‘;‘j)z + Hd(S(T))D (17)

where M = 2K A1 = A7|In(I"A7)|. The first term in the integral of the action
is identical to what one would obtain for the kinetic energy if one writes down
the imaginary time path integral for the partition sum of the Hamiltonian
(15). In this way, the transverse-field term and the kinetic-energy term are
related.

In [42] the equilibrium properties of the model were obtained using a repli-
cated imaginary-time path integral formalism[36] and analyzing the dynamical
self-consistency equations for the spin auto-correlation function C(7) arising
in the limit N — oo from a saddle point integration. The result for the phase
diagram, EA order-parameter and linear susceptibility in the case p = 3 are
depicted in Fig. 6, where the parameter I' = h?/(JM) has been used — resem-
bling the transverse field strength (since for I" — 0 one recovers the classical
case). Above a temperature T one has a continuous transition at a criti-
cal point I' = I.(T) from a paramagnetic phase with vanishing EA order
parameter to a spin glass phase with gz 4 # 0 and one-step replica-symmetry-
breaking (1RSB). Although the EA order-parameter jumps discontinuously
the transition is second order: there is no latent heat (as in the classical case

3.0 : :
a =12
. @) B=12—__

: : — w 20}

r

Fig. 6. Left: Static (thin lines) and dynamic (thick lines) phase diagrams of the
p-spin model for p = 3. Solid and dashed lines represent second and first order
transitions, respectively. Right: Magnetic susceptibility (a) and Edwards-Anderson
order parameter (b) of the p = 3 model. (From [412])
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I' = 0) and the susceptibility has only a cusp. This is due to the fact that the
parameter m characterizing the Parisi order parameter function ¢(z) (which
is a step function with a single step at x = m) is unity at the transition.
However, for temperatures below T* this parameter jumps at the transition,
too, and the transition becomes discontinuous; for 7' < T* the transition is of
the first order with latent heat and a discontinuous susceptibility (see Fig. 6).

3.2 Dissipative Effects

An important question that arises for interacting quantum spins at low tem-
peratures are the effects of a dissipative environment [44, 45]. This is usu-
ally described in terms of its collective excitations, lattice vibrations, spin or
charge fluctuations, etc., which may be thought of as an ensemble of indepen-
dent quantum harmonic oscillators [46, 47, 48, 49, 50]. A concrete example
of a single quantum degree of freedom, a spin-1/2 or a so-called two-level-
system (TLS), coupled to a bath of bosons is the well-known spin-boson-model
[44, 45]:

H=Hs+ Hp + Hgsgp (18)

where Hg, Hg and Hgp denote the Hamiltonian of the system, the bath and
their coupling, respectively. These are given by

Hg = —-1I0”"
1
Hp = 5 zn:(pi/mn + mnwzxi)

Hgp = — E CnTno”
n

(19)

where I' is the transverse field (or tunneling matrix element in the con-
text of TLSs), n the index enumerating an infinite number of harmonic
oscillators with coordinates and momenta, x, and p,, and mass and fre-
quency, m,, and wy, respectively. The constant ¢, is the coupling between
oscillator n and the spin. The spectral density of the environment, I(w) =
7y, (Jen]?/(mpwn)d(w — wy)), is commonly assumed to take the standard
form[45]

I(w) = 2ah(w/wpn)® we™/we | (20)

where « is a dimensionless coupling constant, w. a high frequency cut-off
(which can be set to w, = 00 if 0 < s < 2), and wp, a phonon frequency
necessary in the non-ohmic (s # 1) case to keeps « dimensionless.

With standard techniques[51, 44] one can integrate out the oscillator de-
grees of freedom to express the partition function of the system solely in terms
of the spin variables

Z="Tre P = /DJ(T) T exp(—S/h) , (21)
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where [ Do(7) denotes a path integral over all spin configurations (in time),
T is the imaginary time ordering operator and the action is

Bh 1 [on sh

S=— dr I'o® (1) — 5/ dr dr' K(r —")o*(r)o* (7). (22)

0 0 0

The kernel K(7) is related to the spectral density /(w) and is for the ohmic
case (s = 1) essentially an inverse square K (7 —7') oc o/ (7 — 7')%. The effect
of the dissipative environment is therefore a long range interaction of the
quantum spin in imaginary time. In analogy to the Ising model with inverse
square interactions[53] depending on the strength of the coupling constant
«, the system is ferromagnetically ordered or paramagnetic in the imaginary
time direction; for large « the spin is frozen and for small « the spin will
tunnel.

Indeed, for the ohmic case, at zero temperature, there is a phase transition
at @« = 1 [47, 48]. For o < 1 there is tunneling and two distinct regimes
develop. If o < 1/2, the system relaxes with damped coherent oscillations; in
the intermediate region 1/2 < o < 1 the system relaxes incoherently. For o >
1 quantum tunneling is suppressed and (%) # 0, signaling that the system
remains localized in the state in which it was prepared. These results also
hold for sub-Ohmic baths while weakly damped oscillations persist for super-
Ohmic baths [44]. At finite temperatures (but low enough such that thermal
activation can be neglected) there is no localization but the probability of
finding the system in the state it was prepared decreases slowly with time for
o > 0.

These conclusions hold for a single spin interacting with a bath. The ques-
tion then arises as to which are the effects of the interplay between the spin-
spin interactions and the spin-noise coupling in the physics of the interacting
system. In [54] the effect of a dissipative bath on a mean-field spin glass model
with p-spin interactions has been investigated. They studied the dissipative
spin-boson system (19) for N interacting spins H = Hg + Hp + Hgp, where
the bath Hamiltonian is the same, the coupling Hamiltonian gets an addi-
tional sum over the spin index ¢ and Hg is now the p-spin Hamiltonian with
transverse field

N
Hg = 7[‘20’? — Z JirosinTi, "'Ufp . (23)
i=1 ;

215.052p

The second term, namely, the multi-spin interaction term is the same as the
one in (15). For the reason explained in the last section it is analytically easier
to study spherical spins instead of quantum spin-1/2 degrees of freedom and
the quantization of the spherical spins is done via the introduction of a kinetic
energy term. The partition function then reads

Z = /'DU(T) exp(—=S/h) , (24)
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with the action

s= [ [Ajzﬁa”) S s (), (1)

i1 < .. <ip

[ ¥e] i ¥e]
+z2[33(r)_11} - /0 dr i dr' K(1 — 7")si(7)s; ("), (25)

where the first term is the kinetic-energy term already motivated in (16-17)
replacing the transverse-field term, the second is the p-spin interaction term,
the third a term with the Lagrangian multiplier z enforcing the spherical
constraint and the last term is the long range interaction imaginary time (22)
that is generated by the integration over the bath variables.

Starting from (25) the saddle point equations for the self-consistent single-
spin dynamics were derived[54] and the phase diagram computed. Analogous
to the non-dissipative case discussed in the previous subsection a critical line
with a second-order section (close to the classical critical point (Ty, I" = 0))
and a first-order section (close to the quantum critical point (T = 0,1}))
was obtained in the presence of a dissipative environment. The second order
critical line is determined by the condition m = 1, the first order critical
line is defined as the locus of the points where a marginally stable solution
first appears with decreasing I" for T fixed. For each I and « this defines a
dynamic transition temperature Ty (I, o). The qualitative features of the phase
diagram, similar to those found for the isolated system, see the discussion in
the previous section. Notice that the line Ty (I, «) lies always above Ts (I, @),
the static critical line that we shall discuss below.

On the right side of Fig. 7 the dynamic phase diagrams obtained for p = 3
and three values of the coupling to an Ohmic bath, a = 0,0.25,0.5 is shown.
The full line and the line-points represent second and first order transition,
respectively.

The first observation that can be made is that in the limit I" — 0 the tran-
sition temperature is independent of the strength of the coupling to the bath.
This is a consequence of the fact that in the limit I" — 0 the partition function
is essentially determined by the zero-frequency components of the pseudo-spin
which are decoupled from the bath. This result is however non-trivial from
a dynamical point of view, since it implies that the dynamic transition of a
classical system coupled to a colored classical bath is not modified by the
latter.

The second observation is that the size of the region in the phase space
where the system is in the ordered state increases with «. Coupling to the
dissipative environment thus stabilizes this state. This follows from simple
physical considerations. The interaction term in the action favors spin-glass
order. Coupling to the bath favors localization and its effect is to reduce
the effective tunneling frequency. Therefore, in the presence of the bath, the
value of the bare tunneling frequency needed to destroy the ordered state
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Fig. 7. Static (left) and dynamic (right) phase diagrams for the p = 3 spin model
coupled to an Ohmic bath (s = 1). The couplings to the bath are « = 0, 0.25, and
0.5 from bottom to top. The solid line and line-points represent second and first
order transitions, respectively. (From [54])

must increase with «. Even if the localized state and the glassy state may
seem superficially similar, they are indeed very different. In the former, the
correlation function C(t + ., t,,) approaches a plateau as a function of ¢ and
never decays toward zero while in the latter the relaxation first approaches
a plateau but it eventually leaves it to reach zero for ¢ > t,,. The fact that
the coupling to the environment favors the ordered state also reflects itself in
the value taken by the order parameters C(7) and gga. As « increases, ¢q(7)
reaches a higher plateau level at long imaginary times.

3.3 Off Equilibrium Dynamics

The out-of-equilibrium dynamics in real time of the quantum spherical p-
spin glass model coupled to a dissipative environment, which was discussed
in the last subsection, was actually studied earlier[55] than the equilibrium
properties. The response and correlation function are defined in analogy to
the classical case; C(t 4 by, ty) = N 713" (si(t+ tw)si (tw) + 8i(tw)si(t + tw))
(note that the time evolution is now governed by the quantum dynamics
and C has to be symmetrized in the operators s;(t + t,,) and s;(t,)) and
R(t 4ty tw) = N713". 8si(t + ) /0hi(tw).
In equilibrium the quantum FDT relates R(t) and C(t):

2i di -
R(t) = %0(1&) / Soe ! tanh (Bl /2)C(w) (26)
Away from the critical line, C' and R decay to zero very fast with oscillations.
Approaching the critical line Ty(«), the decay slows down and if Ty > 0 a
plateau develops in C'. At the critical line the length of the plateau tends to
infinity.
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In the glassy phase (below the transition) the system does not reach
equilibrium. For small time differences the dynamics is stationary and time
translational invariance as well as the QFDT holds: lim;,, oo C(t + tu, ty) =
g+ Ceq(t). For large times the dynamics is non-stationary, time translational
invariance nor the QFDT does not hold, and the correlations decay from ¢
to 0. The decay of C' becomes monotonic in the aging regime, which implies
Caging (t + tw, tw) = c(h(tw)/h(t + ty)). One can generalize the QFDT in the
same spirit as the classical FDT was generalized [56]:

dw

2—€_th tanh (X (t+ty, ty)Bhw/2)C(t+ty,,w) (27)
™

Rlt+tu, ) = %Q(t)/

with C(t,w) = 2Re fot ds expliw(t — $)]C(t,s). Again, as in the classical case,
Tog = T/X(t + tw,tw) acts as an effective temperature in the system. For a
model with two time-sectors it is proposed

[ Xa=1  if t<T(t)
X(t+ tw, tw) = {Xage(hj) if t>7(ty) "

with X,ge @ non-trivial function of i and T and 7 (t,) is a certain time-
scale that separates the stationary and aging time-regimes. When ¢ and ¢,
are widely separated, the integration over w in (27) is dominated by w ~
0. Therefore, the factor tanh(Xage(t + tw,tw)Bhw/2) can be substituted by
XageShw/2 (even at T = 0 if Xoge(h, T) = 2(R)T when T ~ 0). Hence,

Rage (t + twy tw) ~ o(t)Xageﬁatw Cage (t + twv tw) (28)

and one recovers, in the aging regime, the classical modified FDT [56, 58].

The self-consistency equations for C(t 4 ty,t,) and R(t + ty,t,) were
evaluated numerically in [55]. An example of the solution is shown in Fig. 8
for p = 3. In all figures the following parameters have been chosen: zero tem-
perature 7' = 0, the width of the coupling distribution J = 1, the frequency
cut-off for the oscillator bath set to w. = 5, the mass in the kinetic energy
term M = 1, and the strength of the quantum fluctuations i = afi (where «
is the spin-bath coupling strength) is 7 = 0.1.

These plots demonstrate the existence of the stationary and aging regimes.
For t < 7T (ty) (e.g. 7(40) ~ 5) time translational invariance and fluctuation
dissipation theorem are established while beyond 7 (t,) they break down.
For i = 0.1 the plateau in C' is at ¢ ~ 0.97. C oscillates around ¢ but is
monotonous when it goes below it. In the inset the dependence of gg4 on
hofor T = 0 is presented. Quantum fluctuations generate a qpa < 1 such
that the larger % the smaller qea- The addition of thermal fluctuations has
a similar effect, the larger T', the smaller qg 4. In order to check the FDT in
the stationary regime, in the inset of the right part of Fig. 8 a comparison
is shown of R(t + t,,t,,) from the numerical algorithm for ¢ + t,, = 40 fixed
and t,, € [0,40] (full line) with R(t + ty, %) from (27) with X = 1 using
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Fig. 8. Left: The correlation function C(7 + tw,tw) vs 7 for the p = 3 quan-
tum spherical p-spin SG model. The waiting times are, from bottom to top,
tw = 2.5,5,10,20,40. gea ~ 0.97. In the inset, the same curves for t,, = 40 and, from
top to bottom, h= 0.1,0.5,1,2. Right: The response function for the same model as
in the left part. The waiting-times increase from top to bottom. In the inset, check
of FDT in the stationary regime. The full line is R(t 4 tw, tw) for ¢t + ¢, = 40 fixed
and t,, € [0,40]. The dots are obtained from (27) with X = 1, using the numerical
data for Csat(t) = C(t + tw,tw) — ¢ (gea ~ 0.97, see left part). In both cases the
response is plotted against ¢. (From [55])

Cstat (t) = C(t+tw, tw) — ¢, ¢ ~ 0.97 obtained from the algorithm (dots). The
accord is very good if ¢t < 7 (t,,) ~ 5. Finally, when one plots parametrically
the integrated response y vs. C one finds that for C' < ¢ ~ 0.97 the x vs C'
curve approaches a straight line of finite slope 1/Tog = Xage/T ~ 0.60.

4 Heisenberg Quantum Spin Glasses

The spin-1/2 Heisenberg quantum spin glass is defined by the Hamiltonian
(1) where the random exchange interactions J;; can be ferromagnetic and
anti-ferromagnetic. The system cannot be studied efficiently with quantum
Monte-Carlo methods, due to the sign problem arising from the frustration.
Therefore, not much is known about these models in finite dimensions, and
also the mean field theory becomes tractable only in certain limits and ap-
proximations.

4.1 Finite Dimensions

In [61] and later in [62] small clusters of the two-dimensional Heisenberg quan-
tum spin glass were studied using exact diagonalization. The average total
spin in the ground state turned out to scale as S o VN, where N is the
number of sites. The spin glass order parameter in the ground state extrap-
olates to a small but non-vanishing value in the thermodynamic limit and
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the spin stiffness does not scale to zero either in the thermodynamic limit.
Ma-Dasgupta-Hu renormalization group studies[14, (6] were performed for
randomly frustrated spin-ladders[64] and in d = 2 and 3[65] for various lat-
tices and spin-values. The general idea of this RG procedure was already
described in Subsect. 2; large energies (in the form of exchange interactions)
are successively decimated, ferromagnetic bonds lead to large spin formation
and anti-ferromagnetic bonds to a spin reduction or even elimination in case
of equal effective spins connected by the bond to be decimated.

The basic ingredient of the SDRG method in Heisenberg models is a suc-
cessive decrease of the energy scale of excitations via a successive decimation
of couplings. We start with a S = 1/2 HAF model in which the strongest
coupling is, say Ja3, the one between lattice sites 2 and 3 (c.f. Fig. 9). If Jo3
is much larger than its neighboring couplings Jyo, J13, Jo4 and Js4, the spins
at 2 and 3 form an effective singlet and are decimated. The effective coupling
between the remaining sites, 1 and 4 in second order perturbation theory is
given by:

)\(Jn — Ji3)(J34 — Joa)

jeff _
14 )
J23

AS =1/2)=1/2. (29)

In a chain geometry the couplings Ji3 and Jos would not be present and the
resulting RG flow always generates AF couplings. However, for extended, not
strictly 1d objects, some of the generated new couplings can be ferromagnetic
(e.g. if Jio < Jyz and Jszq > Joy or vice versa) and therefore the decimation
rules have to be extended. If at one RG step an F bond turns out to be
the strongest one, its decimation will lead to an effective spin S = 1. In
the following steps, the system will renormalize to a set of effective spins of

different magnitude interacting via F and/or AF couplings.

2

Fig. 9. Singlet formation and decimation for a spin configuration that does not have
a chain topology and typically occurs in higher dimensional systems

For higher dimensional systems, the basic decimation processes are the
singlet formation in (29) and the effective spin (cluster) formation. To specify
the latter, let us consider three spins S7, Sy and S5 with interactions fulfilling
|Jag| > |Ji2|, |J13|. In the action of the RG, the two original spins S and S3
form a new effective spin of magnitude S = |S; + S5| representing the total
spin of the ground state in the two-spin Hamiltonian Hoz = J23S2So, where
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the positive (negative) sign refers to an F (AF) coupling. The corresponding
energy gap, 4, between the ground state and the first excited state in the
Hamiltonian Hag is given by A = |Jag|(S2 + S3) and A = Jo3(|Se — S3| + 1),
for an F and AF coupling, respectively. If Jo3 > 0 (AF) and Sy = Ss, it follows
an effective singlet formation as described above. If S # 0, within first order
perturbation theory the new coupling between S; and Sag is given by

JM = 15012 + c13013 (30)
with o
I S(S+1)+ S2(S2 +1) — S3(S3 +1)
. 25(S +1)
and o
BB+ 88+ 1)~ Sa(S + 1)
13 = :

25(S +1)

At each RG step, we find the pair of the spins with the largest energy gap A
that sets the energy scale, {2, and decimate them according to renormalization
rules described in (29) or (30). A detailed derivation of these renormalization
rules can be found in [67].

The fixed point of the RG transformation for lattices that do mot have
a chain geometry may depend on their topology, the original distribution of
bonds, the strength of the disorder, etc. We briefly summarize the existing
results for spin chains and ladders since it might be helpful for analyzing the
RG results in higher dimensional systems.

In the case of the random AF chain (which does neither have F bonds
nor frustration), the RG procedure described above runs into an infinite ran-
domness fixed point (IRFP) corresponding to a random singlet phase. In this
phase the renormalized clusters are singlets, thus the total magnetic moment
is zero, and the energy and length scales are related via

—In2~LY?%, (31)

which means that the dynamical exponent is formally infinite.

A dimerized S = 1/2 chain with random AF even (J.) and odd (J,)
couplings shows dimer order and the low-energy behavior is controlled by a
random dimer fized point at which the dynamical exponent, z, is finite and
a continuously varying function of the strength of the dimerization measured
by daim = [In Je]ay — [In Jo]av[22]. At this fixed point, the low-energy-tail of
the distribution of the effective couplings, J., is given by:

1 . —14+1/z ;
P(Je, Q)T =~ - (']) dJ. (32)

n Q7

for d4im > 0. This random dimer phase is a Griffiths phase [8] and we refer
to it as a Griffiths fixed point (GFP). At this GFP, the gap of finite chains of
length L obey a distribution similar to (32):
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Pr(A) = L*P(L? A) ~ LF3H) Av (33)

which is characterized by the gap exponent, w. As a consequence of (33), which
holds in any dimension, several dynamical quantities at a GFP are singular
and the characteristic exponents can all expressed via w. For example the
susceptibility y, the specific heat C, (at a small temperatures T), and the
magnetization m (in a small field k), behave as:

X(T) ~T7%, Cu(T) ~T“, m(h) ~h“Tt. (34)

In the Griffiths phase there is a simple relation between the dynamical ex-
ponent, z, and the gap exponent, w, which can be obtained by the following
phenomenological consideration [11, 7, 20]: If the Griffiths singularities are
due to rare events (produced by the couplings) that give rise to localized low-
energy excitations, the gap distribution should be proportional to the volume,
Pr(A) ~ L% From (33) then follows:

d d
=130 & w——l—l—;, (35)

z
which is consistent with the exact result in the random dimer phase in (32).
However, if the low-energy excitations are extended the relation (35) might
not hold.

In a spin chain with mixed F and AF couplings [68], large effective spins,
Seft, are formed at the fixed point of the transformation. The size of these spin
clusters scales with the fraction of surviving sites during decimation, 1/N, as:

Seg ~ N© . (36)

The following random walk argument [68] gives ¢ = 1/2: The total moment
of a typical cluster of size N can be expressed as Sex = |Zf7=1 +5;|, where
neighboring spins with F (AF) couplings enter the sum with the same (differ-
ent) sign. If the position of the F and AF bonds are uncorrelated and if their
distribution is symmetrical, one has Seg o< N/2 | i.e. (36) with ¢ = 1/2.

A non-trivial relation constitutes the connection between the energy scale
{2 and the size of the effective spin:

Set ~ 275 | (37)

where a numerical estimate of the exponent is k = 0.22(1)[68]. Comparing
(36) with (37), the relation between the length scale L ~ N'/? (d = 1) and

the energy scale is:
d¢ 1
2~L77, =—=—, 38
: K 2K (38)
where z is the dynamical exponent. The distribution of low-energy gaps,
Pr(A), has the same power-law form as in (33). Therefore from the scaling

behavior of Pr,(A) the gap exponent, w, and the dynamical exponent, z, can
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be obtained. Due to the large moment formation the singularities of the dy-
namical quantities are different from those in the random dimer phase in (34),
i.e. at a GFP. Generalizing the reasoning in [68], one obtains in d-dimensions:

(A+tw)
X(T) ~ T, Cy(T) ~ TXEHD I T, mh) ~ AT, (39)

thus the singularities involve both exponents ¢ and w. In the following, we
refer to this type of fixed point as large spin fixed point (LSFP).

AF spin ladders, although being quasi-one-dimensional, have a non-trivial,
non-chain-like topology and during renormalization also F bonds can be gen-
erated according to (29). Different random AF two-leg ladders were studied
in [64] with the following results: If the disorder is strong enough the gapped
phases of the non-random systems become gapless. The low energy behav-
ior is generally controlled by a GFP, where the dynamical exponent is finite
and depends on the strength of the disorder. However, at random quantum
critical points, separating phases with different topological or dimer order,
the low-energy behavior is controlled by an IRFP. In diluted AF spin ladders
also LSFP-s have been identified [69]. Thus in one-dimensional and in quasi-
one-dimensional random Heisenberg systems there are two different types of
low-energy fixed points, which are expected to be present in higher dimen-
sional systems, too. Both for a GFP and for a LSFP, the low-energy excitations
follow the same power-law form in (33) from which the exponents, w and z
can be deduced. At a GFP these two exponents are expected to be related
through z = H% (35). On the other hand, for a LSFP, where the excitations
are not localized, this relation probably does not hold. At such a LSFP there
is a third independent exponent, ¢ involved in the dynamical singularities
partially listed in (39).

Various two- and three-dimensional Heisenberg antiferromagnets with ran-
dom couplings were studied by the application of the SDRG described above
[65]. Here we discuss the results for the Heisenberg model on the square lattice
with a random mixture of F and AF couplings. This is a model for a Heisen-
berg quantum spin glass [61, 62] and the corresponding fixed point is denoted
as a spin glass fized point (SGFP) since it differs from the other fixed points
one finds for non-frustrated models. In particular we one finds a large spin
formation proportional to L during RG procedure implying a ground state
spin S oc v/N, which is reminiscent of the spin glass behavior found in [61, 62]
for this model with alternative methods.

For Gaussian randomness (i.e P(J;;) a Gaussian with mean zero an vari-
ance one) the distributions of the gaps and of the effective spin moments
are shown in Fig. 10. The gap-distributions for different finite sizes have a
very similar structure: they are merely shifted to each other by a constant
proportional to In L. The slope of the low-energy tail of the distributions is
practically independent of the strength of disorder and in all cases the gap
exponent is equal to:

wsag =0, d=2, (40)
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Fig. 10. Heisenberg spin glass in 2d: Probability distribution of the energy gap for a
2d Heisenberg antiferromagnet on a square lattice with J;; distributed according to
a Gaussian with mean zero and variance one. Inset: Distribution of the spin moments

within an accuracy of a few percent. From the finite-size scaling of the gap
distribution, we infer that the relation in (35) is satisfied and therfore the
excitations are localized, implying

zsqg =2, d=2, (41)

within an accuracy of a few percent.

On the other hand, the distribution of the effective spin moments in the
inset to Fig. 10 shows a tendency to broaden with increasing system size and
its average value has a linear L dependence, [ur].y & .42L. Therefore the
moment exponent in (36) is

CSG = 1/27 d=2 ) (42)

Other coupling distributions, like a uniform distribution of J;; between —1
and +1, other spin values (S = 1 in addition to S = 1/2) yield the same
critical exponents as in the Gaussian case. Thus one can conclude that the
low-energy behavior in randomly frustrated 2d models is controlled by the
same SGFP, independent of the type of randomness and the size of the spin.
Even more, also geometrically frustrated Heisenberg models with random an-
tiferromegnetic couplings are described by the same SGFP in 2d [65].

In 3d SDRG computations for models with mixed F and AF couplings for
different form of initial randomness (Gaussian, symmetric and asymmetric
rectangular) and different spin values have been performed [65]. Figure 11
shows the resulting gap distributions. One observes that the slopes of the
low-energy tail of the gap-distributions are approximately constant, and for
our finite systems they are consistent with a vanishing gap exponent:
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Fig. 11. Probability distribution of the energy gap on the cubic lattice with mixed
F and AF bonds. (a) Gaussian distribution, ¢ = 1; (b) symmetric rectangular
distribution (r = 0); (c) asymmetric rectangular distribution (r = 0.25); (d) S =1
symmetric rectangular distribution. The low-energy tails of the gap distributions for
all cases, indicated by straight lines, have a slope —1, corresponding to w = 0

w0 (d=3). (43)

During renormalization, as in 2d, there is a large spin formation and the corre-
sponding moment exponent is ¢ = 0.55, for symmetric distributions (Gaussian
and rectangular) and ¢ = 0.58 for the asymmetric rectangular distribution.
Thus ¢ appears to be close to 1/2 in both cases. The scaling behavior of the
reduced gap distribution, P(L*A) = L~*Pp(A) is shown in Fig. 12, and yields
z =~ 1.5 independently of the disorder distribution. The scaling curves seem to
tend to a finite limiting value at A = 0, implying a gap exponent w =~ 0. One
can thus conclude that — within the range of validity of the SDRG method —
the relation in (35) is not valid for frustrated 3d models.

To summerize the picture that emerges from the application of the SDRG
to Heisenberg quantum spin glasses in 2 and 3 dimensions: The ground state
magnetization increases with system size as v/N, the probability distribution
of the low energy excitations scales as P(A) ~ A“ with w = 0, i.e. P(A) does
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Fig. 12. Scaling of the reduced gap distribution, P(L*A) = L™*Pr(A), for ran-
domly frustrated 3d systems: a) Gaussian randomness, o = 1, b) uniform random-
ness. In both cases it is z = 1.5

not diverge (or only weakly) at § = 0 in 2d as well as in 3d and the dynamical
critical exponent is z =2ind=2and 2z =3/2ind = 3.

4.2 Mean-Field Model

The first analytical treatment of the mean-field model of the Heisenberg quan-
tum spin glass was performed in [36] applying the replica theory. Although
the solution was confined to the paramagnetic state, the arguments for the
existence of a low-temperature spin-glass phase were given and the critical
temperature was estimated.

Later a Landau theory for quantum rotors on a regular d-dimensional
lattice was studied in [39], which is defined by the Hamiltonian

H= g N1z gyan, (44)
i @)

where fi; are M-component vectors of unit length (A? = 1) and represent the
orientation of the rotors on the surface of a sphere in M-dimensional rotor
space. The operators fmw (v < v, uyv =1,...,M) are the M(M — 1)/2
components of the angular momentum L, of the rotor: the first term in H is
the kinetic energy of the rotor with 1/¢g the moment of inertia. The different
components of fi; constitute a complete set of commuting observables and the
state of the system can be described by a wave function ¥ (n;). The action of L;
on V¥ is given by the usual differential form of the angular momentum IAJW,, =
—i(n;,0/0;, — 14,0/ 0;,,). The difference between rotors and Heisenberg-Dirac
quantum spins is that the components of the latter at the same site do not
commute, whereas the components of the ii; do.
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In [39] a Landau theory for this model is derived and it is shown that
for a suitable distribution of exchange constants J;; this model displays spin-
glass and quantum paramagnetic phases and a zero-temperature quantum
phase transition between them. The mean-field phase diagram near the 7' =0
critical point is mapped out as a function of T, the strength of the quantum
coupling ¢g and applied fields. The spin glass phase has replica symmetry
breaking. Moreover, the consequences of fluctuations in finite dimensions are
considered and above d = 8 the transition turned out to be controlled by a
Gaussian fixed point with mean-field exponents. Below d = 8 a runaway RG
flow to strong coupling was found.

Recently the mean-field Heisenberg quantum spin glass model was gen-
eralized from the SU(2) spin algebra to an SU(N) symmetry and solved in
the limit N — oo [70]. Certain universal critical properties are shown to hold
to all orders in 1/N. A spin-glass transition was found for all values of the
spin S and the phase diagram as a function of the spin S and temperature
T was described. The quantum critical regime associated with the quantum
transition at spin value S = 0 and the various regimes in the spin-glass phase
at high spin are analyzed. The specific heat is shown to vanish linearly with
temperature.

The out-of-equilibrium dynamics of the the same model in the same limit
N — o0, but coupled to a thermal bath, was studied in [71]. It was found that
the model displays a dynamical phase transition between a paramagnetic and
a glassy phase. In the latter, the system remains out-of-equilibrium and dis-
plays an aging phenomenon, which we characterize using both analytical and
numerical methods. In the aging regime, the quantum fluctuation-dissipation
relation is violated and replaced over a very long time-range by its classical
generalization, as in models involving simple spin algebras studied previously.

In the context of Heisenberg spin glasses also the work on metallic spin
glasses should be mentioned, which were first considered in [57] and later
more extensively in [59], [72] and [73]. The main ingredient of a metallic spin
glass is an itinerant electron systems with random (and frustrated) exchange
interactions between the electron spins. Thus in contrast to the spin glass
systems discussed so far the spins are not fixed to particular sites but can
diffuse (quantum mechanically) from site to site. These systems are motivated
by experiments on heavy-fermion compounds such as Y;_,U,Pd 3,[60] which
appear to show a paramagnetic to spin-glass transition with increasing doping,
z, in a metallic regime. To be concrete the Hamiltonian studied in [72] is

H=—- Z tijCiaCjo — Z JijSipSip + Hing (45)

i<j,a 1<,

where ¢;, annihilates an electron on site ¢ with spin a =7, |, and the spin
operator is given by Si, = >_ 4 c;raagﬁciﬁ/l with o# the Pauli spin matri-
ces. The sites i, j lie on a d-dimensional lattice, the hopping matrix elements
tij are short-ranged and possibly random, and the J}; are Gaussian random
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exchange interactions, possibly with spin-anisotropies. The remainder Hj,; in-
cludes other possible short-range interactions between the electrons, and the
resulting total Hamiltonian H has a metallic ground state.

Starting from this Hamiltonian, in [72], an effective field theory for the
vicinity of a zero temperature quantum transition between a metallic spin glass
(“spin density glass”) and a metallic quantum paramagnet was introduced.
Following a mean-field analysis, a perturbative renormalization-group study
was performed and it was found that critical properties are dominated by
static disorder-induced fluctuations, and that dynamic quantum-mechanical
effects are dangerously irrelevant. A Gaussian fixed point was found to be sta-
ble for a finite range of couplings for spatial dimensionality d > 8, but disorder
effects always lead to runaway flows to strong coupling for d < 8. Moreover,
scaling hypotheses for a static strong-coupling critical field theory were pro-
posed. The non-linear susceptibility has an anomalously weak singularity at
such a critical point.

In [73] the competition between the Kondo effect and RKKY interactions
near the zero-temperature quantum critical point of an Ising-like metallic spin-
glass was studied. In the ‘quantum-critical regime,” non-analytic corrections to
the Fermi liquid behavior were found for the specific heat and uniform static
susceptibility, while the resistivity and NMR relaxation rate have a non-Fermi
liquid dependence on temperature.
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1 Introduction

This pedagogical lecture note is aimed at a tutorial introduction to the es-
sential concepts of spin glass with a focus on quantum spin glass in order to
make a comfortable contact with spin glass problems in quantum annealing
and optimization applications.

Although this subject of spin glass is well known, quantum spin glass has
been considered something beyond reality as noted in the book of Fisher and
Hertz[1], where we read “ -- because quantum effects are not very important
in the materials which have been studied experimentally, nor have quantum
models been a significant part of the conceptual theoretical developments.”

They were both frontier pioneers studying quantum effects on spin glass
to introduce the Heisenberg quantum spin glass[2] and a quantum phase tran-
sition in Fermi liquid metals[3].

I would like to follow also this classics on spin glass by Fisher and Hertz[!]
to give an overview of spin glass phenomenology.

Thus this lecture will be presented according to the outlines as follows

1
2
3

(1) Introduction

(2) Overview of spin glass

(3) Ergodicity

(4) Replica symmetry

(5) Glass Transition

(6) Quantum phase transition

(7) Quantum spin glass

(8) Appendix

Indeed, nothing new from my own but more comprehensive introductions
of representative works, already so well presented as in many other previous
lecutre notes [4, 5, 6, 7, 8, 9, 10] and books [1, 11, 12, 13, 14], are attempted.

J.-J. Kim: Ergodicity, Replica Symmetry, Spin Glass and Quantum Phase Transition, Lect.
Notes Phys. 679, 101-129 (2005)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2005
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2 Overview of Spin Glass

Spin glass is characterized by a cusp anomaly of magnetic susceptibility at
finite temperature and a very slow dynamics of relaxations represented by a
power law or a stretched exponential tail. Figures 1 & 2 are intended to show
the essential schematics of these spin glass anomalies [1, 11, 15, 16].

Figure 1 represents a typical experimental data of a real part susceptibil-
ity measured as a function of temperature at dc static (solid line), very low
frequency ac fields (e e @), and high frequency ac fields (o 0 o). A sharp cusp
discontinuity can be observed at T = T, only with a small field dc static
measurement, and already at mHz ac fields this cusp anomaly is changed to
a continuous peak, which becomes more rounded as the ac frequency of the
probe field increases to kHz [1, 11, 15].

In Fig. 2 a schematic cartoon of the remanent magnetization decaying
after removal of magnetic field is depicted to show the experimental data of

Fig. 1. A schematic drawing of magnetic susceptibility x’ across the spin glass
transition probed by x pc-static (solid line), mHz (e ee), and kHz (0 00) ac fields as
a function of temperature (see for details of experimental measurements [1, 11, 15])

Mg

-

t

Fig. 2. A schematic cartoon of remanent magnetization observed as a function
of time after removal of the applied field in the spin glass phase (see for details of
experimental measurements [1, 11, 16]). Experimental data (oo o) are fitted (— — —)
by a power law decay function ¢~* plus a stretched exponential dacay function

exp —(t/7)° [16]
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measurements (o o o) best fitted (— — —) by a power law plus a stretched
exponential decay function.

A power law function is seen to fit the experimental data in the tail part
whereas a stretched exponential function better fits the head part of the data,
and there is certainly a region where both power law and stretched exponential
functions can best fit the experimental data.

A small concentration (0.1% ~ 10%) of transition metal magnetic impu-
rities (Mn, Cr, Fe, etc.) in noble metals (Cu, Ag, Au, etc.) forms a canonical
spin glass.

We have also insulating mixed crystal spin glass systems between ferromag-
netic and antiferromagnetic components, and many other spin glass systems
including amorphous or diluted magnetic semiconductors [1, 11].

Spin glass is characterized by randomly competing interactions and
quenched disorders. A simple model has been known for long [1, 4, 11, 12]
to capture essential features of the spin glass transition

1
H = _inij?i.?j

i>j

with the random interaction variables {J;;} assumed to have a Gaussian dis-
tribution

1/ 27TAij
The short-range Edward-Anderson model [17] can be simplified when the

Heisenberg spins are replaced by the Ising spins on a regular lattice of trans-
lational symmetry so that we can take

P(Jij) = exp(—Ji;* /24:;)

(Jii*)e = Ay = A(Ri — R))

where (---)c represents a configurational average over the Gaussian ran-
dom distribution of {J;;}. The difference between annealed-disorder para-
magnetic phase and quenched-disorder spin glass phase can be described by
the Edwards-Anderson order parameter qg 4 defined by

qpa = lim lim ((S;(t0)Si(to + 1)) c
where (- - )4, represents an average over an infinite set of initial times ¢y. This
qE A can be seen to be zero when the system is ergodic as in the paramagnetic
phase with S; = +1.

One important ingredient to form a spin glass is frustration [1, 11, 12, 18],
and the Mattis disorder system lacking of frustration is known to have no spin
glass transition [1, 7, 19, 20].

We show a schematic illustration of frustration in Fig. 3. Figure 3 (a,b)
illustrates a possible generation of frustration by a randomly competing in-
teraction between +.J and —J in a square lattice.
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()

Fig. 3. Origins of frustration. Rectangluar lattice systems with random bond
disorder (a, b), and a triangluar lattice system with all antiferromagnetic bonds
and no random bond disorder (c). Frustrations are generated in (b) and (c). See
[1, 11, 12, 18] and [20] for more details

For a square lattice system a frustration spin site can be produced only
when the four random bonds are distributed to give an odd number of —J and
+J bonds so that only the (b) system is frustrated but the random disorder
system (a) is not frustrated. Fig. 3(c) illustrates a triangular lattice of no
random disorder but uniform —.J bonds can have frustration generated due
to a geometrical constraint [1, 12].

Ising spin version of the Edwards-Anderson model in the infinite-range
interaction, mean field approximation was then introduced by Sherrington
and Kirkpatrick [21]. The SK solution of this mean field model was found
to be unstable in magnetic field in the low temperature region below the
Almeida-Thouless line [22].

Parisi then succeeded to find a stable solution of the SK model in the low
temperature phase characterized by the replica symmetry breaking and the
order parameter function [23].

In more realistic 3D systems of spin glass model it has been shown that
there is no Almeida-Thouless line, that is, no phase transition under magnetic
field, implying that any finite magnetic field would destroy the equilibrium
phase of spin glass state [24].

Susceptibility defined as x = M /OH in magnetic materials, where mag-
netization M can be easily measured, need a more general definition from the
fluctuation-dissipation theorem to be extended to spin glass :

(T H = 0) = 20 Z (4(5:85) = (Si)(S)e )

In spin glass of no spatial (i # j) correlations and thus no magnetization,
with ((S;®))e = 1 and ((S;)*)¢ = ¢, we can obtain [1, 17]

X(T):kBTVZ(SQ i)*)e )

1o
= — ——q(T
X0 kT ( )
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where S = [Si|, xo = poS*N/VkgT, and a Gaussian distribution is as-
sumed for quenched random disorder variables in the configurational average
of (e

We may thus obtain the order parameter ¢(7T") from the susceptibility
measurements. However, the static susceptibility can not be readily measured
due to extremely slow responses as T' — T, [15].

We can also define a nonequilibrium local order parameter ¢(t) as

q(t) = ((5:(0)Si(1)))c -

We can then find [25]
lim ¢(t) = gpa

t—o0o

and true equilibrium order parameter can be seen to be obtained by

o= Jm, Jim o)
In terms of the time-dependent local order parameter ¢(t) we may thus
define the time dependent susceptibility as [11]

1

= m[l —q(t)]

x(t)
corresponding to the dynamical susceptibility as defined from the Sompolinsky
dynamic formulation [1, 26].

Instead of the cusp anomaly for all these linear response susceptibilities a
divergence at T}, is expected in the order parameter random field susceptibility
Xs¢ defined as [15]

1
xsa % s ((lowos) = (@) o)?)

C

oxe

where ¢ = (T — T,)/T,.

This divergence is more discernible than the cusp anomaly by experimental
measurements. What is more, this ysa conjugate to random field is found to
be proportional to the second order nonlinear susceptibility y, measurable by
a laboratory uniform field. Nonlinear susceptibility x,; is defined by a power
series expansion of the magnetization M [1, 11]

M = xoh — x2h® + -

that is, xn1 = Xo — M/h = x2h? + xah* + - - -

Scaling analysis can be applied to xsq, that is, experimental data of xo
measurements, to obtain various critical exponents of the spin glass transition
at Ty [15].
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With applied fields of h = H + h' cos wt, where H is a dc field and ' < H,
ac susceptibility x’ at a fundamental frequency w can be written as [15, 27]

X/=X0+3X2H2+5X4H4+"'

to give Xn; = Xo — X’ in the static limit where the imaginary part x” can be
set to be zero.

This ac susceptibility x’ is distinguished from the equilibrium susceptibility
represented by the small field field-cooled susceptibility x 7¢ as measured, for
example, by cooling the sample in a field and equilibrating the system for
~ 1000 sec at each temperature with temperature decrements by ~ 0.1K [285].

Temperatures at which y” signals (loss part of the dynamic susceptibility)
start to appear mark the irreversibility temperatures of starting deviation
between x’' and xpc.

Below the irreversibility temperatures of deviation the x,; data of ex-
perimental measurements often includes additional dynamic effects from the
critical slowing down behavior of the spin glass transition.

Application of a dc field H would suppress the dynamic loss part x” and
lower the appearance temperatures of X" signals so that the scaling analysis
may be well extended to be applied at lower temperatures, down to T' ~ 1.057},
at w = 0.01Hz for example [15]. Although it is better to use y2 measurement
rather than ac susceptibility or low field x pc data for determination of 7},
diversity or discrepancy is reported in the experimental results probably due
to still too high fields or too large e values employed in the scaling analysis
of the xo data to determine the critical exponents [15]. Especially, metallic
spin glass of RKKY interaction may belong to a different universality class
of a mean field behavior due to a long range interaction in comparison to the
Ising or Heisenberg systems of short range interactions [15].

In the weak field regime we have

b
M(t)/h = xo — @70T (t)
~ X' (w=1/1) ,

and obtain from the x’(w) measurements

q(t) = (XFC - MT(t))/XFc

in the equivalent time domain as wide as from 10~ /sec to 103 /sec, which was
found to be best fitted by [15, 29]

q(t) = at™* exp(—(t/7)?)

in the temperature range of 1.04 < T'//T,, < 1.10 for Fey 5;Mng 5TiOs3.
Although dynamic scaling analysis of the susceptibility data has been used
to support evidence for universal critical behaviors of the spin glass transition



Ergodicity, Replica Symmetry, Spin Glass and Quantum Phase Transition 107

[15], with respect to 3D spin glass under fields the renormalization group
theory suggests disappearance of phase transition in a field [30] whereas a
mean field theory predicts a field dependence of the transition temperature
[22].

Experimental results of crossing points between the ac susceptibility
X'(w,T) and the field cooled susceptibility xpe = OMpc/OH give the
T¢(w, H) line, from which an activation dynamics of In(t/7) oc A/Ty is sug-
gested rather than a phase transition at a finite temperature 7, for 3D Ising
spin glass in magnetic field [31].

Another important characteristics of spin glass is the ageing [1, 8, 9, 10, 11],
where the age is defined as the time spent at constant 7" and H after being
quenched. Although the spin glass can be viewed as being in a nonequilibrium
state with a continuous and spontaneous reorganization of the spin configu-
ration, the observables may appear as stationary, that is, observations are
bound to show equilibrium responses as long as Int < Int, where t = 1/w is
a probing time and ¢, the age of the quenched system.

Otherwise, nonlinearity effects associated with nonequilibrium dynamics
may start to affect the measurements in fields [15].

3 Ergodicity

Glass is a representative system of the ergodic to nonergodic crossover tran-
sition. Ergodic state is so defined as returning to equilibrium from any initial
state of nonequilibrium ultimately after a sufficiently long time of relaxation.

Equilibrium value of a thermodynamic measurement is given by a long
time average as

(X) = lim — / " Xyt

ta—oo by

where t4 represents the observing period of time.

Fluctuations and correlation functions are then defined as AX (¢t) = X (¢)—
(X) and (AX (t)AX(0)) = (X ()X (0)) — (X)?, respectively.

Mean square fluctuations of thermodynamic equilibrium variables are
bound to follow the fluctuation-dissipation theorem to be related to the re-
spective linear response functions [32, 33].

For example, fluctuation in number of particles N in the system can be
shown to satisfy

((AN)?) = (N = (N))?)
kpT

:<N>m Kr

where V represents volume, T' temperature, and K7 isothermal compressibil-
ity. Similarly for fluctuation of thermal energy E we have
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((AE)*) = ((E — (E))?)
= kpT?*Cyn

where C'y, v represents heat capacity at constant volume V' and constant num-
ber of particles N.

We can also define the statistical average or the expectation value (X) in
terms of the probability density p of phase points at time ¢ as corresponding
to the number density of phase points divided by the total number of phase
points to write

o) = [ pXaaz .
(9]

This is an ensemble average at a single instant of time t equivalent to
the time average for one single system. Since each member of the ensemble
corresponds to a point of the phase space 2, we may well understand the
ergodicity hypothesis as equivalent to a statement that ensemble average gives
the same result as time average.

Different thermodynamic conditions of a system lead to different ensemble
averages. Quantum mechanics is introduced in the statistical averages by use
of the probability density operator p as [33]

(X) = Tr(p(t)X) = Tr(pX (1))

where X represents the quantum mechanical operator corresponding to the
classical observable X.

Thermodynamic quantities of a macroscopic system are given a time-
independent average value

<@=1m—i/mﬂﬁﬁmﬁ

t oo —00 too 0

N
where X (t) represents a state vector of the system at time ¢ in the 6/N-
dimensional phase space of the N particle system.
In the above calculation of (¢) we assume the ergodic hypothesis: “during

the time interval ¢, the phase point YN (t) of the system dynamics will spend
equal times at all the phase points accessible to the selected ensemble.”

In the microcanonical ensemble where N, V and E are specified in the
system so that all systems of the ensemble have the same fixed energy F
the ergodic hypothesis can be reworded as, “all the degenerated J states of
E, = E will be equally probable with the same probability 1/.J” where J is
the degeneracy. That is,

P, = <En|mEn>
— (B, — E)/J

where P, represents the probability of observing the system to be in the state
|E,), Y0 P, =1, and p|E,) = E,|E,) since [H,p] = 0.
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In the canonical ensemble specified by N, V and T the probability to find
the system in a state |E,) is given by

1
P, = 7 exp(—FE,/kpT)

where Z = )" exp(—E,/kgT) is the partition function.
In the grand canonical ensemble of open systems characterized by V, T
and chemical potential ;1 we can define

F=H—puN and Fln) = F,|n)

so that we may generalize the definition as

- 1
pe =~ exp(—F/kpT)
a

to obtain [33]
(X)¢ = Tr(Xpo)

= ZLGTr ()N( exp(—F/kBT)>

1 ~
= Z—G Z<n|X\n> exp(—F,/kpT)

n

where

Zg =Tr(—exp(—F/kgT))
_ Zexp (UN - En)
o~ kT

and
Tr(pe) =1

All these ensemble averages, equivalent to each other in the thermody-
namic limit, assume the system to be ergodic in probabilistic terms.

A quantum mechanical system is found to be ergodic only when the sys-
tem is nondegenerate, that is, no other observables are commuting with the
Hamiltonian [34].

Ergodicity breaking is accompanied also by a phase transition of sponta-
neous symmetry breaking at T.. Even at above T, the crystal, strictly speak-
ing, may not be ergodic because not all the phase space points allowed ener-
getically are sampled in a finite time of observation.

However, we do not have to stick to the ergodic hypothesis of equivalence
between time average and ensemble average when the lattice atoms are at
well-defined sites of crystallographic equivalence so that different regions of
the equipotential configurational energy surface would make essentially the
same contribution to the ensemble average.
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In glass, however, every site is at specific local environment of a specific
ligand and may not be equivalent to each other so that the permutation sym-
metry is broken. This permutation symmetry is equivalent to the statistical
symmetry with respect to the time average in fluids due to the spatial homo-
geneity.

With freezing into a structural state before internal state of equilibrium
is reached, that is, as the system is quenched, the internal equilibrium state
will get lost at the glass transition temperature T,. Above T, the ergodic
hypothesis of statistical mechanics holds so that thermal fluctuations would
drive the system at equilibrium to revisit the same state in a finite period of
time whereas glass is frozen at one minimum valley, leading to a difference
between time average and ensemble average over all the minimun valleys, and
becomes nonergodic below T},.

Glass transition temperature T,; depends on cooling rate when observation
is made in the cooling cycle but would depend also on thermal history when
observation is made in the heating cycle because ergodicity is broken in the
beginning [1, 35].

New excitations of some glassy degrees of freedom are expected to take
place as T" — T;’ . Two major relaxations are a strong cooperative dynam-
ics of a-relaxation and a weak faster [-relaxation as a continuation from
high temperature relaxations before a full strength cooperative moding. This
relaxation occurs from a landscape generality, and rearrangement over the
landscape energy barrier is a cooperative action of 3N + 1 coordinates.

In the ergodic region relaxations are of entropic type given by

T = T19exp(aAF/TS.)

where AF represents a free enegy barrier to rearrangement, and S, =
AC, InT/T}, excess configurational entropy with excess specific heat AC), =
b/T. When approximation is made of AS = AC,(Ty)(T — T})/T; we can
obtain the Vogel-Fucher equation [35]

T =T19exp(cTy/(T —Tp)) -

In the nonergodic region S. becomes time-dependent with an ultimate
relaxation to the Adam-Gibbs value of equilibrium where 7 becomes time-
independent [36]

Ergodic hypothesis may be generalized to mean that a system at equi-
librium can be found in any other accessible configuration corresponding to
a macrostate of various microstates with a probability given by Boltzmann
distribution exp(—FE/kgT). The ergodicity breaking is thus not possible at
T = 0 if the system is prepared strictly at equilibrium. Ergodicity breaking is
then put in by hand such as by the way of applying an infinitesimal field h to
restrict the trace sum average,

lim ( lim My)=M.
h—0 N—oo



Ergodicity, Replica Symmetry, Spin Glass and Quantum Phase Transition 111

However, we get a different result if there is no symmetry-breaking field
kept until taking the thermodynamic limit (N — o)
lim (lim My) =0
N—oo h—0
since fluctuations in a finite system have a finite lifetime, and lead to the

Gibbs average over two possible microstates of the thermodynamic ground
state at T = 0 as an equal mixture [1].

4 Replica Symmetry

Let’s consider a representative exactly solvable model of spin glass,
Sherrington-Kirkpatrick(SK) model, which is the infinite range (R — o0),
infinite number of interaction neighbors (2 — o0), and infinite dimensional
(d — o0), randomly disordered Ising spin glass model as described by [21, 37]

N
H=-— Z JijUiZO'jZ
i#]

P(J;;) = H (\/iexp(];!]i?))

i#£]

for a Gaussian probability distribution of quenched random variables J;; de-
scribing a pairwise interaction between any two spins at the sites ¢ and j. For
each spin o; all the other spins o;(i # j) form the coordinate neighbors of
interaction so that this SK model of infinite range interactions corresponds to
the space dimensionality of infinity in the N — oo limit.

The SK model of this infinite dimensionality should then have exact solu-
tion given by the mean field approximation.

For this randomly quenched disorder system the free energy F' is given by

F={(Fs)c=~ksT{{InZs))c

where partition function Z; is

b= (L)

with

with the subscript J representing a fixed set of quenched random variables
{Jij} supplied from the Gaussian distribution.

Direct calculation of F' is not trivial, and we make use of a mathematical
identity of replica trick to deal with Z; instead of In Z;

InZ = lim (1(2” - 1))

n—0 \n
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That is,

r—ur{ {1 (-3,

= lim F,

n—0

where we introduce n-replica free energy

1
F, = ——kpT(Z, — 1)
n

Q-

by defining the partition function of the n-replica systems [1, 11, 12, 37]

Zn = ((Z]))
:/DJP(J)Zy
/DJP H > exp< ZJW(“ (a))
a=1 {g(e)) T
n N
/DJZexp( TZZJija ZN )
n 2
; . p<2Nk2T2Z<Z i (a)> )
{o()} =1
N 1 < ?
=2 o <4l<:2 it 13T Z < ZUEQ)%@> )
o (@) i
~IL([w) 2
a#p {UEQ)}
! Y L -y () _(8)
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where the replica matrix Qg is given by
| X
B
Qus = 5 2 _(0”0”)
i
as satisfying 07, /0Q.s = 0. We can rearrange terms to rewrite [1, 12, 20]

- 11
Z”:H</dQ04ﬁ>eXp< k2T2 k2T2ZQ >

a,B



Ergodicity, Replica Symmetry, Spin Glass and Quantum Phase Transition 113

N 1 n N
X H Z exp (WZBQMQ( )azw)>

{o{™}
-1 ()
a3 /

11 N 1 &,
el peret T S Ee 2 Qi
o

where we have
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The above integral can be solved from the saddle point method (the steep-
est descent method) to give, in the thermodynamic limit, in the leading order
of N [12]

Zy ! N F(@)

Jide o] (@t

where Q* is the matrix for minimizing f (@) and giving the saddle point, that
is,

=0

0/(Q)
et |5 g

Replica symmetric solutions are obtained by assuming

Qop =¢q forall a and 8

corresponding to one and only one ground state in the system.
In the limit n — 0 we find

_ L1 e =L 1
flq) = 4I<:BT(1 q)° — kT 7oodz 7Wexp( 22)

i (e (15 03))
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where we have [11, 20, 37]

o0

d 1
= Z———=exX
q . o p

We can see that ¢ = 0 at 7' > 1 and ¢ — 1 at T" — 0. However, this
replica symmetric solution can be seen to be unstable at low temperatures of
T < 1, that is, det|0?f/0Q?| < 0, and give a negative entropy at very low

( — 122 tanh? <
2

o))

temperatures with Se = —1/2r at T =0 [11, 21, 37].

A correct low temperature solution of the replica matrix @ in the n — 0
limit is obtained by a replica symmetry breaking scheme of Parisi [1, 4, 11,

12, 38].

An infinite sequence of the symmetry breaking scheme improves the results
towards the true solution by introducing the continuous stability parameters.
By one-step replica symmetry breaking @ will assume the following new struc-

ture [1, 4, 11, 12].
011 ¢a
@10 qq
a0 qi ((90))
G191 q1 0
_ ((q0)) | ((q1))
Q =
((g0)) ((g0))
((90)) ((g0))
where
4o 40 40 490
_ 149090 90 ¢
(@)= g0 g0 g0 0| 2™
qo0 90 90 90

Further to the two-step replica symmetry breaking the new structure of

((q1)) =

0
a0 qgaq
g1 91 0 @1
G1qaq 0

the replica matrix @ is organized in the following form [1, 12]
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0 @1 q1
LD (@) (@) (@)
@1 q1]g2 0
0 g2
(@) 8 @) )
((q1))|gz O

(@) (@) @U@ (g
() |(@)

((90)) ((90)) ((q0)) ((92))|((q1))
((1))|((g2))

((90)) ((90)) ((90)) ((90))

where ((q1)) represents and ((gz)) represents

qa Q1 q2
a1 q 0

Starting from (n xn) matrix Q of n replicas where all the diagonal elements
are zero and all the off-diagonal elements are qo, we divide the matrix into (mx
m) matrix blocks where n/m is a complete integer. In the above illustration
of one-step replica symmetry breaking the (n x n) matrix @ can be seen to
be divided into (4 x 4) matrix blocks, ((g1)) and ((qo)).

In the two-step replica symmetry breaking the (m x m) matrix blocks are
further divided into smaller (I x1) matrix blocks where m/[ is again an integer.
In the illustration above we can see m =4 and [ = 2.

We can observe that the off-diagonal matrix blocks are left without any
change and only along the diagonal blocks new ¢ values are introduced in the
succeeding steps of replica symmetry breaking as in (mxm) ((¢1)) — and then
(Ix1) ((g2)) — block matrices derived from the preceding (n x n) and (m x m)
parent matrices, respectively.

All the n replicas are supposed to have the same microscopic distribu-
tion of randomly competing interactions {J} but do not represent the same
ground states degenerated from the frustration structures of the spin configu-
rations {0} so that they are macroscopically different. That is, replicas do not
correspond to valleys by one to one but certainly have nontrivial relations.

Instead of the two equivalent valleys, corresponding to +M and —M in the
ferromagnetic systems, separated by an infinite barrier of free energy, in the
spin glass systems of replica symmetry breaking solutions so many valleys of
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ergodicity breaking are formed with each valley containing many metastable
states separated by finite energy barriers [1, 4, 8, 10, 39].
As temperature is lowered phase space is broken into many valleys, that
is, different regions separated by energy barriers in free energy landscape.
Although each separated valley of infinite barrier in the N — oo limit has
the same value of g4 defined by

1S~ (o)
_ a)y |2
qeA = N ;—1 |<Ui i

overlap or closeness between two valleys a and b may well be defined as [1, 4,
12]

1 N
a b
Gop = 3 D_{ot" ol
i=1

The probability distribution function for this overlap parameter q,; defines
the order parameter function of spin glass as [1, 4, 40, 41]

P(q) =) 6(q— dav) -
a,b

Edwards-Anderson order parameter g4 then corresponds to a typical
overlap between two representative configurations inside the same valley qqq.
From the whole distribution of valleys only those valleys of the minimum free
energy are dominant to determine thermodynamics, and zero overlap can be
assumed for the probability distribution of free energy in a valley [12].

5 Glass Transition

One of the best understood model system for glass transition is the spin glass
characterized by a random distribution of quenched disorders and frustra-
tion. Glass transition in spin glass system has been understood mostly by the
Sherrington-Kirkpatrick(SK) model. Parisi showed from his low temperature
solutions of the SK model that glass transition should be an equilibrium phe-
nomenon of replica symmetry breaking. Mezard et al., exploring physics of
the replica symmetry breaking, succeeded to give a better understanding of
the replica physics in terms of overlaps, ultrametricity and non-self averaging
[4, 11, 12, 43].

A new type of ordering of the spin glass transition may be represented by
superposition of infinitely many pure states [4, 40, 44] which are not related
by simple symmetry transformations, and we may require a continuous order
parameter function instead of one single order parameter.

In contrast to this mean field replica symmetry breaking theory assuming
infinitely many pairs of pure states we have also the droplet model theory
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[1, 11, 45] based on one single pair of pure states where low temperature
behavior is described in terms of low energy excitations forming clusters of
coherent spin-flips.

At low temperatures a dilute gas of coherent clusters may be considered
as a common origin for the two level systems in glass [10, 40], and leading to
the asymptotic behavior of two states rather than infinitely many pure states.

A nonequilibrium signature of glassy systems can be verified with the aging
phenomena [, 9, 47, 48]. The glassy response function R(t,t,) of a very weak
and long memory can not easily be measurable, and instead, an integrated
response is used to introduce the time-dependent susceptibility x(¢, t,,)

t
X(t ty) = / R(t,t")dt’
t

w

where t,, represents a waiting time [1, 11, 15].

Fluctuation-dissipation theorem of equilibrium systems does not hold in
the aging systems of nonequilibrium, and x(¢,¢,,) can be approximated as a
sum of two separate contributions: a stationary part satisfying the fluctuation-
dissipation theorem and an aging part violating the fluctuation-dissipation
theorem [8, 9].

In the asymptotic limit of (¢ — ¢,,) > t,, we can approximate [3, 9]

C(t7 tw) = Cage (t, tw)
so that we may assume [9]

o Cone(tsta) = Top (Cage (1 00) Rage(t: 1)
where T, s represents an effective temperature, C(t,t,,) correlation function,
and R(t,t,) response function.

This definition of effective temperature introduces quasi fluctuation-
dissipation theorem in conformity with the fluctuation-dissipation theorem
of equilibrium system.

Glassy system, characterized by an extremely slow relaxation, may be
regarded as to be in quasi equilibrium over time scales much longer than
microscopic fast time scales but shorter than macroscopic slow relaxation
times. A more general extension of partial equilibrium in a limited subset
of relaxational degrees of freedom may be incorporated to nonequilibrium to
define an ensemble sampling of phase space components [49].

Many effective temperatures may be required to cover the whole nonequi-
librium regime so that glassy systems can be classified into three hierachical
groups according to T.rs dependence on Cyge(t,ty) [8, 9]. Coarsening sys-
tems, for example, are replica symmetric and described by two T.¢s values
with two time scales. Systems of one-step replica symmetry breaking also need
two T, sy values and two time scales, which include structural glasses and are
often referred to two time scale systems.
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Full scale replica symmetry breaking systems including spin glass are
known to have many time scales with a continuous spectrum of T,y values
[3, 9]. A special one-step replica symmetry breaking system of zero tempera-
ture glass transition is often referred as one time scale system because of no
stationary regime with nonequilibrium dynamics characterized by a T, .

In the region of C'(¢,t,) > grga corresponding to the stationary regime all
the above three classes of glassy systems are found to satisfy the fluctuation-
dissipation theorem [3, 9].

In the mean field limit N — oo the two-time correlation fuction

C(t,t) = (Si(t)Si(t))
and the linear response function

vanish for ¢ < ¢’ due to causality, and the correlation function develops a

plateau with C'(t —t') — qga near T R T, before decaying ultimately to zero
at very long ¢ [8, 9].
The plateau interval increases toward divergence at T = T, of the mode-
coupling theory in a power law and a dynamic crossover follows in C(t — t')
s [8, 9, 47
Clt—t)~qea+ At —t )% C>qga
~qea—Bt—1t)’, C<gqga

This plateau length sets the equilibration time scale so that the correlation
function would not decay to the equilibrium zero with a divergence of the
plateau length as temperature is lowered to T, [8, 9, 50].

Further below T, the spin glass system cannot go equilibrating but the
system evolution may go depending on initial states with ergodicity break-
ing, which brings about the permutation symmetry breaking between replicas
[10, 51]. Effective temperature can also be defined in terms of configurational
entropy or complexity in analogy with equilibrium temperature of Boltzmann
entropy to attempt a thermodynamic formulation of glassy states.

Within the mean field approximations the short-range models and the
infinite-range Sherrington-Kirkpatrick model are in qualitative agreements in
most of the results, although cooperative slow dynamics of glass was found to
involve only a few tens of atoms in nanometer scale cages [35, 52].

Discontinuous spin glass transition was predicted by models including g¢-
state Pott glass (¢ > 4) [53] and p-spin glass (p > 3) [54].

In the limit of p — oo and ¢ — oo the models correspond to the random
energy model [55] which can be solved without replica trick to show a discon-
tinuous jump from gga =0 (T' > Ty) to gqpa =1 (T’ < T,) at the transition
temperature T;. Random orthogonal model [56] is another model showing
the discontinuous transition where random quenched disorder variables .J;;
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are matrix elements in a random orthogonal ensemble of matrices satisfying
JijJji = dix. Both continuous and discontinuous spin glass transitions with
respect to gg 4 may be continuous in viewpoints of thermodynamic averages
as suggested by a notion that ¢(z) is a continuous function of x[0, 1] and ther-
modynamic quantity is given by an integral involving various moments of ¢(x)
[57].

The p-spin spherical model, showing a mean field discontinuous spin glass
transition, can be solved by one-step replica symmetry breaking to give the
spin glass solution. This implies that the phase space may be broken up into
all equivalent ergodic components separated by infinite barriers, when three
parameters may be sufficient to describe the equilibrium: the overlap between
two ergodic components, the overlap inside each ergodic component (equiva-
lent to gga), and the probability distribution that two different replicas will
be found in the same ergodic component [58, 59]. Ising spin p-spin model has
a more complex solution at very low temperature as obtained by infinite step
replica symmetry breaking [54].

The Thouless-Anderson-Palmer approach [60] based on the free energy
landscape topology, and the Sompolinsky approach [25, 26] of spin glass dy-
namics assume two separate regimes, corresponding to the equilibrium regime
and the nonergodic regime of quasi fluctuation-dissipation theorems, where
dynamics in a single ergodic component is important in the former regime
whereas slow dynamics across different local minima becomes important in
the time scales of the latter regime [8, 44, 48].

When dynamics is dominated by activation processes in the free energy
landscape with a broad distribution of barrier heights, the underlying con-
figurational space with the activation transition times as a metric becomes
ultrametric [61]. That is, the metastable spin configurations, with the ham-
ming distance of activation barrier, or equivalently, logarithm of relaxation
time, form the ultrametric space [62]. Considering a droplet of uniform spin
configuration in a size L, the droplet model of Fisher and Huse [15] is based
on the scaling assumption for the flipping free energy as L” and the kinetic
barrier against flipping of the droplet as LY. Hamming distance dy is then
defined, to measure a hopping distance between two different spin configura-
tions, as

dy < ((0R)?)

where 0 R represents random fluctuation in resistance R due to spin flip con-
figurations and ((6R)?) tends to simulate a variance of a Gaussian distribution
around zero [61].

Algebraic growth of inter-valley barrier height with increasing dy leads
to a logarithmic growth in time for dg(¢), and this logarithmic growth of
((6R)?) in time brings about 1/f noise [61]. Higher than the second moment
for ((§R)?) will be an implication for a non-Gaussian fluctuation. Once the
droplet completes an infinite percolation network this droplet picture must
be modified. The ultrametric dynamics as well as the droplet model leads to
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the same 1/f fluctuation spectra of magnetization, corresponding to a linear
response in a logarithmic time scale [63].

A local equilibrium state is defined such that a relative probability for a
system to be in the states within a finite volume of the configurational space
is given by Boltzmann distribution [10, 44]. That is, a state is represented by
a probability distribution function P(C') over the configurations C. Any local
equilibrium state may thus be represented by a sum over pure equilibrium
states, and thus pure states correspond to the extremal states of a convex set
of equilibrium states [10]. Different boundary conditions yield different local
equilibrium states, but intensive variables should not show fluctuations in the
pure states showing a clustering behavior [10, 44].

A dynamical transition at Ty > T}, is predicted in the discontinuous tran-
sition models as corresponding to the instability encountered with the mode
coupling theory of glass transition [8, 9, 59].

A zero frequency mode at Ty is considered to be responsible for divergent
relaxation time in glassy dynamics [9, 64, 65], and a speculation remains
whether this Ty instability may be a mean filed artifact which can be removed
by including activations over finite energy barriers [66, (7]. This instability
is also reminiscent of a spinodal development of instability in the first order
transitions [57].

A very large number of metastable states in proportion to exp(NC*)are
involved in dynamic response to the instability but free energy remains to be
in the paramagnetic phase in the region of Ty > T > T, [57].

As temperature is lowered further to 7, the number of metastable con-
figurations would decrease, and the free energy is decreased. A true thermo-
dynamic transition will then be reached when the metastable phase has free
energy equal to that of the paramagnetic phase.

In mean field theories the metastable states get an infinite lifetime, and
these mean field models of spin glass with a discontinuous transition (with
respect to ¢pa the Edwards-Anderson order parameter) would show a ther-
modynamic transition at Ty where the configurational entropy C* collapses
to zero with dynamics described by mode-coupling equations [57].

Statics and dynamics are not commuting in quantum mechanics, and the
dynamical instability may survive with the quantum phase transition at zero
temperature.

Non-dissipative quantum fluctuations can still generate disorders, driving
discontinuous phase transition at 7, > 0 to a continuous phase transition
at T. = 0. Dynamical instability of mode-coupling theory may then be sup-
pressed at T'= 0 by quantum fluctuations [57].

Model systems without disorders are shown to be possible to exhibit spin
glass dynamics due to a dynamic self generation of disorders [68].

Order parameter Q% = (a,(t)oy(t')) and response function R(|t — t'|) for
a = b can be shown to be related to the susceptibility as [57]
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1 ~
= —R
X0 kT 0

where Eo is given from the following transforms

1 27
5 iwpt o
R, = — ;:0 e R(t), Wp=—D.

In the static approximation of Bray and Moore [69], considering only the
zero frequency (p = 0) Matsubara mode, T; and T, coincide at T' = 0 so that
the transition may become continuous. That is, transition at 7' = 0 must be
continuous since there is no room for metastable phase.

Although incorrect results of thermodynamic quantities such as finite en-
tropy at 7' = 0 in the mean field glass of Sherrington-Kirkpatrick model and
infinite entropy in the random orthogonal matrix model remain as serious de-
fects of the static approximations, discontinuous transitions are well predicted
to become continuous at 7' = 0 as shown schematically in Fig. 4 [57].

qEA

(b)
AT,

0 r 0 r

Fig. 4. Numerical studies of static (7y) and dynamical (Ty) transitions of ROM
model in the static approximation [57]. (a) Phase boundaries in temperature (7')-
transverse field (I') plane, and (b) gra values along the phase boundary lines of
Ty(I') and Ty(I")

6 Quantum Phase Transition

Quantum phase transition was noted as an important problem in Fermi liquid
metals where the divergent susceptibility may lead to an infinitely strong
effective interaction between electrons [3].

This quantum critical point can be observed in the zero temperature con-
tinuous phase transition. As thermal fluctuations with increasing temperature
can cause a phase transition from order to disorder, zero point quantum fluc-
tuations tunable by an external control of pressure, field, etc. can cause a

phase transition from ordered to disordered phase.
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Critical divergence to infinity may well invalidate the Fermi liquid theory
of metals, when metals turn into a non-Fermi liquid at the quantum critical
point.

The standard ¢* theory of critical region employs an effective dimension-
ality deys = d+ 2 where d is the space dimension and z the dynamic exponent
to reflect a quantum mechanical mixing between statics and dynamics [70].

For systems of d.ss > 4, the upper critical dimension of the ¢*-model, the
mean-field theory, that is, the Gaussian approximation should give the exact
solutions. However, non-Gaussian localities of the quantum critical behaviors
have been reported [71].

Coexistence of a long-range spatial ordering and local critical fluctuations
is then expected to give novel anomalies as in the heavy fermion metals [72].
There are also quantum phase transitions without well-defined order para-
meter as in the disordered interacting electron system [13, 14]. Heisenberg
quantum spin glass was studied as early as in 1975 [2], where quantum effects
in the Sherrington-Kirkpatrick model spin glass were found to lower the tran-
sition temperature in quantum spin glass. Quantum fluctuations can indeed
drive the spin glass transition down to absolute zero [73].

Replica symmetry breaking is expected to vanish in the limit 7, — 0,
and quantum spin glass should become most interesting. Critical behavior of
a quantum spin glass will be same as that of a classical model in the phase
transition at nonzero temperatures except renormalizations of such nonuni-
versal quantities as T, by quantum effects.

Only at T, = 0 by tuning quantum fluctuations of quantum tunneling be-
tween ground states, being equivalent to a disordering field, a genuine quan-
tum phase transition of a different fixed point and different univerality class
will be realized.

One-dimensional Ising spin glass (due to no frustration this model maps
onto a random Ising ferromagnet) is ordered at T' = 0, and requires a finite
transverse field to go disordered, when a genuine quantum phase transition is
introduced with the Griffiths phase of divergent paramagnetic susceptibilitiy
(I > I.) [74, 75, 76, 77]. Excitations in spin glass phase of a quantum Ising
spin glass are known to conform with the droplet excitations of classical spin
glass [78]. Continuous quantum phase transition at T, = 0 is similar to those
at T, # 0 but with different critical exponents. The critical exponents are not
controlled by quantum fluctuations in the quantum spin glass of 7. # 0.

This is because kT > h{2., with 2. =1/7 ~ &% — 0, unless T, = 0 of
no thermal energy [74]. A spin glass system of LiHo,Y;_,F4(0.25 > 2 > 0.1)
was shown to have T, — 0 in a transverse magnetic field [79].

Quantum system of d-dimension can be transformed to a (d+ 1)-dimensional
classical problem. In fact, for uniform systems, quantum phase transitions
are no longer different from showing classical universalities. However, for
randomly quenched disorder systems the corresponding classical models be-
come quite anisotropic, and a simple correspondence cannot be applied [30].
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In the classical thermodynamic limit of infinite barrier height, nonergod-
icity sets in under thermal activation attempt, but the configurational en-
ergy barrier decreases in width with increasing system size so that quantum
tunneling may be enhanced to give an ergodic, that is, replica-symmetric spin
glass solutions [7, 74, 81, 82]. However, nonergodic solutions are also reported
[83].

7 Quantum Spin Glass

We have two distinctive models of quantum spin glass:

1. vector spin glass [69] where quantum fluctuations are not tunable,
2. transverse Ising spin glass, which is a classical spin glass perturbed by
tunable quantum fluctuations [84, 85, 80].

Statics of disorder-free H is quantum mechanically linked with Schroedinger
dynamics in an imaginary time axis equivalent to another extra space dimen-
sion where the correlation length becomes proportional to inverse energy gap
1/AE. Randomly distributed quenched disorders implicate no correlation in
space dimensions but time-independent perfect correlation in time dimension,
and this extreme anisotropy is expected to give & ~ (AE)* with z # 1 [37].
This nontrivial extreme anisotropy may be more suscptible to the Griffiths
phase in the quantum phase transition [37].

A good model of quantum spin glass is the transverse field Ising spin glass
model [7, 84, 85, 86] defined by

H= fZJijofoj—FZJf
ij i

where (i, 7) is restricted to the nearest neighbor pairs, and quenched disorders
{Jij} introduce frustration except for 1D system.

This quantum system H exhibits a 2nd order phase transition at 7' = 0
and I = I, characterized by [37]

&~ —T.7" and AE~w~E&-7

For 1D system, with a broad distribution function for critical properties
in logarithmic scales, a typical correlation length with critical exponent v =1
becomes different from an average correlation length of critical exponent v = 2
[37].

It is the logarithm of excitation energy gap rather than the energy gap
itself that maintains a scaling relation with the system size. Energy gap is thus
observed to decrease with increasing system size as an exponential function
instead of an algebraic dependence. This relation of (AE) ~ exp(—av/L) gives
z = oo since the inverse energy gap corresponds to the characteristic relaxation
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time of quantum tunnelling fluctuations, equivalent to the activation kinetics
in a classical spin glass [38, 89].

For 2D and 3D the numerical studies by quantum Monte Carlo simulations
agree with the scaling theory predictions of droplet model, where no broaden-
ing of the probability distribution in logarithmic scales with increasing system
size is confirmed, but x,;(w = 0) is found to diverge at I' = I, and T' — 0
quite strongly [90, 91] in sharp contrast to the experimental observations with
LiHOle_ZF4 [T()]

Although quantum phase transition in the infinite-range model of a trans-
verse Ising spin glass [92] gives a much weaker divergence in nonlinear sus-
ceptibiliy as compared with the short-range models, the contradiction still
remains between theory of transverse Ising spin glass and experiment which
yields the nonlinear susceptibility exponent verr ~ 0 at T' < 25 mK [79].

This SK model in a transverse field exhibits a continuous spin glass tran-
sition with mean field exponents [81, 82, 83, 84, 93].

Quantum Ising spin glass in 1D, due to no frustration entering the 1D
random system, described by a random Ising spin chain in a transverse field

— AR AR =
H=—- E Jijoio; E Lo
ij i

where J;; represents nearest neighbor coupling constraints and I5 the site-
dependent field strength, gives more interesting exotic results [76]:

(1) exponential scaling of relaxation time with VL, equivalent to a dynamic
scaling of 7 ~ L* with z — oo, where L represents system size,

(2) in the disorder phase of paramagnetic side, exponential decay of spin
correlation function as exp(—z/€) at a large distance with (£) = Ad~", where
0= (InJ;;) —(Inl;) and v = z.

This dynamic scaling can be shown to correspond to the energy gap scaling
with system size in the equivalent free fermion system conserving particle
numbers by mapping transformations of Jordan-Wigner and Bogoliubov [77].

One-dimensional characterisitics of the random quantum models, with
more distinctive effects from the Griffiths local criticality, was explored to
reconfirm by numerical studies [77]:

(1) unconventional dynamic scaling of an infinite dynamical exponent,

(2) broad probability distribution, and thus difference between the average
and the typical (most probable) value,

(3) divergent susceptibilitites inside the paramagnetic region as due to the
rare clustering fluctuations of the quenched random variables, which are
not found at all in the infinite-range model [74].

The T = 0 perspectives of quantum spin glass in realistic dimensions
(d = 2,3) mostly concern with a diluted dipolar Ising magnet LiHo, Yi_, Fy4
(Tsg ~0.13K at = 0.167, at x = 0.25 T. — 0)

E[Q = —ZJijUfJJZ- —FZJZ”
i.j i
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which can be transformed to, in the critical region,

Ho ==Y JySi(7)S;(7) - ZSi(T)Sz‘T(T +1)

,],T

where o;’s are Pauli spin matrices, S;’s are classical Ising spins, and the cou-
pling in the extra dimension of imaginary time is ferromagnetic [7, 74, 94].

The rare fluctuations of the random distribution {J;;} are closely related
to a perfect correlation of the J;; random bonds in the extra time dimension.

Thermodynamic limit of a quantum model in simulations corresponds to
a classical model of spatial dimension L — oo while the infinity limit of the
classical time dimension (L, — oo) corresponds to the " — 0 limit of the
quantum model in the finite size scaling analysis [74].

Monte Carlo simulations of quantum Ising spin glass in 2D [90] and 3D [91]
both show a finite temperature spin glass transition and a power law dynamic
scaling with a finite z.

Rare fluctuations in 1D give a divergence of susceptibily in the paramag-
netic phase to cause the Griffiths singularities. Rare clusters of strong bonds
will be formed with probability of P(L) ~ exp(—alL?), decreasing exponen-
tially with volume L% but the correlation length along the time-like axis in-
creases exponentially as & ~ exp(bL?) as given by the classical mapping of
the original quantum system [74].

Simulation studies of 2D and 3D confirm the power law tails for the local
susceptibility distributions [95, 96] as implied by the power law relationship
between P(L), that is, the local susceptibility and &, .

The non-universality in quantum spin glass models may be generic due to
the rare-fluctuation dominant effects of Griffiths phase [74]. The rare fluctu-
ations affect dynamics more directly than statics so that they may be more
important in quantum systems [7, 74, 87, 97, 98]. For example, the point de-
fects of rare fluctuation clusters in d-dimensional quantum systems are trans-
formed as propagating in the time-like direction to the (d + 1)-dimensional
classical models, and thus act like the line defects which should give stronger
perturbations than the same d-dimensional classical cases [74].
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Appendix

Quantum annealing and optimizations are the two main themes of the present
workshop. Since the first observation of the spin glass phenomena [99], after
more than 30 years of continuing great concerns from the core community of
condensed matter physics, this spin glass physics is steering for a new exciting
field of zero temperature physics, where quantum annealing and its application
to optimization problems will be leading the central themes with the present
workshop marking the epoch.

Classical spin glass is also far reaching to continue to create new complex-
ities, such as chaotic size dependence, invariant metastates, etc. [10, 100].

Quantum annealing is a quantum mechanical way of annealing the system
from the local minimum traps to the global absolutely lowest minimum.

Fine tuning of the quantum fluctuations, that is, quantum tunneling re-
mains effective even at T' = 0K when thermal annealing completely stops
working. Although macroscopic quatum annealing appears to be extrmely
rare, nature may have already hidden her success in quatum annealing and
optimization with electrons in atoms and molecules, bosonic condensates, or
even with black holes at quatum criticality.
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In this chapter, I will review the established theory of quantum systems cou-
pled to noisy condensed-phase environments, emphasising the central role
played by the spectral functions of the environmental fluctuations. I will show
how the application of the fluctuation-dissipation theorem to these functions
leads to important connections between the coherent couplings and incoherent
dynamics induced by the environment, and hence gives in-principle limits on
the entangling power of quantum gates. I will give examples of this connection
from condensed-matter and quantum-optical systems.

I will describe how such couplings may be expected to evolve under scaling
transformations. I will also describe how to tailor response functions in such
a way as to optimise the coherent evolution of the system, and describe a
novel proposal to exploit local optical excitation to control the evolution of
quantum states.

1 Qubits Coupled to a Bath

1.1 Quantum Operations

Conventionally in statistical mechanics we focus on the equilibrium properties
of a small system coupled to a large bath with which it can exchange energy
or particles. Now let us look instead at the dynamics in such a situation. If we
make some general unitary operation U on the system and its environment,
what is its effect on the system? First suppose that the overall density operator
is initially a direct product ps ® pg. (This is a significant approximation—we’ll
come back to it later.) Let {|e;)} be an orthonormal basis for the environment,
and let pp = |eg){eo| (i-e., suppose that the environment is in the pure state
leo)). This sounds like a further approximation, but in fact isn’t; suppose we
had an environmental density operator corresponding to the mixed state

PE = Zpi|¢i><1/’i\ ) (1)
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where the N states {t;} are not necessarily orthogonal but are normalized,
and ), p; = 1. Then we can always introduce an additional ‘far environment’,
F, with an orthonormal set of at least N states {|f;)}. The following pure state
of the combined FE + F' system,

7) =3 VElf) @

has the property that its reduced density matrix in the original environment
is

|lﬁ !’p| Z\/pzpjw}z ’(/}]|TTFHfz f] szhp qul—pE» (3)

and it is therefore indistinguishable (as far as any measurement within F
only is concerned) from the original density matrix pg. This is referred to as
a ‘purification’ of pg. For the moment we will suppose this has been done, and
the original environment E replaced by a new, bigger, environment (which we
will still, however label as E) in a pure state.

Now apply U to

E(ps) = TrplU(ps ® pr)UT| (4)
= (exlUlps @ leo) (o )T [ex) (5)
k
k
where .
Ey, = (ex|Uleo) - (7)
Note that
Trs[€(p)] = Trs | > ExpE[| = Trs | ElEwp| =1 (8)
k k
for any p, so it follows that
> ElE, =1s. (9)
k

What sort of thing is £7 It is more general than an ordinary operator, because
it acts on density operators of the system, not on states of it. Hence it is called
a super-operator [1] or a quantum operation [2].

The Requirements for a Quantum Operation

It is clear from the way £ was introduced that any quantum operation ought
generally to have certain properties.
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(a) Tt should preserve the normalization of the state:
TrE(p) =1 if Trp=1. (10)

(b) It should be linear:

£ (Zm) = Zpﬁ(@-) : (11)

(c¢) It is completely positive: if we choose any possible environment E and any
possible density joint density matrix p of the system and environment,
then the result of the composite operation (Z ® £)p is another positive
operator. (This requirement includes, but is more general than, the re-
quirement that £(pg) be positive for any system density matrix pg.)

Most generally, a quantum operation is simply defined as a map from density
operators to other density operators satisfying these conditions.

The Kraus Representation Theorem

It turns out that any quantum operation satisfying the conditions in Sect. 1.1
can be expressed in the form

E(p) = EwpE] (12)
k
with K
S E[E, =1. (13)
k

The formula (12) is known as the Kraus representation or operator-sum rep-
resentation of the quantum operation; the operators {Ey} are known as the
Kraus operator. For a proof see Sect. 3.3 of [1] or Sect. 8.2.4 of [2].

1.2 Examples
Unitary Evolution

Unitary evolution of the system by itself trivially has the form of a quantum
operation: R R

ps — UspsUS (14)
with

107 = 1 . (15)
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Probabilistic Unitary Evolution

Suppose our system remains isolated, but its Hamiltonian is uncertain because
of some (classical) random process. The result is that different Hamiltonians
may be applied with probabilities p;; the resulting evolution is

p— > pilsipsUL; , (16)

where Usg; is the unitary evolution associated with Hamiltonian ¢. This has
the form of a quantum operation with Kraus operators /p;Us;.

Von Neumann Measurements

Suppose we make a projective (von Neumann) measurement on our system. If
the operator we measure is O = Y o, |m)(m| =3, 0, P, then according
to the standard von Neumann measurement postulate, result o,, is measured
with probability p,, = (m|ps|m) = Trg[Pps]. In this event the state of the
system is replaced by Pmﬁslf’; /Pm.-

We can therefore regard the whole measurement process as that of replac-

ing
ps — me Z PmpS ) (17)

where by construction Y, P, Pf, = 3, P,, = 15. The von Neumann mea-
surement is therefore a special case of a quantum operation in which the Kraus
operators are the projection operators P,,.

1.3 The Lindblad Equation

The theory of quantum operations supposes that things just ‘happen’ to the
system’s density matrix—we don’t ask why, or how fast. Now let’s start looking
at the dynamics, but let’s do so on a timescale dt that has to satisfy two
conditions.

e t should be small compared with the characteristic timescale of the sys-
tem — so the system density matrix only evolves ‘a little bit’ in this time
interval (i.e. §t < Tg).

e But 6t should also be long compared with the time over which the envi-
ronment ‘forgets’ its information about the system (i.e. 6t > 7g).

Since we are beyond the timescale 7g, we might hope that the evolution of
the system will depend only on the present system density matrix, and not on
anything that has happened in the past. In that case the evolution through
time dt should be described by a quantum operation on the current system
density matrix. Our presentation follows that of Preskill [1]; the idea is to
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look for a suitable quantum operation such that pg should be altered only to
order dt:

ps(6t) = E(ps(0) = Y Erps(0)Ef = ps(0) + O(8t) . (18)
k

Thus it follows that one of the Kraus operators, Ey say, must be 1g + O(dt),
and the others must be O(v/dt). So, let’s write

o= is+ (x _ ;lff) o, (19)
B, =VotLy, k>1. (20)

Here K and H are Hermitian operators, but are otherwise arbitrary at this
stage; the operators Ly, are also arbitrary and are known as Lindblad oper-
ators (note that they need be neither unitary nor Hermitian). However, the
normalization condition on the Kraus operators requires

N EBE=1s = 1s=1s+ <2f(+ Zﬂik) St+0(6t)2 . (21)
k k

Hence 1

- i s

K= _5 ngLk ) (22)
and therefore

ps(5t) = {is + dt (K - lﬂﬂ 5(0) {is + ot (f(+ %Hﬂ

h
+6t ) Lup(0)L] (23)
k
= ps(0) - {;[H,ﬁsm)l + [ikﬁs(mi,t - 5175 (0), ﬁzik}} } ot
k
+0(6t)? (24)

where {A,B} represents the anti-commutator AB + BA. Taking the limit
0t — 0 we obtain the Lindblad master equation:

e s+ S [0l - s 2] e

Note that:

e If there were no Lindblad operators (i.e., if there were only one Kraus oper-
ator in the decomposition (18), this formula would reduce to the quantum
Liouville equation for a closed system:
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dp 1.~

= [ ps). (26)
We would then identify H as the Hamiltonian of the (closed) system.
However, there is in general to reason to suppose that the operator H
appearing in (25) is the Hamiltonian of the isolated system. Indeed, we
shall see later that there are (potentially important) corrections to it that
come from the interaction with the environment.
Indeed, H is not even unique; the equation of motion remains invariant
under the changes

A A N . N 1 - - N
Ly — Ly + lk].s, H— H+ 5 Z(ZZLI@ - lkLL) + b]-S ’ (27)
k

where {l;} and b are arbitrary scalars. The equation of motion also remains
invariant under an arbitrary unitary transformation of the Lindblad oper-
ators:

[A/k — Zukjf/j . (28)
J

The right-hand side of equation (25) is a linear functional of pg; it defines
the Liouvillian super-operator £ through

dps

—= = L[ps] . 29
i [ps] (29)

The formal solution to this can be written in the form of a time-evolution

super-operator:

ps(t) = V(T)ps(0) = T exp [ / c<s>ds] ps(0) | (30)

Here 7. is the same entity we previously called T: the time-ordering
operator that puts earliest times to the right and latest times to the left.
Provided the Liouvillian is time-independent, this can be simplified to

ps(t) = exp(Lt)ps(0) . (31)

Note however that this is not a recipe for efficient practical calculations; if
the dimension of the system’s Hilbert space is NV, a matrix representation
for £ would contain N* = N? x N? elements; directly exponentiating it
would therefore require O(NN'?) operations.

The term involving the Lindblad operators on the RHS of equation (25)
is known as the dissipator, written D[p]; thus we have

Llps] = 171, ps] + Dlps (32)
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e This is all in the Schrodinger representation, where the wavefunction (or
density matrix) is time-dependent but operators are not. An alternative
way of representing the information is to transfer the time-dependence to
the operators: we then require that the expectation value of any (system)
operator O be the same in either picture.

Trs[Ops(1)] = Trs[O(Vps(0))] = Trs[(VI(£)0)ps (0)] = TYS[OH(t)ﬁs(?)]j
33
where VI(t) = T, exp[fg L(s)ds], and the operator T_, orders in the

opposite sense to normal (i.e. earliest times to the left). Note that Op
obeys the equation of motion

dOy

fch o . 34
S =vioLtw (34)
In the case of a time-independent Liouvillian things simplify once again,
and R
~ .'. A dOH T A
On (t) = exp[L'1]O, arrale LY (t)On(t) . (35)

1.4 The Markovian Weak-Coupling Limit

We start by addressing in the simplest case, where the system is coupled
weakly to the environment and so perturbation theory is applicable. We sup-
pose that the Hilbert space of the system and the environment form a direct
product.

The Redfield Equation
Write the Hamiltonian as
ﬁ:ﬁs+ﬁE+ﬁ[, (36)

where only H; involves both the system and environment degrees of freedom.
We work in the interation representation with H; as the perturbation (so
Hy = Hs + Hp corresponds to uncoupled system and environment). So the
equation of motion of the density matrix in the interaction representation is

PO i), 1)) (37)

(All expressions will be in the interaction representation until further notice.)
This has formal solution

o) = 50)+ 5 [ ds (i)t (38)

which gives
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PO _ L)) - » / ds[Hy(t), [Hi(s).p(s))] . (39)

Tracing over the environment gives

VL) — Sl 0, 60] - 5 [ as Teel (o). (s A0 - ()

We now make

e Assumption 1. The first term on the RHS of (40) is zero. This is not
really an assumption: we can always absorb terms into the system Hamil-
tonian Hg so as to ensure that the mean value of the interaction Hamil-

tonian, averaged over the density matrix of the environment, is zero:
Trp[H(t)p(0)] = 0.

More importantly, we also make

e Assumption 2 (known as the Born Approximation in this literature).
We suppose that the density matrix factors approximately at all times
into p(t) = ps(t) ® pg, where pg is independent of time. This assumes
weak system-environment coupling.

Assumptions 1 and 2 together enable us to write

dps(t)
dt

:_% /0 ds Trp[A1(t), [Hi(s), ps(s) @ pr]] - (41)

We now make

e Assumption 3 (Markovian approximation, first part). We suppose that
the timescales over which the ‘memory’ represented by the integral in
equation (41) is important are sufficiently short that the system density
matrix is hardly different from its current value, so we can replace pg(s) —
ps(t).

Hence

dps(t)
dt

= —% /Ot ds Trg[H (t), [Hi(s), ps(t) @ pg]] - (42)

This is known as the Redfield equation. It is time-local (only involves pg(t)),
but still contains an explicit reference to the ‘starting time’ at ¢ = 0. This
dependence on the past can be made explicit by substituting s = ¢t — s/, in
terms of which

dps(t) L

- /0 ds' Trp[Hi (1), [Hi(t — &), ps(t) @ pel) . (43)

Now we make further
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e Assumption 4 (Markovian approximation, second part). We suppose that
we can extend the integral on the RHS of equation (43) to infinity without
significantly altering the results.

Thus we have

dﬁdst(t) - 7% N ds' Trp[H(t), [Hi(t - §), ps(t) @ pE]] - (44)
0

This equation is fully Markovian in the sense that it depends only on the
current density matrix pg(t) and contains no explicit reference to any other
time.

Assumptions 3 and 4 correspond to requiring that the time be large com-
pared with the timescale of the environment’s memory of what the system
has done to it: ¢t > 75.

Correlation Functions

To see what we’ve done, it helps to write equation (44) in terms of the corre-
lation functions of the environment. First decompose the interaction Hamil-

tonian into
ﬁ[(t) = Z Aa(t) ® Ba(t) ) (45)

where A is a system operator, and B is an environment operator. Note that,
although it is not necessary for each individual A and B to be Hermitian, the
Hermitian conjugate of each operator must also appear in the sum, so we can

also write
Hi(t)=>_ Al(t)® BL(t), (46)

Now define the correlation function
Cap(s) = Trp[BL(t)Bs(t — s)pp) = Tru[BL(s)Bs(0)ps] , (47)

where the second equality follows if the environment is stationary. (Note that,
viewed as a matrix, C' is Hermitian.) Now we can rewrite equation (44) as
dps(t) 1 [ . ) L
pst) 7/ ds' Trp[H (¢ — 8')ps() @ p i (2)
t h 0
— Hi(H)H(t — ')ps(t) ® pp] + h.c.

- 45 () As(t — 5)ps ()AL (1)
ap

T R2
— Al () Ag(t — s)ps(t)] + h.c. (48)

Now it’s clear exactly which environmental timescales have to be short: the
relevant 7 is the time beyond which the correlation functions of the environ-
mental operators that couple to the system decay.
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To go further we need an explicit form for the time-dependence of the
system operators A. It turns out that different approximations are useful in
the limit 7¢ < 7r (good qubits) and 75 > 7 (bad qubits).

1.5 Good Qubits — the Rotating Wave Approximation

If the system evolves very fast compared to any environmentally-induced re-
laxation, it makes sense to decompose the system operators into parts evolving
with definite frequencies. Hence we write

Aa(t) =D e A (w), (49)

where . .
Aw) = Y IeAa), (50)

ee’ S.b. e/ —e=hw

where IT(€) projects onto the eigenstates of Hg having eigenvalue €. A typical
example would be for a spin-1/2 system in a magnetic field with Larmor
frequency wp, where we could put

0.(t) = e “0lg, ety | (51)

So, now we have

ww!’

dﬁs(t) 1 > iws i(w —w A A A !
TR ) 053 o s ()4,

— ALW)Ap(@)ps ()] + b
= o 3 Laplw)e A ()ps (DAL ) — AL ) Aaw)ps )

ww!

+ h.c. , (52)

where -
Ip(w) = / dse“sC,a(s) (53)
0

is the causal (since it only involves s > 0) Fourier transform of the correlation
function Cyp3. We now make

e Approximation 5 (the Rotating Wave Approximation—-RWA). This cor-
responds to saying that any term like gilw—wt averages to zero on the
timescales relevant to relaxation processes, so we only need to keep terms
with w = w'.

This assumption simplifies our expression to
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o = e D a4~ A Aaps(0] e
’ (54)
Now we split up Iz as
Tap(@) = 3 Jap(@) + iSan(@) | (55)

2

where J,g(w) is the power spectrum of the correlations (i.e. the full Fourier
transform of the correlation functions)

Jop(@) = Tap() + T / ds €5 Cs(s) | (56)
and )
Sap(w) = Z[Faﬂ(w) — I, (W)] - (57)
We then find

dps(t) 1
dt p? zw:

=52 D Sapw)ALw)Asw) . (59)

(The subscript LS shows that this Hamiltonian term plays a similar role to
the Lamb shift in atomic physics — it modifies the Hamiltonian of the system
as a result of the coupling from the bath. We shall return to the importance
of this term in Sect. 1.10 below.) The dissipator is

o 1 - o
pu(0) = = ZZ’; Ias(@) [A@ps(DAL ) ~ FLAL Aal), ps(0)
w «

(60)
and may be put into conventional Lindblad form by diagonalising the matrix
Jop(w) = UAUT (where A is real and diagonal and U is unitary-recall J is
Hermitian) for each response frequency w. The result is that for each w one
obtains a set of Lindblad operators

L= (4) " UupAs(w) - (61)
B
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1.6 The Quantum Optical Master Equation

A classic case where this approach is valid is for an atom (the system) coupled
to electromagnetic field modes (the environment). In that case the environ-
ment is a set of harmonic oscillators:

Hg => "> hwpbl (k)ba(k) , (62)
kA

where A labels one of the two transverse polarizations for wavevector k and
by (k) is an annihilation operator. The interaction Hamiltonian is (in the elec-
tric dipole approximation)

N B A 21 hwy, 5 o4
~D-E--iD. exRbAR) — B, (63)
TRt

where V' is a normalization volume for the field modes and e} is a unit polar-
ization vector, We can decompose D in the same manner as before:

D(t) = Ze_thA(w) . (64)

The spectral correlation tensor is now

rw) = = /0 T ds e B (Bt - 9)) (65)
In thermal equilibrium (i.e. black-body radiation), we have
L) =8 | 30 800 (66)
with
J6) = g (e
i [ (222, 280)]

where P stands for a Cauchy principal value. Hence the Lamb shift Hamil-
tonian becomes

Hps =) nSw)A(w)Aw), (68)
and the dissipator is
w3 N .
Dips) = 3 a1+ n(@))(A)ps A1) — S{AT ) Aw), ps1)
w>0
w3 A ~ ~ a
£ Y (@) (A @)psd) - S{AWAT ). 5s)) . (69)
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Note that in both equations (68) and (69) the frequency sums go over the

(usually discrete) energy response of the system.
For a two-level atom with Hamiltonian
th

= T

5 0 (70)

(where wy is the energy difference between the ground and excited states, and
the minus sign gives us the usual convention that | T) = |0) is the ground
state and | |) = |1) the excited state), and transition dipole d, where we can
write

D(t) = d(6e w0t 4 g_etiwoty (71)

we find that the dissipator contains two Lindblad operators:

3
4wy

Li=1dly 353

[1+n(wo)lo4+; Lo =|d| (72)
Ly produces decay from the excited state to the ground state, while Lo pro-
duces excitation. The rates of each process are precisely consistent with the
values of the Einstein A and B coefficients.

To see how this affects the dynamics consider the limit 7' — 0, where
only emission and not absorption occurs. Then the one remaining Lindblad
operator is

S 0 1 . B 4w
L1ﬁ<0 0> with VT = |d| e (73)

Thus

9 (poo  por . 0 po1 P11 —3po1
— = I 2 . 74
ot (Plo P11 O\ —po 0 * —3p0  —p11 (74)

The solutions are

poo(t) = poo(0) + p11(0)[1 — exp(—I't)] ;

p11(t) = p11(0) exp(—1't) ;

po1(t) = po1(0) expl(iwo — I'/2)t] ;

p1o(t) = p10(0) exp[(—iwo — I'/2)t] . (75)

Notice that the population in the excited state |1) decays exponentially with
a time constant 77 = 1/I", whereas the off-diagonal elements of the density
matrix (‘coherences’) decay with a longer time constant Th = 2/T".

A very similar analysis can be made for the coupling to a phonon (rather
than photon) bath in magnetic resonance experiments.
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1.7 Bad Qubits—Quantum Brownian Motion

We now consider ‘bad’ qubits, where the system has very little chance to
evolve before the interaction with the environment takes effect — in other
words, where 75 > TRg.

First, we decompose the correlation functions in a different way to equation

(55), as
Dagp(r) = i([Ba(r), Bs(0)]) = 1 (Cap(7)) = Cptai (=7))
(the ‘dissipation kernel’) ;
Dijg(r) = ({Ba(r), B5(0)}) = (Cap(r)) + Cprat (7))
(the ‘noise kernel’) . (76)

Here o is the index labelling those operators A and B which are the Hermitian
conjugates of A, and B,. Hence

Cap(r) = 5D3(7) ~ iDag(r)]; (77)
Ctan (1) = [Carin (7)]* = 3 [D(r) +1Das(7)] (78)

Note that if the operators are Hermitian, then af = «, and both D and D)
are real:

Dop =i(Cop(1) = (Cap(1))") = —23Cap(1);
DE(T) = (Cap()) + Cpal—T)) = 2RCap(7) . (79)

Substituting in equation (44), we find

d,fsjt(t) _ % / dszcaﬁ )[As(t = 5)ps ()AL )

—AT()Aﬁ(t—S) s(t)+] + h.c.
1 1
- [ dsz[ DUNS)AL(®), (s (1), Ant — )]

+iDag(s)[AL(1), {ps(t), Ag(t — 5)}]
(80)

In order to go from the first line to the second, we have grouped together the
terms from operators o with those in the Hermitian conjugate part from
afpt.

Now, rather than make the decomposition (49) and use Approximation 5,
we make instead
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e Approximation 5’: since the system evolves very little during the time
over which the environment influences it, we write

Aglt = s) & Ag(t) — sAs(t). (81)
where § L )
Ag(t) = - [As(0), Hs (1) (52
(remember we are in the interaction representation).

Using this, we find

Pl [ DY) ()AL (), [p(6), As(t)]

+ 1Daﬂ( s)[A () {ps(t), Ap(1)}]
— D ()AL (1), [ps (1), Ap(1)]

— isDas(s)[AL (1), {ps (1), As()}]] . (83)

This gives us four integrals over s to perform.

1.8 Simplifications for a Harmonic Environment

To do this it’s helpful to write the correlation functions in the following way.
We suppose the environment is in thermal equilibrium: in that case the cor-
relation functions obey the conditions

Jap(—w) = e [Tt gt ()] . (84)
So, we lose no generality by writing
Jop(w) = [n(|w]) + jap(lw]) (v >0)
= n(lw))latgt (W) (W <0), (85)
where n(w) is the Bose occupation number

1

1 —exp(—fBhw) ’ (86)

n(w) =

which is real and satisfies
n(w) = e Phw [n(w)+1] . (87)

The advantage of doing this is that in certain circumstances (notably when
the environment is harmonic) the function j(|w|) is temperature-independent,
and all the temperature dependence is contained in the n(|w|) factor. We
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have already seen an example of this in Sect. 1.6, where j(w) = 4w3/3hc3,
but in fact it is generally true whenever the environment is harmonic and the
coupling to the system is by some combination of the coordinates z, of the
different modes g¢:

A A 9og9s
Boa=) gogtqy = Jap(w)= Z I wz S(w —wg) - (88)
q

Note that this also means that at a particular temperature and within these
approximations, one can always find a linearly-coupled harmonic environment
that mimics the effect of the actual environment via equations (85) and (88).
However, if anharmonic terms are present this ‘effective harmonic environ-
ment’ will have a temperature-dependent spectral function.

Thus the dissipation kernel becomes

Dap(7) =1[Cap(1) = Catar (=7)]
/ dw e—ﬂhw)Jaﬁ(w)e—iwr _ i/ (217:: sgn(w)jaﬁ(w)e_i‘”

—00

= 255[&xjaﬁ>shaaur>—-sxja5>cos<wr>1. (59)

Similarly, the noise kernel is
D3 (r) = [Cap(7) + Cprar (=7)]

* dw —pBhw —iwT
:/ ) Jag(w)e

* dw Bhw\ . i
= [ o sgn(w) coth <2) Jap(w)e

o0

_2 /O gw oth (5Zw>[%(jaﬂ)c()s(m)%(jaa)sin(u")]- (90)

™

Note how, if j is temperature-independent, all the temperature-dependence is
contained in the noise kernel D™ -hence the name.

Now back to those integrals. We can now do the time integrals using the
result

Rl 1
lim =97 47 = 1§(w) +1P <w> ) (91)

e—0t Jo

from which we get

/OO cos(wr)dr = 7 (w); (92)
0

/0  sin(wr)dr = P (i) (93)

/ Tsin(wr)dr = —i/ cos(wt)dr = —md’ (w) . (94)
0 dw Jo
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If jop is real (as it is in all the examples we’ve seen so far), we get

oo o0 h
/0 ds DSB)(S) = —77/0 dw japs(w) coth (ﬁ;)) d(w)

T ph
3 })%]aﬁ(w) coth (2> ; (95)

/000 ds Dys(s) = 2/00O dw ja'i)&; (96)

| assDasts) = = [ s/ 0) = w0 (97)
0 0

1.9 Brownian Motion with Ohmic Dissipation

The values of all these integrals depend critically on what happens to j,g in
the limit w — 0 (rather than as w — wy, as in the rotating wave approxima-
tion).

o If jop ~ wP with p < 1, the integrals diverge. We shall see later that this
is a symptom of the system’s behaviour being qualitatively changed by
its interaction with the environment; even the short-time propagation de-
scribed by equation (81) is not a good approximation to the true evolution
of the system.

o If jop ~ wP with p > 1, the first and last integrals vanish.

Hence the critical case (where the integrals neither vanish nor diverge) is
where jo3 o< w. This is known as Ohmic dissipation.
Assuming Ohmic dissipation, it is conventional to write

2Naph
Jap(w) = bty s w—0. (98)
T

The parameter 1,3 will turn out to be closely related to a damping rate or
viscosity. We also assume that j(w) — 0 for w above some upper cutoff (2; for
example, we could have

. 2ash 2?
Japw) = = (99)
Thus
oo
Wy T Bhw  2napkeT
/0 dsD,4(s) = 5 i%]ag(w) coth( 5 ) = - ; (100)
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Finally, at high temperatures (i.e., such that kT > h{2), we have

DU)(r) ~ AnapkpT2e™ 7, (103)

% o0 An,skpT
ds sDW (s) = HMapkB L ] 104
/o ssD;5(s) 7 (104)

Putting all this into (83), we get the following equation of motion in the
interaction representation:

%t(t) - % % [W[ﬁi(t), [ps(t), Aa(1)]

— DR 4 (1), [ps (1), An 0]

(%
I / 4w A1 (1), (ps(e), Ap(1))]
0

— 20ap1[AL (), {ps (1), As(t)}] | - (105)

We can make several simplifications:

e The third term in fact represents a purely Hamiltonian evolution, because
the a8 and [a contributions can be combined to give

1

STAL®). (s, As)] + 3 [Aa0), (s, ALY = 5[AL, Ag). 7], (106)

so this term looks like
. 0o .
A, p) with Heg = —/ dw 20 4t Ag} . (107)
h 0 w
This term can be thought of as the energy contribution from all the normal
modes of the environment relaxing to their new equilibrium positions as
the system slowly evolves. It is sometimes absorbed into the definition of
the system Hamiltonian, but its importance for us is once again that it
can be non-local; it can couple different, spatially separated, parts of the
‘system’, and hence can generate coherent interactions among the qubits.
e Remembering that p ~ mwox, where wq is the system’s intrinsic frequency
scale, we see that the second term is of order wq/f2 times the first. Since,
by assumption, wy < {2, we can neglect the second term.

This leaves us with the following master equation:

U = Tl + S | 2L L0, s (0. As(0)]
~2inasAL (1), {ps(t), As ()} (108)

This is the general form of the Caldiera-Leggett master equation [3].
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This can be further re-written if we notice that we can once again combine
the a0 and SBa contributions, this time to the last term, to get

A on 1.~ = R P 1 - .
AL {ps. Aal) = 51AL Aahps] + (ALpsda - F{Asdl g}
A 1 .. .
~ (Aapsil - jALAnps}) (109

Now let us simplify to the special case of a particle moving under a po-
tential V'(x), so the system Hamiltonian is

. ik
Hg=—+V(2), 110
s= 2+ V(@) (110)
interacting with a bath of harmonic oscillators with angular frequencies w
through the linear coupling

Hy=-%B with B= quzq = qu m(bq + b:g) . (111)
aWq

q q

Hence the coupling is to a single environmental operator B, and there is a
single relevant correlation function, for which
2

jw) =3 Ml 50—y (112)

. 2M wq

Then, coming back into the Schrodinger representation and looking at the full
time dependence of the density matrix, we find that equation (108) becomes

dps(t) 1., .. 2

U = L, ps] — 210, (50, 50)] + 05

h2

[2(2), [ps(t), 2()]]

(113)
This is the Caldeira-Legett master equation [3] for the density matrix of a
particle diffusing under the influence of a harmonic bath.

1.10 The Fluctuation-Dissipation Theorem and the Link
Between Coherent and Incoherent Evolution

In many circumstances, the qubits are localised objects (e.g. spins in bound
states) and the only connection between them comes via the environment. This
connection can, however, produce coherent dynamics, which (in a gate picture
of quantum computation) can produce an entangling two-qubit gate, or (in a
quantum annealing picture) can produce non-trivial quantum dynamics (such
as the propagation of a domain wall). We should then regard the ‘system’ as
consisting of the two qubits; the non-trivial coherent dynamics coupling them
comes from the Lamb shift term in equation (59). Note in particular that
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the part of Hyg that couples both qubits is proportional to those Sap(w) for
which one of the indices o and 3 comes from each qubit — it therefore depends
on the extent of correlation between fluctuations at the two qubit sites.

However, even in the ‘good-qubit’ limit described by the rotating wave ap-
proximation, this coherent dynamics is inevitably accompanied by incoherent
terms (corresponding to the dissiaptor in equation 60). Note that the incoher-
ent dynamics depends on the full spectral functions J,3(w), which are related
to the S, by the Hilbert transform

dw’ . (114)

o) / * /
Susty = L [ Vsl 5
T J oo Ww—w
Hence, if we trivially extend the definition of the Lindblad operators (61) to
arbitrary frequencies (not just the response frequencies of the system), we can
express the effective (‘Lamb-shift’) Hamiltonian induced by the environmental
coupling as

2 * dw’ [Zu LL,w'Lu,W'}
HLS_;%:/_OO o e . (115)
This relation links the component of the effective Hamiltonian linking two
states of the our particular system separated by frequency w, to the Lindblad
operators that would be appropriate for all possible different frequencies w’,
provided that thw coupling to the environment is kept constant [4].

This relationship between the coherent and incoherent parts of the re-
sponse is reminiscent of that embodied in the fluctuation-dissipation theorem
between the real and imaginary parts of a dynamical susceptibility. Suppose
that we take the same environment as before and couple it at ¢ = 0, not to a
quantum system, but to a time-dependent classical driving field:

Hl,class = f(t)Ba<t) . (116)

Then, as is well known, to first order in f the corresponding change in the
expectation value of B; (t) is

9(t) = 8(BL1) = | épalt =) f()dt (117)

where
$pa(7) = i([Bl(1), Ba(0)]) (118)

The corresponding response in the frequency domain involves the frequency-
dependent susceptibility:

9(w) = xpa(w)f(w) (119)

where
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1— e_ﬁwl)Jga(w’)
w—w' '

=
Xga(w) :/ dw’ (120)

— 00
Note that, since both the applied field and the response are now real, classi-
cal quantities, and their Fourier transforms therefore contain both positive-
frequency and negative-frequency parts, so does x. The negative-frequency
parts is suppressed by a factor e #“. The real and imaginary parts of y are
connected by dispersion relations, and hence the dissipative (out-of-phase,
hence imaginary) part of x is directly connected to the fluctuation spectrum
by

S(Xap(Ww)) + S(xpa(w)) = [Jap(w)n(w) + Jga(—w)n(-w)] . (121)

In our case, where the environment is driven by quantum-mechanical sys-
tems, we have to distinguish between positive-frequency processes (environ-
ment transiently absorbs energy from system A or B) and negative-frequency
(environment transiently gives out energy) processes. Both contribute to the
effective Hamiltonian (59), but they correspond to different types of decoher-
ence (i.e., to different Lindblad operators in the decomposition (25)).

1.11 Irreducible Decoherence and Decoherence-Free Subspaces

One elegant approach to designing quantum gates is to select states [1)) to
represent the quantum information which have the property that

Aal) =0 Va, (122)

i.e. are annihilated by the interaction Hamiltonian with the bath. Such a set
of states is known as a decoherence-free subspace [5, 6], and has the property
that it states within it are not affected by the action of H;. Its evolution
is ‘decoherence-free’. However, it is apparent from equation (eq:lambshiftdft)
that it is also entanglement-free: assuming (as we have all along) that the
qubits are spatially separated, there is then no interaction in the system that
can entangle one qubit with another.

Hence, the decoherence-free subspace does not give any absolute protec-
tion from decoherence during the operation of an entangling gate. The best
it can do is to guide us in the choice of qubit states to eliminate the most im-
portant decohering interactions, while retaining enough coherent interaction
to produce the desired qubit-qubit entanglement.

2 Scaling Transformations
for Partially Coherent Dynamics

2.1 Scaling for Thermodynamic Properties

Scaling transformations for the description of equilibrium properties, espe-
cially in the context of critical phenomena, are well established (see, for
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example, [7]). The essential idea is very simple to state: one looks for a new
Hamiltonian A’ that depends only on a reduced set of parameters {s'} but
which reproduces all the thermal averages of functions of {s'} that are com-
puted using the full Hamiltonian H:

1 N

H—H st lTrs[f(s’) exp(—ﬂff)] = —Try[f(s') exp(=BH')];

A VA
Z = Tr[exp(—4H)];
7" = Trylexp(~BH"));
F = —llogZ:AF—llogZ’. (123)

g B

One then looks for fixed points of this scaling, which describe the long-
wavelength thermodynamic properties of the system (the most important usu-
ally being the high-temperature, low-temperature and critical fixed points).

2.2 Scaling the Liouvillian

Suppose we now ask a different question: we start with a Liouvillian which
generates the time evolution of a set of degrees of freedom s:

ps(0) = ps(t) = exp(Lt)ps(0) - (124)

We now want to find a Liouvillian £’ that reproduce as much as possible of
the dynamics of some reduced set {s’} of the variables.

ps(0) = psr(t) = exp[L't]ps(0) . (125)
Of course, if the original evolution £ is purely Hamiltonian, i.e. if

1. -
Llp] = [H,p], (126)
then we have already solved this problem (at least in the limit where the
variables {s'} are weakly coupled to the others); the solution is given by
equation (48). How does this solution change if our starting dynamics is itself
only partially coherent? We now want to find an £’ generating an evolution
such that
ps () = exp[Lt]ps (0) (127)

describes the same physics as
por(t) = Try[exp[Lt]p, (0)] (128)

This is conveniently approached in the limit of the Time Convolutionless Pro-
jector Operator (TCL) method [8]. A full derivation will be presented else-
where and here we only describe the main result: the analysis leading to
equation (48) remains largely unaltered, but the correlation functions have
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to be evaluated in the presence of the dissipation already present in the en-
vironment. An study of the dynamics of the 1D disordered Heisenberg and
transverse-field Ising models by this approach is underway, and the results
will be reported elsewhere.

3 Quantum Gates via Optical Excitation

To conclude this chapter, we briefly set out the principles of a novel approach
to quantum information processing now being studied in a large project at our
laboratory at University College London (UCL). In a sense it is intermediate
between the conventional gate approach to quantum computing [2] and the
quantum annealing ideas being discussed in this volume, since — while formally
based on the a gate structure — it makes the maximum use of the intrinsic
dynamics of a quantum system.

3.1 Advantages of Localised States

The advantages of well localised states for the transmission of quantum infor-
mation can be seen from studying equation (115): if the environment has a
discrete spectrum (as is generally the case when bound states are involved),
the incoherent response occurs predominantly at a few isolated frequencies
which one can tune to be some distance away from the frequencies at which
the qubits themselves evolve, thereby suppressing the incoherent contribu-
tions to the dynamics. Indeed in such cases one can solve the time-evolution
equations more rapidly, without making the rotating wave approximation,
and can show that there are particular times when the environment is strictly
decoupled from the system. The environment is therefore capable of inducing
entangling interactions with very little decoherence of the qubits, provided
the energy scales and operation times are suitably chosen.

3.2 The UCL Project

In a major experimental and theoretical project underway at UCL, we are
working on realising a quantum gate whose principles are described in [9].
Simply stated, the idea is to take as qubits a set of electron spins bound at
a random array of defects, for example donors in a semiconductor such as
Si, and to switch exchange interactions between them by controlling optically
the orbital state of one or more additional ‘control electrons’. Although we
cannot hope to control the locations of individual dopants precisely on the
atomic scale, we can choose the overall dopant density so that the effective
exchange interaction is close to zero when the system is in its ground state,
but becomes appreciable (we estimate of order 10'° to 10! Hz) when there
is orbital excitation.



154 A. Fisher

We have shown that, for spin-1/2 defects and a spin-1/2 control system,
the parameters can in principle be chosen so that the qubits are returned to a
pure state at the end of the gate operation, despite their correlation with the
gate’s operation during the process [10]. Although experimental work aimed at
demonstration of the control of exchange couplings in our own system is still
in progress, we were encouraged to see the observation of optically-induced
entanglement in a related system (multiple spins in a semiconductor quantum
well) [11].

4 Conclusions

The subjects of quantum annealing and more traditional gate-based quantum
information processing are converging, and there is a need for a common set
of theoretical tools to understand the evolution of quantum systems in noisy
thermal environments. We have seen how the existing frameworks enable us
to study the limits of both ‘good’ and ‘bad’ quantum evolution, and put
quite general bounds on the relationship between entangling interactions and
decohering ones. Finally we have seen that some of the new scaling ideas
in this field will allow is to extract the long-distance, long-time response of
interacting and disordered quantum systems.
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1 Introduction

The standard deterministic, gate-based computation paradigms underlying
modern digital computing are not those that nature uses to perform complex
tasks such as finding the lowest energy states of spin glasses or proteins. In-
stead, for such complex problems, natural processes achieve their optima by
trial and error, where the extent to which ‘errors’ are accepted is determined
by the system temperature. Optima then follow by slow cooling from a high-
temperature, annealed state. Nearly three decades ago, Kirkpatrick, Gelatt
and Vecchi [1] suggested that for certain complex computational problems,
including for example that of the travelling salesman, it may be more produc-
tive to simulate natural annealing and cooling on a computer, using standard
Monte Carlo routines, rather than attempting to use classical mathematical
algorithms to find solutions. The appeal of simulated annealing is not only
that it can be applied to essentially any new optimization problem, but also
that it provides a language, namely that of the thermodynamics of complex
statistical mechanical systems, for describing why and how optima can be
reached. Motivated by this early work, we asked[2] the question of whether
quantum rather than thermal fluctuations could be used to relax a system of
many interacting degrees of freedom. The reason why this seemed like a good
question to ask is illustrated in Fig. 1 — quantum tunnelling makes transitions
to regions of phase space possible that might be very difficult to access via
classical, thermal barrier hopping.

To carry out meaningful tests of quantum annealing protocols in real sys-
tem, it is necessary to do the following

1. Find a system with a complex free energy surface where quantum and
thermal fluctuations can be tuned independently.

2. Establish that tunneling, rather than simply underlying thermal attempt
frequencies, is being tuned.

G. Aeppli and T.F. Rosenbaum: Ezperiments on Quantum Annealing, Lect. Notes Phys. 679,
159-169 (2005)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2005
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Classical (T)

Quantum (H)

Fig. 1. Schematic objective function (or free energy surface) for an optimization
problem as a function of a generalized configurational coordinate. From [2]

3. Try thermal and quantum annealing protocols to see if the results are
different.

The rest of this book chapter is devoted to the three components of the exper-
imental programme given above. We do not attempt to summarize the very
interesting theoretical developments (from [3, 4, 5, 6, 7] among others) in this
area which are described in great detail elsewhere in this volume.

2 System with a Complex Free Energy Surface
and Tuneable Quantum Fluctuations

Ising models with random interactions between spins display the full panoply
of complexity associated with spin glasses, and indeed hard optimization prob-
lems in general. Furthermore, in contrast to tunnelling quantum particles, for
which it is somewhat impractical to tune quantum fluctuations in a fixed
potential landscape as this would involve tuning their masses, an external
transverse field represents a useable tuning parameter. The corresponding
Hamiltonian is

N N
HZZJijafoj—i-FeZof (1)
i i

where the o’s are Pauli spin matrices located at lattice sites ¢ and j, the J;;’s
are longitudinal couplings, and I is an effective transverse field, perpendicular
to the Ising axis. In the classical limit where I, = 0, the commutator of H and
o vanishes, that any spin configuration is dynamically stable as long as there
are no couplings to other degrees of freedom, such as phonons. As soon as
I, becomes non-zero, the commutator also becomes non-zero, with the result
that Heisenberg’s equation of motion,

z
do;

dt

= (27h/i) [H, o7] (2)

becomes non-trivial.
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A material which is a good realization of the transverse field Ising model
is the transparent ferromagnet LiHoF, [8]. Figure 2 shows the underlying
face-centered tetragonal crystal structure. The magnetism is derived from the
incomplete 4f shells of the Ho®>" ions, and the primary interaction between the
ions, with their large moments and tightly bound f electrons is the magnetic
dipolar coupling. The crystal field imposes a strong Ising anisotropy, causing
the spins to prefer an orientation along the crystal z(tetragonal)-axis. It is the
fact that the dipolar interaction can be ferro- or antiferromagnetic, depending
on the angle between the displacement vector separating the two spins and
the Ising axis, that introduces frustration into the spin network upon dilution,
and eventually leads [9, 10, 11, 12] to a spin glass rather than a ferromagnetic
ground state as the Ho sites are partially populated by Y in the dilution series
LiHOle_pF4.

/
a
Fig. 2. Pure and Ho-site diluted (with Y) Li(Ho, Y)F,, illustrating the mechanism
by which dilution of magnetic Ho by non-magnetic Y first introduces defects into the
underlying ferromagnetic state, and eventually cause ferromagnetism to be displaced
entirely by spin glass behaviour

Figure 3 represents the phase diagram as a function of the transverse field
and temperature [8]. There is a zero-field Curie temperature of T = 1.53 K,
which is suppressed to zero at a quantum critical point occurring at H; =
50kOe (the laboratory field responsible for I, in (1)). The dashed line in
the figure is derived from mean field theory which takes account of only the
electron spins, while the solid line includes the nuclear spins as well [8, 13]. The
deviation of the solid from the dashed line below 7" = 0.5 K is due to the cross-
over from nuclear spins behaving as an incoherent bath for the electrons to
forming composite nuclear-electronic objects, whose interacting z-components
(i.e. along the Ising axis) are more stable with respect to the transverse field
than those of the electronic moments by themselves.



162 G. Aeppli and T.F. Rosenbaum

60 T T T T T T T

0r Ferromagnet 1
0 1 1 1 1 1 1 L
[«] 04 0.8 1.2 1.6
T (K)

Fig. 3. Phase diagram as a function of laboratory transverse field H; and temper-
ature 7" from [3]

A quantum critical point at 7" = 0 is retained upon dilution of Ho with Y to
create first disordered ferromagnets and then the spin glasses [11, 12], although
the overall shape of the phase boundary is considerably altered, due probably
in some measure to the fact that there is no longer an extended incoherent
nuclear spin regime coexisting with electron spin ordering. Figure 4 shows the
important phase diagram [2] for our present purposes, namely that for the
disordered ferromagnet LiHog 44Y o 56F4. The zero-field Curie temperature is
suppressed to a value given by the expected (according to mean field theory)
occupancy fraction p = 0.44 of the rare earth sites multiplied by Te(p = 1) =
1.53K. The T' = 0 quantum critical field H¢ is also reduced substantially.

However, simple scaling of Ho with p at T' = 0 is not expected to work
because of the influence of the nuclear spin interactions as well as the fact that
the effective transverse field I, does not scale linearly with the external trans-
verse field, although it can be calculated with high accuracy from the known
crystal field Hamiltonian such that for low laboratory fields Hy, I, ~ H? [2].
Figure 5 demonstrates [14] that even though there are long time relaxation
phenomena associated with the glassy domain wall state labelled G in Fig. 4,
the system at low temperatures displays conventional hysteresis as a function
of small external longitudinal fields. What is very significant and interesting,
though, is that the extent to which the loops are closed, magnified in the dif-
ference curves of Fig. 5b, is larger for the higher transverse fields closer to the
quantum critical point. This means that the transverse field eases the motion
of the walls over pinning centres, something we address more quantitatively
in the next section.
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25

D

20p

H (kOe)

Fig. 4. Phase diagram for LiHoo.44Y0.56F4 as a function of temperature T' and an
external (laboratory) transverse field H;. The material behaves like a conventional
ferromagnet in the region labelled FM, and shows slow relaxation in the glassy
domain wall state labelled G. The lighter and the darker trajectories and points A,
B, C and D refer to the data in Fig. 9 below. (From 2)

3 Demonstration of Domain Wall Tunnelling
as the Dominant Mechanism
for Low Temperature Magnetic Relaxation

We have measured the relaxation spectrum for the ordered state in LiHog 44
Yo.56F4 using ac susceptometry. Figure 6 shows data obtained for a variety
of fields for low temperature. From the semi-logarithmic plot, it is apparent
that x ~ In f over a range extending through several decades of f for the
highest transverse field, H; = 9.6 kG. The In f dependence terminates at an
upper cutoff f, which we can use as a proxy for the entire dynamics of this
ferromagnetic domain wall glass. One thing that is immediately clear is that
raising H; by less than a factor of two from 5.6 to 9.6kG increases f, by
nearly two orders of magnitude, suggesting a very dramatic quantum-induced
speedup of the spin dynamics. To see whether this speedup is associated with
genuine quantum tunnelling or due to increase in the attempt frequency for
thermal barrier hopping, we have made the Arrhenius plots of Fig. 7 which
shows a clear cross-over from classical thermally activated behaviour at high
T (low 1/T) to a T-independent rate at low T'. The latter is of course precisely
what is expected for a quantum process, and indeed, its dependence on H;
and T can be modelled by an expression including the incoherent addition of
thermal and quantum processes,
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Fig. 5. Frame (a) shows hysteresis loops for LiHog.44Y0.56F4 (observed using InAs
Hall bars depicted in inset) as a function of longitudinal fields for fixed temperatures
and transverse fields as indicated. The lower frame (b) shows the difference curves
between upward and downward longitudinal field sweeps, revealing that the degree
of openness (amplitude of difference) can be reduced by either raising T for fixed I’
or raising I" at fixed low T'. (From 14)

2
f=Fy |exp(—Ar/T) + exp <2w0 ZZFAF>

The observation of the Arrhenius law at high temperatures allows the
barrier height Ap to be fixed, while the barrier width wy can be set equal to
the mean distance between Ho ions. Finally, the underlying attempt frequency
Fy, due to an underlying (quantum) bath, is assumed to be the same for the
Arrhenius and WKB processes. The low temperature speedup is then entirely
accounted for the effective mass mp of the tunnelling domain walls, which
we can extract from the data in absolute units. The solid lines on the left
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Fig. 6. Frequency (f)-dependence of the real part of the magnetic susceptibility
for transverse fields indicated. Inset shows the magnetic susceptibility above the
high-frequency residual, scaled by the square root of the critical field to the applied
field, to be a universal function of the ratio of the measuring frequency to the cutoff
frequency. (From 2)

hand of Fig. 7 correspond to the very simple model as just described, and
Fig. 8 shows how m varies with the effective transverse field I.. As I, is
increased, the walls become lighter, exactly as expected based on the theory
of the transverse field Ising model. It thus seems that the highly ramified
domain wall state in LiHog 44Y.56F4 relaxes via quantum tunnelling of wall
segments, which behave like simple quantum particles with tuneable masses!
We are able to obtain a quantitative estimate of the area of the tunnelling
segments simply by dividing the observed masses by those calculated for a
one-dimensional model with the same average ferromagnetic coupling, and
deduce that the tunnelling process involves a correlated flip of approximately
10 Ho moments.

4 Comparing Quantum and Thermal ‘Computations’

We are now in the position to check whether quantum annealing is an
interesting option for computation. The problem we pose is the optimal
(lowest energy) placement of domain walls in the disordered ferromagnet
LiHop 44 Y¢.56F4. The program for the computation consists of the schedule
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Fig. 7. The main frame shows how the cutoff frequency f, for the In f behaviour of
x depends on T" and effective transverse field I'., expressed in Kelvin and calculated
from the known crystal field. The smaller right hand frame gives the effective domain
wall mass and pinning barrier height extracted from the analysis described in text.

(From 14)

computer

f input /
classical quantum
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Fig. 8. Analogy between quantum computation and quantum/thermal annealing

experiments on LiHog.44Y0.56F4
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for thermal and quantum cooling steps, as illustrated by Fig. 8 which refers
to the phase space trajectories in Fig. 3. For quantum and thermal compu-
tations, we enter the ordered phase by reducing H; at fixed T or reducing
T at fixed Hy, respectively. The read-out of the computation’s outcome, i.e.
the final state of the sample, is the bulk f-dependent susceptibility, and is
displayed for the various points in phase space also marked in Fig. 3. Figure
9 shows the experimental results. We note that as one might hope for, what
occurs above the quantum critical point at low 7T is independent of sample
history. On the other hand, there are progressively more dramatic differences
between quantum and thermal programs for phase space points in the ordered
state. Most dramatic is the appearance of much faster(by a decade and half)
dynamics for quantum rather than thermal cooling. What this means is that
the state which is reached via the quantum ‘computation’ has landed the sys-
tem in a different part of the free energy landscape, namely one where there is
intrinsically more ability to tunnel in and out of minima — i.e. where pinning
potentials are weaker. While we cannot make a rigorous statement that the
energy of this state is lower because we have not examined heat release, the
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Fig. 9. Comparison between x’(f) for thermal and quantum routes to states at
conditions labelled by letters A-D in Fig. 3. (From 2)
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odds are good that its entropy is higher. The other thing that can be said is
that the quantum ‘computation’ reveals the logarithmic nature of x'(f) much
more clearly than the classical route, and so gives us much greater confidence
in establishing the marginally stable nature of the ferromagnetic domain wall
state of LiHog 44 Y0.56F 4.

5 Conclusions

We have tested the hypothesis of whether quantum annealing can lead to
a different outcome in a highly complex optimization problem, namely that
of domain wall placement in a disordered ferromagnet, than thermal anneal-
ing. The hypothesis was indeed verified by experiments, which now raises
interesting questions for the future. Arguably the most fascinating concerns
the relation of our results to conventional quantum computation and con-
cepts such as entanglement [15]. We would argue, as sketched in Fig. 10, that
quantum annealing actually entails many genuine quantum computations on
scales of order the coherence volumes for the underlying domain wall tun-
nelling processes, but harnessed in parallel in an incoherent fashion over our
> mm scale sample to reveal something interesting about its preferred state.

\

coherent region
/ if gate -based

Fig. 10. Schematic of how quantum annealing can be considered an incoherent par-
allelization of smaller coherent quantum computations, exemplified by the tunnelling
of domain walls illustrated at right (adapted from [14])
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1 Introduction

The idea of quantum annealing (QA) is a late offspring of the celebrated sim-
ulated thermal annealing by Kirkpatrick et al. [1]. In simulated annealing, the
problem of minimizing a certain cost (or energy) function in a large configu-
ration space is tackled by the introduction of a fictitious temperature, which
is slowly lowered in the course of a Monte Carlo or Molecular Dynamics sim-
ulation [1]. This device allows an exploration of the configuration space of the
problem at hand, effectively avoiding trapping at unfavorable local minima
through thermal hopping above energy barriers. It makes for a very robust
and effective minimization tool, often much more effective than standard,
gradient-based, minimization methods.

An elegant and fascinating alternative to such a classical simulated an-
nealing (CA) consists in helping the system escape the local minima through
quantum mechanics, by tunneling through the barriers rather than thermally
overcoming them [2, 3]. Experimental evidence in disordered Ising ferromag-
nets subject to transverse magnetic fields showed that this strategy is not
only feasible but presumably winning in certain cases [1]. These experimen-
tal results were confirmed by a Path-Integral Monte Carlo (PIMC) study of
an Ising glass model, were the crucial role played by Landau-Zener tunneling
events was also pointed out [5].

In essence, in quantum annealing one supplements the classical energy
function — let us denote it by H. — with a suitable time-dependent quantum
kinetic term, Hy;,(t), which is initially very large, for ¢ < 0, then gradually
reduced to zero in a time 7. For the Ising glass case, for instance, H., =
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RBAUO1LX5H, COFIN2003 and COFIN2004, and by INFM ( “Iniziativa trasver-
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-> (i) Jijoio; represents an Edward-Anderson disordered Ising model, while
a very natural choice for Hy;,, suggested by the experiment [4], is given by

the transverse field term Hy,,(t) = —I'(t) Y, 0f. At zero temperature, the
quantum state of the system |¥(t)), initially prepared in the fully quantum
ground state |¥y) of H(t = 0) = H. + Hyin(0), evolves according to the

Scrédinger equation

(1)) = [Ha+ Hion (1]0(1) (1)

to reach a final state |[¥(t = 7)). A crucial basic question is then how the
residual energy €,.5(7) = F fm(T) — Eopt, decreases for increasing 7. Here E,
is the absolute minimum of H,, and Ey;,(7) is the average energy attained
by the system after evolving for a time 7, so that

((7)[(Het — Eopt) ¥ (7))
(@ ()| (7))

Generally speaking, this question has to do with the adiabaticity of the
quantum evolution, i.e., whether the system is able, for sufficiently slow
annealing (sufficiently long 1), to follow the instantaneous ground state of
H(t) = He + Hyin(t), for a judiciously chosen Hy;y, (t). (The fictitious kinetic
energy Hyin,(t) can be chosen quite freely, with the only requirement of being
reasonably easy to implement.) For this reason, this approach has also been
called Quantum Adiabatic Evolution [6].

At the level of practical implementations on an ordinary (classical) com-
puter, the task of following the time-dependent Schrédinger evolution in (1)
is clearly feasible only for toy models with a sufficiently manageable Hilbert
space [3, 6, 7]. Actual optimization problems of practical interest usually
involve astronomically large Hilbert spaces, a fact that calls for alternative
Quantum Monte Carlo (QMC) approaches. These QMC techniques, in turn,
are usually suitable to using imaginary time quantum evolution, where the
thoy in (1) is replaced by —hd;. One of the questions we have recently ad-
dressed, in the context of simplified problems [7], is whether an imaginary-time
Schrédinger evolution changes the quantum adiabatic evolution approach in
any essential way. The answer to this question appears to be that, as far as
annealing is concerned, imaginary-time is essentially equivalent to real-time,
and, as a matter of fact, can be quantitatively better [7].

A number of recent studies have applied Path-Integral Monte Carlo
(PIMC) strategies to QA. A certain success has been obtained in a number of
optimization problems, such as the folding of off-lattice polymer models [8, 9],
the random Ising model ground state problem [5, 10] (see Sect. 4.2), and the
Traveling Salesman Problem [11] (see Sect. 4.2). On the other hand, for the
interesting case of Boolean Satisfiability — more precisely, a prototypical NP-
complete problem such as 3-SAT — a recent study of our group shows that
PIMC annealing performs definitely worse than simple CA [12] (see Sect. 4.2).

eres(T) = Efin(T) - Eopt =

(2)
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In view of these results, it is fair to stress that it is a priori not obvious
or guaranteed that a QA approach should do better than, for instance, CA,
on a given problem. Evidently, the comparative performance of QA and CA
depends in detail on the energy landscape of the problem at hand, in particular
on the nature and type of barriers separating the different local minima, a
problem about which very little is known in many practical interesting cases
[13]. That in turn depends crucially on the type and effectiveness of the kinetic
energy chosen. Unfortunately, there is still no reliable theory predicting the
performance of a QA algorithm, in particular correlating it with the energy
landscape of the given optimization problem. Nevertheless, it is important to
stress that QA is not a universal key to hard NP problems: indeed, one can
think of trivial optimization problems, like the random Ising ferromagnet in
one-dimension [7], where QA (as well as CA) will be by necessity slow.

In order to gain understanding on these problems, we have moved, more
recently, one step back and concentrated attention on the simplest textbook
problems where the energy landscape is well under control: essentially, one-
dimensional potentials, starting from a double-well potential, the simplest
form of barrier. On these well controlled landscapes we have carried out a
detailed and exhaustive comparison between quantum adiabatic Schrodinger
evolution, both in real and in imaginary time, and its classical deterministic
counterpart, i.e., Fokker-Planck evolution [7]. This work will be illustrated in
Sect. 2.1. On the same double well-potential, we have also studied [14] the
performance of different stochastic approaches, both classical Monte Carlo
and Path Integral Monte Carlo. Some of this work, which turns out to be
quite instructive, is briefly presented in Sect. 4.4.

The rest of the Chapter is organized as follows: Sect. 2 illustrates the
deterministic annealing approaches applied to toy problems, essentially the
minimization of a function of a continuous coordinate. Section 3 discusses the
crucial role played by disorder and the issue of Landau-Zener tunneling in
QA. Section 4 introduces the Path-Integral Monte Carlo techniques, and il-
lustrates some of the recent applications, notably on the random Ising model,
on the Traveling Salesman Problem, and on Boolean Satisfiability problems.
Section 5 discusses alternative approaches to optimization, including a dis-
cussion of Green’s Function Monte Carlo QA, which seems to be a promising
tool for future QA studies. Section 6, finally, contains a brief summary of the
main points, and some concluding remarks.

2 Deterministic Approaches on the Continuum

Conceptually, one of the simplest problems to illustrate is that of finding
the global minimum of an ordinary function of several continuum variables
with many minima. Suppose the classical Hamiltonian H. mentioned in the
introduction is just a potential energy V(x), (with x a Cartesian vector of
arbitrary dimension), of which we need to determine the absolute minimum
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(Xopts Eopt = V(Xopt)). Assume, generally, a situation in which a steepest-
descent approach, i.e., the strategy of following the gradient of V', would lead
to trapping into one of the many local minima of V', and would thus not
work. Classically, as an obvious generalization of a steepest-descent approach,
one could imagine of performing a stochastic (Markov) dynamics in x-space
according to a Langevin’s equation:

S e
X = 77(T)VV( )+ (1) (3)

where the strength of the noise term & is controlled by the squared correla-
tions & (t)&;(t') = 2D(T)5;;6(t — t'), with € = 0. Both D(T) and n(T) — with
dimensions of a diffusion constant and of a friction coefficient and related,
respectively, to fluctuations and dissipation in the system — are temperature
dependent quantities which can be chosen, for the present optimization pur-
pose, with a certain freedom. The only obvious constraint is in fact that the
correct thermodynamical averages would be recovered from the Langevin dy-
namics only if n(T)D(T) = kgT, an equality known as Einstein’s relation
[15]. Physically, D(T') should be an increasing function of T, so as to lead
to increasing random forces as T increases, with D(T = 0) = 0, since noise
is turned off at 7' = 0. Classical annealing can in principle be performed
through this Langevin dynamics, by slowly decreasing the temperature 7T'(t)
as a function of time, from some initially large value Ty down to zero. Instead
of working with the Langevin equation — a stochastic differential equation —
one might equivalently address the problem by studying the probability den-
sity P(x,t) of finding a particle at position x at time ¢. The probability density
is well known to obey a deterministic time-evolution equation given by the
Fokker-Planck (FP) equation [15]:

L
n(T)

Here, the second term in the right-hand side represents the well known dif-
fusion term, proportional to the diffusion coefficient D(T), whereas the first
term represents the effect of the drift force — V'V, inversely proportional to the
friction coefficient n(T") = kgT/D(T) [15]. Annealing can now be performed
by keeping the system for a long enough equilibration time at a large temper-
ature Tp, and then gradually decreasing T to zero as a function of time, T'(¢),
in a given annealing time 7. We can model this by assuming T'(t) = Tp f(t/7),
where f(y) is some assigned monotonically decreasing function for y € [0, 1],
with f(y < 0) =1and f(1) = 0. In this manner the diffusion constant D in (4)
becomes a time-dependent quantity, D; = D(T(t)). The FP equation should
then be solved with an initial condition given by the equilibrium Boltzmann
distribution at temperature T'(t = 0) = Ty, i.e., P(x,t = 0) = e~V X)/ksTo,
The final average potential energy after annealing, in excess of the true mini-
mum value, will then be simply given by:

% P(x,t) = div (PVV) + D(T)V2P. (4)
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€res(T) = / X V(x) P(x,t = 7) — Eop >0, (5)

where E,,; is the actual absolute minimum of the potential V.

In a completely analogous manner, we can conceive using Schrodinger’s
equation to perform a deterministic quantum annealing (QA) evolution of the
system, by introducing quantum fluctuations through a standard kinetic term
Hpin(t) = —(h?/2m;)V?, with a fictitious time-dependent mass m;. We are
therefore led to studying the time-dependent Schrodinger problem:

&h o (e, 1) = [V + V)] v 1) (©

where £ = i for a real-time (RT) evolution, while £ = —1 for an imaginary-time
(IT) evolution. Here I'(t) = h?/2m; will be our annealing parameter, playing
the role that the temperature T'(¢) had in classical annealing. Once again we
may take I'(t) varying from some large value I at t < 0 — corresponding
to a small mass of the particle, hence to large quantum fluctuations — down
to I'(t = 7) = 0, corresponding to a particle of infinite mass, hence without
quantum fluctuations. Again, we can model this with I'(t) = Iy f(¢t/7), where
f is a preassigned monotonically decreasing function. A convenient initial
condition here will be ¥ (x,t = 0) = 1p(x), where 1y(x) is the ground state
of the system at ¢t < 0, corresponding to the large value I'(t) = I and
hence to large quantum fluctuations. For such a large I', the ground state
will be separated by a large energy gap from all excited states. The residual
energy after annealing will be similarly given by (5), where now, however, the
probability P(x,¢ = 7) should be interpreted, quantum mechanically, as:

)
POt = o 0P

In general, the residual energy will be different for a RT or an IT Schrodinger
evolution. We will comment further on RT versus IT Schriodinger evolution
later on.

In the remaining part of this section, we will present some of the results
obtained along the previous lines on simple one-dimensional potential [7],
starting with the simplest example of a problem with two minima separated
by a barrier.

2.1 The Simplest Barrier: A Double-Well Potential

Consider, as a potential V(x) to be optimized, a slightly generalized double-
well potential in one-dimension

(22 —a2)?
Voaijr + oz forz >0

Vasym(x) = (w2_22 )2 ’ (7)
Vo—mr"+ ox forxz <0
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with, in general, ay # a_, both positive, Vj, and § real constants. (The
discontinuity in the second derivative at the origin is of no consequence in
our discussion.) In absence of the linear term (6 = 0), the potential has two
degenerate minima located at x_ = —a_ and 4 = a4, separated by a barrier
of height V5. When a small linear term § > 0 is introduced , with da1 < Vj,
the two degenerate minima are split by a quantity Ay ~ d(ay + a—), the
minimum at * &~ —a_ becoming slightly favored. For reasons that will be
clear in a moment, it is useful to consider the situation, which we will refer to
as “asymmetric double-well”, in which the two wells possess definitely distinct
curvatures at the minimum (i.e, their widths differ), realized by taking a, #
a_. (To lowest order in §, we have: V" (z = z4) = 8Vy/a3..) In particular, we
shall examine the case in which the metastable “valley” at x is “wider” than
the absolute minimum at z_, which is realized by chosing a; > a_. This
will have a rather important effect on the quantum evolution, since, as we
shall see, for intermediate values of the mass of the particle, the wavefunction
of the system will be predominantly located on the metastable minimum.
Obviously, if we set ay = a_ = a, and § = 0 we recover the standard double-
well potential.

We now present the results obtained by the annealing schemes introduced
in Sect. 2 above. The Fokker-Planck and the Schrédinger equation (both in RT
and in IT) were integrated numerically using a fourth-order adaptive Runge-
Kutta method, after discretizing the x variable in a sufficiently fine real space
grid [7]. For the FP classical annealing, the results shown are obtained with
a linear temperature schedule, T'(t) = Ty(1 — t/7), and a diffusion coefficient
simply proportional to T'(t), Dy = Do(1 — t/7). (Consequently, the friction
coefficient is kept constant in ¢, n, = kT (t)/ Dy = kpTy/Dy.) Similarly, for
the Schrédinger quantum annealing we show results obtained with a coefficient
of the Laplacian I'(t) vanishing linearly in a time 7, I'(t) = I'o(1 — t/7).

Figure 1 shows the results obtained for the final annealed probability dis-
tribution P(z,t = 7) at different values of 7, for both the Fokker-Planck
(CA, panel (a)) and the Scrédinger imaginary-time case (IT, panel (b)), for
an “asymmetric” double-well potential Visym(x), with Vy = 1 (our unit of
energy), ay = 1.25,a_ = 0.75, 6 = 0.1. Figure 1(c) summarizes the results
obtained for the residual energy €,..s(7) in 5.

We notice immediately that QA wins over CA for large enough value of
7. The RT-QA, which behaves as its IT counterpart for a symmetric double-
well (a4 = a—, see [7]), shows a slightly different behavior from IT-QA in the
present asymmetric case (see below for comments). We discuss first the CA
data (panel (a) and (c) of Figs. 1). Starting from an initially broad Boltzmann
distribution at a high T' = Ty = Vi, P(x,t = 0) (solid line), the system quickly
sharpens the distribution P(x,t) into two well-defined and quite narrow peaks
located around the two minima x4 of the potential. This agrees very well
with what a CA for an harmonic potential would do [7]. If we denote by pi
the integral of each of the two narrow peaks, with p_ + py = 1, it is clear
that the problem has effectively been reduced to a discrete two-level system
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Fig. 1. (a,b): The annealed final probability distribution P(x,t = 7) at different
values of the annealing time 7, for both the Fokker-Planck classical annealing (CA,
panel (a)), and the Imaginary Time Schrodinger quantum annealing (IT-QA, panel
(b)). (c) Final residual energy €res(7) versus annealing time 7 for quantum anneal-
ing in Real Time (RT) and Imaginary Time (IT) compared to the Fokker-Planck
classical annealing (CA). The solid line in (c) is a fit of the CA data (see text). The
double well potential (dashed line in (a,b), inset of (c)) is here given by (7) with

atr =1.25,a_ =0.75
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problem. The time evolution of p4., therefore, obeys a discrete Master equation
which involves the thermal promotion of particles over the barrier Vj, of the
form presented and discussed by Huse and Fisher in [16], where they show
that, apart from logarithmic corrections, the leading behavior of the residual
energy is of the form €.cs ~ 7~ 2V/5 with the power-law exponent controlled
by the ratio Ay /B between the energy splitting of the two minima Ay and
the barrier B = Vi — V(). As shown in Fig. 1(c) (solid lines through solid
circles), the asymptotic behavior anticipated by Huse and Fisher fits nicely our
CA residual energy data (solid circles), as long as the logarithmic corrections
are accounted for in the fitting procedure [7]. Obviously, we can make the
exponent as small as we wish by reducing the linear term coefficient ¢, and
hence the ratio Ay /B, leading to an exceedingly slow classical annealing.

The behavior of the QA evolution is remarkably different. Observe, as a
first point, that the final annealed wavefunctions only slowly narrows around
the minimum of the potential, although the residual energy asymptotics of
QA is clearly winning. The asymptotic behavior of the QA residual energy is
€res(T) o< 771/3, indicated by the dashed line in Fig. 1(c): this rather strange
exponent turns out to be the appropriate one for the Schrodinger annealing
with a linear schedule I'(¢) within an harmonic potential (the lower minimum
valley, see [7] for details). Going back to Fig. 1(b), the initial wavefunction
squared [1(x,t = 0)|? corresponds to a quite small mass (a large Iy = 0.5),
and is broad and delocalized over both minima (solid line). As we start an-
nealing, and if the annealing time 7 is relatively short — that is, if 7 < 7,
with a characteristic time 7, which depends on which kind of annealing, RT
or IT, we perform — the final wavefunction becomes mostly concentrated on
the wrong minimum, roughly corresponding to the ground state with a still
relatively large It < I} (see also Fig. 2 and accompaning discussion). The
larger width of the wrong valley is crucial, giving a smaller quantum kinetic
energy contribution, so that tunneling to the other (deeper) minimum does
not yet occur. By increasing 7, there is a crossover: the system finally recog-
nizes the presence of the other minimum, and effectively tunnels into it, with
a residual energy that, as previously mentioned, decays asymptotically as
€res(T) o< 771/3 (dashed line in Fig. 1(c)). There is a characteristic annealing
time 7, — different in the two Scrodinger cases, RT and IT — above which tun-
neling occurs, and this shows up as the clear crossover in the residual energy
behavior of both IT and RT, shown in Fig. 1(c).

These findings can be quite easily rationalized by looking at the in-
stantaneous (adiabatic) eigenvalues and eigenstates of the associated time-
independent Schrédinger problem, which we show in Fig. 2(a,b). Looking at
the instantaneous eigenvalues shown in Fig. 2(a) we note a clear avoided-
crossing occurring at I' = Iz ~ 0.038, corresponding to a resonance con-
dition between the states in the two different valleys of the potential. For
I" > I'pz the ground state wavefunction is predominantly concentrated in the
wider but metastable valley, while for I" < I'j,» it is mostly concentrated on
the deeper and narrower global minimum valley. In the full time-dependent RT



Deterministic and Stochastic Quantum Annealing Approaches 179

(a) ASYM
E
c
Ll
L-Z
0.01 - - :
0.001 0.01 0.1 1
r
4
3t N
o . 0
£ af :
B v
1 .

0 sttt
15 -1 -05 0 05 1 15 2 25
X

Fig. 2. Instantaneous eigenvalues (a) and ground state wavefunctions (b) of the
Schrédinger problem Hv = Et for different values of I', for the potential in (7)
with a4 = 1.25,a— = 0.75. Notice the clear Landau-Zener avoided crossing in (a),
indicated by the arrow and magnified in the inset

evolution, transfer to the lower valley is a Landau-Zener problem [17, 18]: the
characteristic time 7. for the tunneling event is given by 777 = haly/2m A2,
where « is the relative slope of of the two crossing branches as a function of
I', 2A is the gap at the avoided-crossing point, and I} is the initial value of
the annealing parameter. (For the case shown in Fig. 2, we have 2A = 0.0062,
a = 2.3, hence 71,z =~ 18980, see rightmost arrow in Fig. 1(c).) The Landau-
Zener probability of jumping, during the evolution, from the ground state
onto the “wrong” (excited) state upon fast approaching of the avoided level
crossing is P., = e~ 7/™7 so that adiabaticity applies only if the annealing
is slow enough, 7 > 71,z. Notice that the gap 24, and hence the probability
of following adiabatically the ground state, can be made arbitrarily small by
increasing the asymmetry of the two well, i.e., by making ay > a_. The IT
characteristic time is smaller, in the present case, than the RT one. This point
is discussed in some detail in [7]. In a nutshell, the reason for this is the follow-
ing. After the system has jumped into the excited state, which occurs with a
probability P., = e~ 7/™%  the residual IT evolution will filter out the excited
state; this relaxation towards the ground state is controlled by the annealing
rate as well as by the average gap seen during the residual evolution. Numer-
ically, the characteristic time 7. seen during the IT evolution is of the order
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of Ii/(2A4), see leftmost arrow in Fig. 1(c), rather than being proportional to
1/A? as 11,z would imply.

Obviously, instantaneous eigenvalues/eigenvectors can be studied for the
Fokker-Planck equation as well; their properties, however, are remarkably dif-
ferent from the Landau-Zener scenario just described for the Schrédinger case.
Figure 3(c) shows the first four low-lying eigenvalues of the FP equation as
a function of T, while Fig. 3(a,b) show the corresponding eigenstates for two
values of the temperature, T/Vy = 1 and T/Vy = 0.1 (the data refer to a

P,(x)

Pr(x)

E,(T)

01 2 3 456 7 8 910
uT

Fig. 3. Instantaneous eigenvalues of the Fokker-Planck equation (panel (c), the
lowest eigenvalue Ey = 0 is not shown) as a function of temperature T, and the
corresponding eigenstates for two values of T' (panels (a) and (b)). The potential
here is symmetric, i.e., Vasym in 7 with Vo =1, a4 = a— =1, § = 0.1. Similar results
(not shown) are obtained for asymmetric choices of the double well potential



Deterministic and Stochastic Quantum Annealing Approaches 181

symmetric choice of the potential, a1 = a_ = 1, but the asymmetric poten-
tial results, not shown, are virtually identical.) The lowest eigenvalue Eqy of
the FP operator is identically 0 and the corresponding eigenvector [15] is the
Boltzmann distribution e~V (*)/k5T with roughly symmetric maxima on the
two valleys. The first excited state corresponds to a function peaked on the two
valley but with a node at the origin, and is separated from the ground state by
an exponential small Arrhenius-like gap e~ 2/#8T . Higher excited states are
separated by a very large gap, so that, effectively, only the two lowest lying
states dominate the dynamics at small temperature. The reduction of a con-
tinuum double-well FP classical dynamics onto a discrete effective two-level
system, previously noticed, is quite evident from this form of the spectrum.
On the contrary, the true quantum case does not allow a discrete two-level
system description to hold for small enough I'. Indeed, when I" < I'jy the
tower of oscillator states within the valley at x_ is always very close in energy
to the actual ground state, and the quantum annealing evolution reduces ef-
fectively to a particle in a single harmonic well. This explains the rather large
width of the final distributions P(x,7) observed in the quantum case.
Summarizing, we have found that QA and CA proceed in a remarkably
different way. CA is sensitive to the height of the barrier, more precisely to
the ratio Ay /B between the energy offset Ay of the two minima, and the
barrier height B. On the contrary, QA crucially depends on the tunneling
probability between the two valleys, which is reflected in a Landau-Zener
(avoided crossing) gap: a wide tunneling barrier is obviously bad for QA.

2.2 Other Simple One-Dimensional Potentials with Many Minima

Moving on to multi-minima problems, we would like to mention one interest-
ing one-dimensional potential (see [7] for details) which shows a remarkably
different behaviour of CA and QA. The problem was proposed and solved,
for CA, by Shinomoto and Kabashima in [19], and consists in a paraboli-
cally shaped washboard potential. This example will display a logarithmically
slow classical annealing, showing that CA may run into trouble even in simple
models with no complexity whatsoever, whereas quantum mechanics can do
much better in this case. The problem consists in a wiggly one-dimensional
potential with barriers of individual height &~ B separating different local min-
ima, regularly located a distance a apart one from each other, i.e., at positions
x; = ai, i = 0,£1,42,.... The ith-local minimum is at energy ¢; = ka?i?/2,
so that the resulting envelope is parabolic. By writing the appropriate Mas-
ter equation governing the probability P;(¢) that the particle is found in the
ith-valley at time ¢, and taking the continuum limit @ — 0, Shinomoto and
Kabashima [19] showed that the equation governing the evolution of P(x,t)
turns out to be a Fokker-Planck (FP) equation, (4), with an effective diffusion
constant of the form

Deg(T) = ya2e B/ksT | (8)
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N(T) = kT /Deg(T), and an effective drift potential V (x) = ka?/2 given by
the macroscopic parabolic envelope potential. This exponentially activated
Do (T) makes the annealing behavior of the P(x,t) exceedingly slow. In fact,
the surprising result of this exercise [19] is that the optimal annealing schedule
T(t) is logarithmic and the residual energy converges to 0 at best as €,¢5(t) ~
log(t)~!. The physical reason behind such a slow CA annealing is that the
relaxation time t.oax = kpT/(27ka?)eB/*8T for the system to termalize at
any temperature 7' diverges exponentially at low 7. As a result, the system
will never be able to follow the decreasing 7" till the end of the annealing, by
maintaining roughly the equilibrium value €,,; = kgT'/2. Indeed, if we assume
for instance T'(t) = To(1 — t/7), the relaxation of the systems will cease to
be effective — i.e., the system will fall out of equilibrium — at a time t*, and
temperature T* = T'(t*), at which t,clax = 7, i.e., when kgT* =~ B/log~yT.
The residual energy at this point cannot be smaller then the equipartition
value kgT™* /2, hence €,..s = B/log~yr as well. This freezing and falling out of
equilibrium for classical systems with barriers seems to provide an ubiquitous
source of logarithms in classical annealing [16].

The quantum mechanical approach to the same problem has been illus-
trated in [7]. In essence, starting from a tight-binding description in which the
on-site energies ¢; are supplemented by a time-dependent nearest-neighbor
hopping term which contains the inverse mass I' = h? /2m in the typical

semi-classical (WKB) form ~ e~V Ve/I" (V}, being an energy related to the de-
tails of the barrier), one can take, once again, the continuum limit a — 0.
The dynamics for the ¥(z,t) reduces, in strict analogy with the classical
case, to an effective Schrodinger equation for a particle moving in the par-
abolic envelop potential V(z) = kz?/2, with an effective Laplacian coefficient

T (t) oc e=VVe/T®) “which plays here the role that the effective diffusion con-
stant in 8 played in the FP case. Contrary to the classical case, however, where
an exponentially activated behavior of the diffusion constant Deg was strongly
detrimental to the annealing (turning a power-law into a logarithm), here the
exponential WKB-like behavior of g does no harm at all: surprisingly, it
improves the annealing. Indeed, as shown in [7], the power-law exponent {294
determining the decrease of the residual energy for a particle in a harmonic
well, €,05(7) oc 7724 increases as one switches-off the Laplacian coefficient
more and more rapidly, tending to the value 294 — 1 for an infinitely fast
switching-off.

We believe that one of the important points that makes QA so differ-
ent from CA in the present case is that the spectrum of the instantaneous
eigenvalues of the quantum problem does not show any dangerous Landau-
Zener avoided-crossing, and, correspondingly, the ground state wavefunction
is always more peaked in the central valley (the minimum at z; = 0) than
elsewhere. As in the two-level case, a disorder in the width of the different
valleys would drastically change this result.
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3 Role of Disorder, and Landau-Zener Tunneling

Despite their disarming simplicity, the cases illustrated above turn out to be
extremely informative in qualifying the profound difference of QA from CA,
and their surprising consequences. Of course, the cases studied, although in-
structive, do not possess the real ingredient which makes annealing difficult,
both in CA and QA, i.e., some form of disorder in the distribution of the min-
ima. We argued [7], for instance, that even an irregular landscape with many
minima, as the double-cosine potential V(x) = Vj cos (2mx) + Va cos (2nrz)
(with = an irrational number) would already change drastically the behav-
ior of QA (very likely, from a power-law to a logarithm). On quite general
grounds, Anderson’s localization [20] would predict that wavefunctions are
localized for a genuinely disordered potential and for large enough mass (i.e.,
small enough kinetic energy bandwidth) in any D > 2 (this localization occurs
for all values of the mass in D = 1,2). Therefore, quantum annealing should
always, via a cascade of Landau-Zener events [5], end up into some localized
state which has, a priori, nothing to do with our search of the actual potential
minimum.

A very simple illustration of the crucial role of disorder is given by the
D =1 disordered Ising ferromagnet :

H= —ZJian‘f —FZU? ) 9)
i i

where J; > 0 are non-negative random variables in the interval [0, 1], and I’
is the transverse field inducing quantum fluctuations. Obviously, the ground
state is the ferromagnetic state with all spins aligned up (or down). However,
arbitrarily weak values of the J; can pin domain walls between up and down
ferromagnetic regions, with a very small energy cost 2J;. For a finite system
with periodic boundary conditions, domain walls appear in pairs, and separate
sections of the system with alternating T and | ferromagnetic ground states.
Given two domain walls, pinned at weak J; points a distance L > 1 apart,
healing the system via single spin flip moves requires flipping L spins, which
can be a formidable barrier to tunnel through. The system will have a very
slow annealing (quantum, as well as classical) while showing, at the same
time, no complexity whatsoever: simple disorder is enough.

The simple case of a site-disordered Anderson model, where the goal is
the trivial one of finding the minimal on-site energy ¢;, and the QA is carried
by switching off, as a function of time, the nearest-neighbor hopping integral,
illustrates very clearly the complications introduced by disorder. Figure 4
shows the instantaneous eigenvalues of a disordered three-dimensional Ander-
son model, on a lattice of size 10 x 10X 10, as a function of the nearest-neighbor
hopping integral I'. In the process of reducing I', the ground state encounters
several “identity crisis” associated to tunneling from one region of the lattice
to another. Some of these tunneling amplitudes can be tremendously small,
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Fig. 4. Instantaneous low-lying eigenvalues of a three-dimensional disordered An-
derson model, on a lattice of size 10 x 10 x 10, as a function of the hopping integral I".
Notice the Landau-Zener avoided crossings, particularly the one occurring at smaller
I, which can have a tremendously small gap 2A. The inset shows a schematic of
the Landau-Zener process

so that one has to wait for an astronomically large Landau-Zener character-
istic time 77,z (see Sect. 2.1) in order for the probability of “adiabatically
following the Ground State” to be non-negligeable.

4 Path Integral Monte Carlo Quantum Annealing

In order to move from toy problems with a manageable Hilbert space to real
optimization problems, stochastic approaches are mandatory. As discussed in
the Introduction, imaginary-time stochastic approaches are perfectly suitable
to the goal: there is no gain in doing, on a classical computer, a Schrodinger
evolution in real time [7].

A very simple Quantum Monte Carlo approach, suitable to the proposed
goal, is the Path-Integral Monte Carlo (PIMC) approach. We briefly sketch
the idea of the approach with two introductory examples: the Ising case, as
representative of discrete optimization problems, and the particle in a poten-
tial, as representative of continuum problems.

4.1 Path Integral Monte Carlo: Introduction

The first, crucial, observation is that PIMC is intended to simulate the equi-
librium behaviour of a system at finite temperature T'. Both these features are
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potential limitations of the method. To clarify this point, consider, for in-
stance, the Edward-Anderson Ising glass in a transverse field: H = H, +
Hyin = =3 5 Jigoio; — I'(t) 3, of . Strictly speaking, in the quantum an-
nealing context, this is a time-dependent Hamiltonian, of which we would like
to follow the low-lying states (ideally, the ground state) as a function of time,
by turning off the transverse field I'(t). PIMC allows you to simulate the
thermodynamics (at fixed strictly positive temperature T') for a fixed value of
I'(t), by an approximate sampling of the quantum partition function

Z(T,T") = Tre BHe+Hyin) — Z<81|6_B(HCI+H“”)

sl

sty (10)

where s' denotes a generic configuration of all the N spins. The idea behind
the Path-Integral is to reduce 10 to a classical partition function which is
than sampled in the usual way using, for instance, a Metropolis Monte Carlo.
In order to do that, one needs to split the exponential of the Hamiltonian,
appearing in 10, into products of exponentials. This is allowed by the Trotter
theorem, stating that

P
e—ﬂ(Hcl""Hk‘i") — th (e_%Hcle_%Hkin) . (11)
— 00

Using this relationship, and inserting identities between the various exponen-
tials, we get:

Z(I,I') = lim e~ D Hat(h) (1= B Hrin | 2) (P |~ FHrin| 1) |
— 00
sl...sP
(12)
The various configurations s* (k = 1---P) are often referred to as Trot-

ter replicas of the original configuration s'. The next thing one needs to
do, is to calculate explicitly the relevant exponential of the kinetic term,
(s*|e=Hrin/PT|gk+1) "between two generic configurations. This is sometimes
very easy to do — like in the Ising transverse field case, or in the Laplacian
case (see below) — but can be also very difficult, for other choices of Hy;, (see
Sect. 4.2). In the Ising case, the problem factorizes into N indipendent sites,
each of which involves a simple Pauli matrix expectation value, yielding:

<Sk|67%H;ﬂ'n 8k+1> _ CNG%JL Zis;"sf+1 7 (13)
where the transverse coupling J* is given by:
n P
J- = ~25 In (tanh 5I'/P) > 0 (14)

(the constant C' is not relevant for our discussion). This kinetic term has a very
transparent interpretation: the J+ gives a ferromagnetic Ising-like coupling
between nearest-neighbor (k and k + 1) Trotter replicas of the same spin.
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In order to implement this approach numerically, a finite number of Trotter
replicas P is mandatory. This leads to an approximation, the error of which
is proportional to the square of the Trotter break-up time, O((3/P)?)[21].
(Better Trotter break-ups, for given finite values of P, can lead to smaller
errors, see Sect. 4.4, but we will concentrate here on the basic form proposed
above.) For the full partition function we thus finally get, in the Ising case:

Z(T,I) =~ CNP NN e #80 (15)

P

Spi1 = —Z Zjijsfs? +Jt Zsfsf“ , (16)
(ig) i

k=1 \ (ij

which represents the partition function of a classical (D + 1)-dimensional
anisotropic Ising system at temperature P/3 = PT. The system has couplings
Ji; along the original D-dimensional lattice bonds (same for all Trotter slices),
and J* (same for all sites i) along the extra Trotter dimension where the
system has a finite length P.

Similar expressions hold, for instance, for the problem of a particle in a
potential V (x), where H. = V(x), Hyin = —I'V?, and sums over configura-
tions ) |, transform into integrals over the variables x*. Similarly, the kinetic
term contribution

<Xk|€—Hkm/PT‘Xk+1> _ <2KPT> e_ﬁ%(xk_xlwrl)z | (17)
iy

where D is the dimension of the x-space and K+ = (PT)?/(2I"), admits
a perfectly transparent interpretation: the transverse coupling K between
different Trotter replicas has the form of a spring coupling neighboring con-
figurations x* and x**1.

In all cases, QA, in the present context, consists in externally controlling,
during the PIMC dynamics, the value of the transverse field I — leaving T’
untouched —, in much the same way as one externally controls 7" in classical
simulated annealing [1]. This approach, which we will refer to as PIMC-QA,
does not lead, therefore, to the simulation of a true quantum mechanical
annealing dynamics, of the type implied by 1, but only to a MC annealing
dynamics. We now move on to describe some of the results obtained so far
with this technique.

4.2 PIMC-QA Applied to Combinatorial Optimization Problems

In a quite general way, one could define a combinatorial optimization problem
as the algorithmic task of minimizing any given cost function which depends
on the configuration of variables assuming discrete values [22]. Further clas-
sifications are of course possible, but they somehow hide the fundamental
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fact that it is straightforward to map such problems over the search for the
ground state of some Hamiltonian depending on Potts (or Ising) spin degrees
of freedom [23, 24]. This is the case, for instance, of the Traveling Sales-
man Problem [25, 26, 27, 28], Number Partitioning [31], Boolean Satisfiability
[29, 30], Vertex Covering [32], Graph Coloring [33] and many others.

Random problem instances are of particular interest, because they can
be investigated resorting to powerful techniques developed in the context of
disordered statistical mechanics systems [34]. The physical approach to com-
binatorial optimization have often allowed the derivation of phase diagrams,
telling us in which range of some control parameters hard instances are ex-
pected to be found [23, 24]. These analyses provide insight about the typical-
case complexity of problem solving, in contrast with the more rigorous but
less informative worst-case complexity theory, which constitutes one of the
corner-stones of theoretical computer science [35]. The basic distinction be-
tween the P and NP complexity classes (that is, between problems for which
a polynomial algorithm able to solve worst-case instances is or is not known)
can sometimes be misleading. Easy instances of NP-complete problems (the
hardest of all the NP problems, [36]) can easily be found (see e.g. [37]), while
sometimes the optimization of instances of problems in P can take an expo-
nential time using local search techniques (see e.g. [38]).

In the following, we shall briefly illustrate three specific problems which
we have recently addressed using PIMC-Quantum Annealing.

Ising Spin Glass

Determining the ground state of a simple model like the Ising Spin Glass can
be an extraordinarily difficult task.

To get the big picture, it is enough to think that the number of possible
configurations of a very small 32x32 square lattice Ising model is of order
10398 while the number of electrons in the universe is “just” of the order
1089.1 Tt can be rigorously shown that, in the 3D lattice and in the diluted
case, the ground state determination belongs to the NP-complete complexity
class [39], but here we shall report results on the simpler 2D lattice case,
where FEgg can be calculated up to sufficiently large lattice sizes [40]. The
Hamiltonian of an Ising spin glass has been already discussed in Sect. 4.1 and
it is given by equation (9).

For a given 2D lattice size L x L, (L up to 80) and for various quenched
realizations of the random couplings J;;, drawn from a flat distribution in
the interval (—2,2), we carried out several repeated classical and quantum
annealings (for more details, see [5, 10]). At the end of both QA and CA,
the system remains generally trapped at energy Efina = Egs + €res and the

! Other funny examples of this kind can be found in the appendices of D.J.C
MacKay, Information Theory, Inference and Learning Algorithms, Cambridge
University Press, Cambridge MA (2003).
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efficiency of each protocol is monitored by considering the average residual
energy €,.5(7) as a function of 7.

The annealing parameters T (CA) or I' (QA) were decreased linearly from
the initial value of Ty, = 3 or Iy = 2.5 down to zero, with a total of 7
MC steps per spin. In QA we used fixed values of T; = PT = 1,1.5,2 at
several P values and prepared the initial state (same for all replicas) by a
classical pre-annealing stage. The computational cost scales linearly with P,
but increasing P beyond a certain characteristic length (see inset in Fig. 5)
does not produce any further improvement. The choice of P = 20 was found
to be optimal. The moves proposed in both CA and QA are single-spin flip
moves, but QA also attempts slightly more “global moves” by proposing a
spin-flip for the spins s¥,k = 1--- P of all the Trotter replicas of a given site
i. Figure 5 shows that QA is definitely superior to CA in the case of the Ising
spin glass. This numerical evidence is in agreement with the experimental
observation of significantly faster frequency-dependent relaxations during QA
of the disordered magnet [4].

Traveling Salesman Problem

Given N cities and their tabulated inter-distances d;;, TSP consists in finding
the shortest path connecting them, visiting each city only once and returning
to the starting point. An account of the vast literature about algorithms for

0.1 T
*eCA
o—0 QA (PT=1), P=20
041 Ellllll‘ lll"‘ llllll‘ ||lllq lllll:
. E QA (PT=1) [a—a p=10]]
we 001 0—0 P=20|] .
N L v—v P=30| |
L ool -
0,001 Lisand ol o o ol
10 100 100 10° 100 10°
0001] ol Ll Ll rannl ol AR
0 100 1000 10000 le+05 le+06 le+07
T [MCS]

Fig. 5. Residual energy per site for an 80 x 80 disordered 2D Ising model after CA
and QA. We show the QA data for the optimal value of PT = 1, with T = 0.05
and P = 20 Trotter replicas. The actual inverse annealing rate 7 used in the QA
has been rescaled (multiplied by P) for fair comparison with CA. Still, QA is faster
than CA
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TSP can be found e.g. in [411], while three classical papers analysing physics
approaches to the problem are [26, 27, 28].

As a fist step to a QA optimization we have to chose a representation for
the classical potential energy H,o of a given configuration (in our case, the
length of a tour), and, most crucially, a suitable source of quantum fluctuations
Hyin. TSP can be mapped to a highly constrained Ising-like model — in a
way similar to [25, 3] — in which each configuration of the system (a valid
tour) is associated to a N x N 0/1-matrix T'. For every ordered sequence of
cities, ’f’” = 1 if the tour visits city ¢ immediately after city j, and Tu =0
otherwise. For the symmetric TSP problem we want to consider (a TSP with
symmetric distance matrix d;; = d;;), the directed tour represented by a T,
and the reversed tour, represented by the transposed matrix T, have exactly
the same length. It is then convenient to introduce the symmetric matrix
U=T+T" as representative of undirected tours. The length of a tour can
now be written:

pot U ZdUUﬂ ZdUU,J ’ (18)

(i)

where (ij) signifies counting each link only once. Hy;, should be chosen in
order to induce fluctuations generating the important elementary “moves” of
the problem. Deciding which configurations are to become direct neighbors
of a given configuration is indeed a crucial step, because it determines the
problem’s effective landscape [42]. A very important move that is often used
in heuristic TSP algorithms is the so-called 2-opt move, which consists in
eliminating two links in the current tour, (¢; — ¢2) and (¢1v — cor), and
rebuilding a new tour in which the connections are exchanged, (¢; — c¢y/)
and (ca — co) (see Fig. 6). Associating a spin variable +1 (—1) to each
entry 1 (0), the whole 2-opt move, when working with U matrices, can be
represented by just four spin-flip operators:

+ + - -
Cerrreny (ezr e2) Sensen) Segrers)

where, by definition, each S?;j> flips an Ising spin variable (defined as Sfi 5=

(2Ul ; —1) = +£1) at position (7,j) and at the symmetric position (j,1), i.e.,
SE Gy = S;%Sﬁ However, this kinetic Hamiltonian does not allow for an
obvious Trotter discretization of the Path Integral (see discussion in Sect. 4),
and the PIMC scheme cannot deal with it (for this purpose, Green’s function
MC methods, that do not use a Trotter break-up, should be more effective,
see Sect. 5.1). We introduce then a drastic simplification to our kinetic energy
term, replacing it altogether with a standard transverse Ising form, arriving
finally at the Hamiltonian:

. Sty +1
HTSP:Zdij( <J; ) Z o tHe], (19)
(i3)

(i)



190 Demian Battaglia et al.

2 3 6
7

1
4 5 8
(0001000 0] (00001000 0]
10000000 10000000
00000100 00 00000

T=o0o100000f T =[00@®0@O0O00

in fin BN
01000000 0@o0 000 0T
000000T10 0 0:1:0 0 000
00000001 0000 0:10:0
0000100 0] [0 0 0 0:0:0 1 0]
010100 0 0] 0 10100 0 0]
10001000 Lo@o®o 0 o0
00010100 0oDO@®O 1 00

U=[10100000 U-=1000DOO0O

1o 1000001 fin lo@o o 00 1
00100010 00100010
00000101 0000010°1
0000 1 01 0] 00001010

Fig. 6. Left: Representation of an 8-city tour, with the corresponding matrix Tin
and Uin = T + Tfn Right: The final tour obtained when a 2-opt move is performed,
with a whole section reversed (dotted line). The matrices Th, and Ug, are shown,
the circles indicating the entries that have been switched (0 < 1) by the 2-opt move.
The dotted circles in Tﬁn are entries related to the trivial reversal of a section of the
tour

This simplified form of kinetic energy no longer fulfills the constraint to take
a valid tour to another valid tour, but this problem is avoided by proposing
exclusively 2-opt moves in the MC algorithm [11].

We tested our QA algorithm against CA [11] on a standard bench-
mark TSP problem, namely the printed circuit board instance pr1002 of the
TSPLIB [13]. It is a structured TSP problem with N = 1002 cities whose op-
timal tour length L,y is known exactly. For CA, we chose an optimal initial
temperature Tj by first performing several CA with various short cooling times
7 and starting from sufficiently high temperatures. The point where the cool-
ing curves for different 7’s start to differ identifies an approximate “dynamical
temperature” Ty,,. For pr1002, we obtained Ty, ~ 100. As expected [41],
the optimal Ty for CA approximately coincides with Ti,,. Not surprisingly,
for QA the same choice P1' ~ Ty, yields the optimal results, together with
the choice I'y = 300. Figure 7 shows the results obtained [11] for the average
percentage best-tour excess length €ouc(7) = (Lpest (T) — Lopt )/ Lopt, both with
CA (filled squares) and with QA (open circles). As a reference, the best out
of 1000 runs of the Lin-Kernighan algorithm (one of the standard local-search
algorithms for TSP [41]) is also plotted (dashed line in Fig. 7). The results
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Fig. 7. Average residual excess length found after CA and QA for a total time
7 (in MC steps), for the N = 1002 instance pr1002 of the TSPLIB. The dashed
horizontal line represents the best out of 1000 runs of the Lin-Kernighan algorithm
(see text). QA is once again faster than CA

show that, once again, QA anneals more efficiently, even accounting for the
extra factor P in the total CPU time (rightmost open circles), reducing the
error at a much steeper rate than CA.

Random Boolean Satisfiability

In order to state the problem, consider a set of N boolean variables z1, ..., zy,
where z; = 1 or 0 (“True’ or ‘False’). Denoting by (; the variable z; or its
negation z;, one then considers the disjunction (logical OR) of 3 variables C' =
(¢i V¢V (k), which is called a 3- clause. The random 3-SAT problem consists in
deciding if the conjunction (logical AND) of M different clauses C; ACy -+ A
Cyr — each clause being formed by 3 variables extracted at random among the
N variables, and appearing negated or directed with uniform probability — can
be simultaneously satisfied by a truth value assignment {z;}. If we associate
an Ising spin variable S; = (—1)* to each Boolean variable z;, we can assign
to any clause C, involving three variables z;, 2;, z;, an energy [, given by:

(1 + Ja,z’Si) (1 + JaJ’Sj) (1 + JmkSk)

Ea: 3 3

(20)

where the coupling J, ; assumes the value —1 if the variable z; appears negated
in clause a, +1 otherwise. Evidently, E, = 0 if the corresponding clause is
satisfied, F/, = 1 otherwise.

As in the case of TSP, archives of hard structured instances exist[14].
In addition, statistical mechanics techniques can be used to determine the
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phase diagram of the Random 3-SAT problem [24, 29, 30]. The main parame-
ter determining the hardness of a formula is the ratio « = M /N between the
number, M, of clauses and the number, N, of variables. For a < ., ~ 4.26 it
is typically possible to find satisfying assignments, but instances particularly
hard to solve are expected to be found if o > ag =~ 4.15 [15]. It is expected
that, due to the proliferation of an exponential number of metastable states
acting as dynamical traps, local search gets trapped at an energy close to
some finite threshold level, lower bounded by the so-called Gardner energy
[46]. The trapping effect induced by the threshold states cannot be neglected
when the instance-size is large (N > 10000) and large statistical fluctuations
become sufficiently rare [45]. Smaller random formulas are, on the other hand,
often easily solvable by classical simulated annealing and cannot be used as
significant benchmarks.

We performed a first set of annealings over a single hard 3-SAT random
instance with N = 10* and a = 4.24 [12]. The kinetic term was given by a
simple transverse field inducing single-spin-flip fluctuations, like in the Ising
case, since no clever sets of moves are known for 3-SAT, unlike the TSP
case [17]. Using an efficient ad-hoc algorithm (that will be shortly described
in Sect. 5.2 and is presented in [15]), we verified that the chosen formula
was actually satisfiable, as expected from theory for @ < «,.. As in the case
of the TSP optimization, we set both Ty for CA and PT for QA equal to
Tqyn = 0.3. The optimal field-ramp range was found to be between Iy = 0.7
and 'y ~ 1073,

A comparison between the performance of the optimal CA and the optimal
QA at P = 50, both with and without global (i.e., all s¥.k = 1--- P are
flipped) moves [12], is shown in Fig. 8. For each point, an average has been
taken over 50 different realizations of the same experiment; in the case of QA,
a second average was performed among the energies of the P replicas, which
are in general different. It can be seen that the linear-schedule CA always
performs better than the linear-schedule QA. No further improvement can be
obtained for P > 100, see inset of Fig. 8 — a much larger value than in the case
of the Ising Spin Glass and the TSP instance — but we chose P = 50 in order
to extend as much as possible the simulation time. The asymptotic slope of
the linear-schedule QA curves seems indeed to be definitely less steep than
that of CA, independently of the number of replicas involved in the simulation
and of the use of global moves.

4.3 PIMC-QA and 3-SAT: Lessons from a Hard Case

The substantial failure of PIMC-QA for the 3-SAT optimization calls for a
deeper understanding of the peculiar way in which it explores the energy
landscape of the problem. In the following subsections, we shall analyze in
detail several features of the method.



Deterministic and Stochastic Quantum Annealing Approaches 193

100 ToTr T ToTrTTTT TorrTTTT TorTTTTT
[ CA —-B-- ]
- QA (P=50) -0
i QA+G (P=50) —e—
L Field Cycling - - v---
I ~ Gardner Energy
\v\\\\ _________________________
. L wBL T e
[
2 5.
3 i ToeTE
Tyao
y }\_ﬂ_\_\_y
Td
10 S
i 10 100 1000
- P
L0l Lol Lol L
100 1000 10000 100000 1le+06

7 (inverse annealing rate)

Fig. 8. Comparison between optimal linear-schedule Classical (CA) and Quantum
Annealing (QA) for a 3-SAT problem with N = 10* and o = M/N = 4.24. CA
always performs better than QA simulated with P = 50 Trotter replicas. The average
performance of linear QA is worse than that of CA, even if an improvement in the
results can be obtained by introducing global moves (G) and by increasing P (in
the inset the final average energy found by QA after 2000 iterations for increasing
P is plotted and compared with the average result of a CA of the same length,
dashed line). The solid triangles are the data obtained by the field-cycling QA hybrid
strategy described in Sect. 4.3

Target Selection and Field-Cycling

We denote by ((E)) the configuration energy averaged over different experi-
ments and Trotter replicas (this is the energy reported everywhere in Fig. 8);
the average among different experiments of the best replica energy will be, on
the other hand, denoted by (F). In Fig. 9, the Monte Carlo “time” evolution
profiles of ((E)) and (E) are shown for a linear-schedule QA (2000 iterations
long). The strength of the transverse field, and hence of the quantum coupling
Jr given by (14) (see inset of Fig. 9), determines the relative importance of the
classical and quantum terms in the Hamiltonian and its variation determines
the transition between three regimes [12].

First (I' = I'y ~ 0.7, Jp ~ 0), the system is quenched at temperature Ty,
in presence of a strong external transverse field. The system enters an inco-
herent mixture of states, and, from the point of view of the PIMC simulation,
when the coupling Jr is small, each replica behaves as if roughly independent
from the others. After the abrupt out-of-equilibrium quenching phase, with
increasing coupling strength, the fluctuations of the different replicas become
correlated. Several spin flips that would have been unlikely in absence of the
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Fig. 9. Energy evolution during Quantum Annealing, compared to Simulated An-
nealing. The variation of the averages (F) (average best replica) and ((E)) (average
of the average replica) is shown as a function of the simulation time, for a set of
experiments with P = 50 and 2000 annealing iterations. The inset shows the time-
dependent value of the coupling Jr. Three different regimes can be distinguished,
which will be called quenching, search (driven by quantum fluctuations) and target
selection

the kinetic term can in this regime be accepted, and configurations generally
not visited by typical CA trajectories are produced (quantum search phase).
Finally, when the transverse field vanishes, quantum fluctuations are gradually
switched off. and the system collapses completely into some selected target
state. In this fundamentally classical regime, Jp becomes so strong that local
spin flips can be accepted only at sites where the spins of two neighboring
replicas are not aligned. If global moves are allowed, small-range classical os-
cillations induce a further energy reduction of quite small entity.
Considering this three-piece scenario (that will be confirmed by the auto-
correlation and geometrical analysis of Sect. 4.3), the simulated QA could be
described as a very basic kind of evolutionary search [48, 49]. The P repli-
cas can be seen as a population of individuals, the spin configuration of each
replica as its genotype, and the classical Hamiltonian (20) as a fitness func-
tion. Contiguous replicas can “mate”, exchanging sequences of their geno-
type thanks to the duplicating action of the transverse coupling, that spreads
around low-energy-inducing spin patterns (the so-called Holland schemata
[50]). Suppose now that a new individual with exceptional fitness is gener-
ated when Jp is already considerably large. Its peculiar “genes” would be
overwritten with high probability by the corresponding spin sequences in the
most widespread configuration. The population must then collapse toward a
group of “identical twins” and global moves cannot affect significantly this
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picture, because they do not cure the problem of the lack of genetic diversity,
which is constantly renewed by crossover, in standard evolutionary search.

However, in PIMC-QA, the mutation rate can be increased again by
switching on the quantum fluctuations. In Fig. 10, we present the results
of an experiment in which, after each linear descending ramp from Iy ~ 0.7
to I'y ~ 0.001, the coupling is raised smoothly to the initial value Jr, and
then back again to Jr, (for details of the schedule, see [12]). Many such field-
cycles can be chained one after the other, slightly reducing the temperature 77,
so as to avoid a complete re-initialization (related with memory effects [51]),
and realizing thus a hybrid strategy (a linear-schedule CA, superposed with
linear-schedule QA cycles over a shorter time-scale).

After each ascending ramp and a short transient phase, a new quantum
search phase is initiated, starting from plateaus that lie at a distance pro-
gressively larger from the quenching level corresponding to the present tem-
perature (see the arrows in Fig. 10). Over short time scales (number of MC
iterations approximately smaller than 200000, when taking P = 50), this
hybrid field-cycling strategy outperform the pure linear CA. Furthermore, a
classical experiment with the same temperature schedule has been repeated in
absence of the transverse magnetic field, with the same number of now com-
pletely decoupled Trotter replicas. We observed that ((E)), . ., stays clearly
below (E)_ ., indicating that quantum effects give access to states that
are hard to reach even by rare large classical fluctuations. One could say that
quantum restarts are more effective than classical restarts [52], at least when
short schedules are considered.

Longer field-cycling schedules are obtained by rescaling with a constant
factor the duration of all the ramps in a shorter schedule. For larger total
annealing times, the asymptotic slope of the field-cycling cooling curve sat-
urates to a value remarkably similar to the other QA cases. If the reduction
of temperature allows the system to explore the landscape at different length
scales [51] and to find better target configurations, lower energy regions remain
nevertheless fundamentally inaccessible.

Autocorrelation Analysis and Landscape Probing

Let us denote by {S;(t)} the instantaneous spin configuration of the sample
3-SAT formula at time ¢. An autocorrelation function K (t,T) can be defined
as:

1 N
K(t,7) = <NZSi(t)Si(t—T)> , (21)

where the average is performed over different dynamical realizations (and over
replicas, in the quantum case). The autocorrelation function K (¢, 7) allows us
to visualize in a compact way the typical behavior of the overlap between
two spin assignments at different evolution instants [12]. In Fig. 11 K(t,7) is
plotted as a function of the autocorrelation time 7 for several fixed values t*
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Fig. 10. Energy evolution during a field-cycling hybrid strategy. The strength of the
transverse coupling Jr is varied cyclically between the values 0.001 and 5, by adjust-
ing the value of the magnetic field. The effective temperature 7, is kept constant
during each field ramp, but is reduced in a stepwise way among different ramps,
from the initial value of 0.3 down to 0.05. Each ascending field-ramp unfreezes the
system from a previously reached target state, and after a short transient regime, a
new search phase is entered. The starting plateaus have energy values increasingly
smaller than the quenching level at the new simulation temperature (the arrows in
the graphs indicates the quenching level and the hybrid strategy plateau at a given
value of the temperature). Each new target state has a better energy than the pre-
ceding one, and the final average energy is better than the value reachable by large
classical fluctuations
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Fig. 11. Autocorrelation function K (¢,7) for CA (Left) and QA (Right). The dif-
ferent curves represent several fixed-simulation-time ¢ = ¢* snapshots of the auto-
correlation function, with ¢t* varying at fixed intervals between 200 and 2000, from
bottom to top. For QA, both the results with (QA+G, solid lines) and without (QA,
dashed lines) global moves (see text) are shown

of the simulation time ¢, for both the CA (Left panel) and QA (Right panel)
dynamics. The results shown are averaged over 500 different runs, each con-
sisting of 2000 annealing iterations (and over P = 50 replicas, in the case of
QA). A K(t*,7) which decays fast with 7 indicates that at time ¢* the con-
figuration is still rapidly evolving, and that at every time-step a large number
of spins is being flipped; when a local stability is reached, on the other hand,
K(t*,7) assumes a flat (or periodic) profile, indicating that the system has
entered into some attracting configuration (or limit cycle). For CA, the self-
overlap between {S;(t*)} and {S;(t* — 7)} grows constantly with ¢*, until
when a periodic behavior of K (t*,7) gradually develops. In the final part of
the classical relaxation, about 20% of the variables appear to be free to flip at
each iteration, even if the average energy is no longer changing. The strongly
regular oscillations of K (t*,7), as well as the non-vanishing asymptotic spin
flip acceptance ratio, suggest that the system gets trapped into a very small
portion of the phase space, and that a fraction of the variables is still allowed
to fluctuate, but only cyclically repeating a limited amount of sequences of
flips. The observation of the neighborhood geometry during the dynamics con-
firms this hypothesis. In Fig. 12 (dashed line), the fractions of downhill, flat
and uphill directions (considering single spin-flip moves) are plotted against
the energy of the visited configurations. One sees then that the number of
downhill directions falls to zero when the lowest energies are approached (the
number of remaining flat directions is compatible with the observed oscillation
amplitude). For QA, the self-overlap increase becomes faster upon reducing
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Fig. 12. The local geometry of the visited regions of the phase space is probed by
counting the fraction of directions in which the energy variation is negative, null or
positive. Although both CA (dashed line) and QA (solid line) get trapped in a local
minimum, the quantum evolution tends to visit “valleys” that, at the same energies
than CA, are more flat and with a larger number of downhill directions

the transverse magnetic field, because the pseudo-evolutionary replication of
the “good” spin patterns, operated by the coupling in (14), has also a stabi-
lizing effect on them. No trace of asymptotic periodic behavior is found, and
all the replica configurations reach continuously a full overlap with a single
final configuration. The introduction of global moves causes damped classical-
like oscillations to set in, but target selection is not eliminated, as previously
discussed. Figure 12 shows (solid line) that the target states are once again
very close to local minima, with an extremely small number of downhill di-
rections as in the CA case. Nevertheless, the phase space regions explored by
the two algorithms are quite different. At the same value of the energy, the
quantum system is visiting configurations with a significantly larger fraction
of downhill and flat directions. One could say that the CA follows narrow
canyons, while the QA prefers to explore the edges of mid-altitude plateaus.
This phenomenon, which seems to be a genuinely quantum effect captured by
the PIMC simulation, is strongly reminiscent of what happens in continuous
space, where the choice of broader potential wells allows the system to reduce
the kinetic contribution to the total energy. Furthermore, the various Trotter
replicas differ in a number of spins comparable to the number of flat direc-
tions. All the configurations simultaneously taken by the quantum system
belong then to a single broad landscape valley, which is nevertheless explored
in all its wideness by the quantum system.
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4

For vanishing field, the system “wants to become classical”, and the num-
ber of uphill directions increases abruptly, approaching the classical curve.
The dynamical collapse is then paralleled by a change in the local landscape
topology. The poor performance of QA in the present 3-SAT case could be
then explained by the existence of broad basins of attraction strewn with de-
ceptive and highly attractive sinks, that, unlike the cleavages preferred from
the very beginning by the CA, prevent access to lower energy sectors.

4.4 PIMC-QA of a Double-Well: Lessons from a Simple Case

We would like to finish our discussion about Path-Integral Monte Carlo based
QA by mentioning recent results on a very simple case from which one can
learn much about the limitations of the method [14]. Suppose we want to per-
form a QA optimization of the simple double-well potential which was inves-
tigated in Sect. 2.1 using PIMC. One is then lead to simulate the behaviour of
a closed polymer made up of P Trotter replicas {*} (k = 1--- P) of the origi-
nal particle, held at temperature 3/P and moving in the potential V,gym with
a nearest-neighbor spring coupling, as shown in 17. One can actually be more
sophysticated than that, and perform a higher order Trotter break-up, cor-
rect to O(3/P)* instead of O(3/P)?, using, for instance, the Takahashi-Imada
approximation [53]. Moreover, instead of performing single-bead moves, i.e.,
moves involving a single 2 at a time, one can reconstruct, during the move,
entire sections of the polymer, using the bisection method [54]. We have ap-
plied this rather sophysticated PIMC to our double-well problem , working
with a temperature T' = 0.03V}, a number of Trotter slices up to P = 160, and
a bisection of level up to 4, i.e., involving up to 2441 replicas z* at each move.
The initial temperature value of I" = h?/2m was taken to be Iy = 0.5, and
its value was reduced linearly to 0 in a certain total number 7 of Monte Carlo
moves. The results, shown in Fig. 13 by solid circles, are rather disappointing:
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PIMC+ins. (gaussian)

iA .." PIMC (lorentzian)
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s, ’!!! g
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Fig. 13. Comparison between the Imaginary-Time Schrodinger annealing data of
Fig. 1, solid triangles, and different types of PIMC-QA, on the double-well potential
of Sect. 2.1
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the data barely start to go below the level €,.s ~ 20 = 0.2, which corresponds
to the metastable minimum of the potential, for the largest values of 7 sim-
ulated. This means that the system had no occasion, up to these values of
7, of realizing that there was another minimum available through tunneling.
Moreover, the overall slope of the data is definitely less steep than what the
direct Schrédinger annealing predicts, shown for comparison by solid triangles
in Fig. 13. (The absolute values of 7 are not comparable between the two sets
of data, because they refer to different quantities: a Schrédinger dynamics ver-
sus a Monte Carlo dynamics.) The situation improves substantially (see solid
squares in Fig. 13) if we propose, as candidate Monte Carlo moves, also the
so-called instanton mowes, i.e., basically classical trajectories that move from
one minimum to the other (plus fluctuations) [55]. This is, however, not a fair
game: we have substantially exploited a crucial information on the landscape
which is generally not available for a complicated optimization problem!

One other lesson we can learn, in the present context, is the role of the
kinetic energy operator Hy;, on which the quantum fluctuations are based.
Up to now, we were using as Hy;, the usual non-relativistic kinetic energy
Hyin = p?/2m, and annealed the system by increasing the mass m of the
particle. (The propagator of this kinetic term is just the Gaussian, as shown
in 17.) Imagine now we pretend that the particle has a relativistic ‘photon-like’
dispersion:

1 hI'B/P

Xk+1> _ ; (xk — xk+1)2 " (hFﬁ/P)Q R (22)

Hyin = Tlpl — (xFlem 7

and that we anneal the system by reducing to 0 the velocity I" of the disper-
sion. The bisection method can be generalized for this kind of kinetic energy,
and the results obtained are shown by solid diamonds in Fig. 13. As one
notices, the residual energy versus 7 is now considerably lower than in the
non-relativistic (Gaussian) case, and even levels-off, for large 7, to the ther-
mal limit k5T /2 = 0.015 set by our finite temperature 7. This example shows
the important role played by the choice of the kinetic energy Hy;,, (as well as
the limitations imposed by the unavoidable finite temperature T).

Summarizing, PIMC-QA suffers evidently of a number of problems: i) It
is only a fake Monte Carlo annealing dynamics, in principle not fully repre-
sentative of the true imaginary-time Schrédinger dynamics; i) The sampling
of relevant “action” might be highly inefficient (recall the instanton prob-
lem above) and the cure for that might not be obvious at all; iii) The finite
temperature 7" imposes a lower thermal limit for the residual energy €,.s(7)
below which we can never possibly go; iv) The calculation of the propagator
of e~ Hrin/PT might be very difficult for a kinetic term which we would like to
implement (see Sect. 2.1). These various problems clearly call for an alterna-
tive to PIMC in order to implement a stochastic QA approach: we believe that
the usuful alternative is given by a Green’s function Monte Carlo (GFMC)
method.
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5 Beyond Naive Local Search

Where simple local search strategies fail, other techniques have been or can
be employed in order to improve the optimization performance. Here we shall
briefly discuss the important feature of focusing, and the potential benefits
of GFMC, as well as alternative message-passing approaches to the 3-SAT
optimization.

5.1 Focusing in 3-SAT and GFMC Quantum Annealing

One of the most popular and most effective local search algorithms for sat-
isfiability problems is WalkSAT [56]. This heuristic approach implements a
feature — called focusing — which is common to other successful heuristics for
SAT [57, 58]: the algorithm alternates “greedy moves” (i.e., steepest descent)
with completely random bit flips, the latter, however, being only applied (fo-
cused) to variables appearing in unsatisfied clauses (according to the rule of
thumb, “f it’s not broken don’t fix it”). The good results achieved by Walk-
SAT make the implementation of the focusing very appealing for other local
search algorithms too, including more sophisticated QA approaches. This is
where Green’s Function Monte Carlo (GFMC) seems to be the appropriate
method. As a further advantage, GFMC is free from most of the problems
which plague PIMC (see discussion at the end of Sect. 4.1), and is therefore,
in principle, a very promising tool for QA.

GFMC is a projection technique which implements in a stochastic way an
imaginary time evolution of the type

[(t + At)) = = AHat e Oy (1)) (23)

or any other similar evolution which aims at filtering out the ground state
of H. + Hpy (hence, the method works intrinsically at T'= 0). This can be
done without having to really calculate the exponential of the Hamiltonian, or
having to use a Trotter break-up [59]. Moreover, the Hamiltonian itself does
not really need to be an “Hermitean” operator for GFMC to be applicable:
non-symmetric operators can be dealt with as well [60]. For a QA application,
one has to perform many applications of 23 with a step-wise decreasing value
of the coupling I'(t) appearing in Hy;,(t). One crucial ingredient of GFMC is,
however, a reasonable guiding function which allows to perform the so-called
importance sampling [59]: this is in principle the only big limitation of GFMC,
but one can try to deal with this issue with a Variational Monte Carlo (VMC)
approach.

Coming back to the issue of focusing in 3-SAT, we now show how to exploit
the large freedom in the choice of Hy;, to implement some form of focusing
using GFMC. The crucial idea is that we do not want to turn a spin if it
appears only in satisfied clauses. Denote by F; the energy of a given spin,
defined as the sum of the clause energies E,, 20, for all the clauses in which
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i appears: F; = Za|i€a E,. Hence E; simply counts the number of UNSAT
clauses in which i appears, and vanishes for bits appearing only in SAT clauses.
Consider now, as a kinetic term inducing quantum fluctuations, a transverse
field locally weighted with Ej:

kyn,non—herm

N
HSAT =-IY olE;, (24)
i=1

which is intrinsically non-Hermitean, since F; does not commute with of.

AT . correctly implements the focusing strategy of leaving untouched
the variables appearing only in SAT clauses (i.e., with E; = 0). If we insist in
using a Hermitean kinetic term, then a faithful focusing is in general impos-

sible: the best we can do is to consider the symmetrized version of (24):

N
HOAD =T (0FE; + Eio?) (25)

kyn,herm
=1

which still allows, via the second term, transitions were a spin flip leads to
E; > 0. Combinations of Hy;, in Eqgs. 24 and 25 are also possible. As for the
guiding function [59], the simplest possible choice would be:

W(S) = exp { — BEL/T(S)) (26)

where (3 is a variational parameter, to be optimized at each value of the trans-
verse field I'. Research is currently in progress, in our group, on applications
of GFMC as a QA tool for optimization.

5.2 Message-Passing Optimization

In recent years, the cavity-method analysis [61, 34] of constraint satisfaction
problems like the random 3-SAT has allowed to derive a new class of Survey-
Propagation-based algorithms [29, 30, 62, 45, (3], similar in spirit to the better
known belief-propagation algorithm [64], but able to deal efficiently with the
clustering scenario sketched in Sect. 4.2.

A graphical representation of a 3-SAT instance can be given, in which every
variable is represented by a node of type A and each clause by a node of type B
[65]. A variable node is connected to a clause node if the corresponding variable
is involved in the corresponding clause. In such a way, tree-like bipartite graphs
can be associated to every instance. Messages are exchanged between the
nodes. Let V(i) be the set of the clauses neighboring a variable i, V(a) the
set of variables neighboring a clause a and let V(i) \ @ and V(a) \ 7 denote
the two sets deprived, respectively, of the elements ¢ and a. Every variable i
sends a message h;_,, to a clause a € V(a) telling if and how much the clauses
b € V(i) \ a are forcing it to orient itself in the positive or in the negative
direction. On the other hand, if the tendencies of all the variables in V(a) \ ¢
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are such that a would not be already satisfied by this partial assignment, a
must send a message u,_,; to the only left variable i, telling: “Please, orient
yourself in order to satisfy me!”.

To every cluster of solutions corresponds univocally a single set of messages
defined over all the edges of the bipartite graph associated to the instance [62].
Since many clusters are present, one can associate to every edge the probability
distribution, called survey, of observing a specific value of the messages h’s or
u’s. Such probability distributions can be computed in linear time thanks to
a recursive self-consistent procedure, and this information can be exploited in
order to determine an assignment for the most biased variables and simplify
accordingly the original problem instance. The interested reader is referred to
[45] for more details on the method.

Message-passing techniques are by far the most effective for the optimiza-
tion of hard random SAT instances. In the hard SAT region, they allow the
determination of an exponential number of complete solutions [63], but even
in the UNSAT region they are able of retrieving assignments with an energy
closer to the predicted ground state than to the Gardner energy, and, any-
way, definitely below the lower bound for the glassy thresholds [15]. Such
performance is inaccessible to classical local search techniques and even to
specialized algorithms like WalkSAT or fRRT[56, 57]. Unfortunately, they
cannot be applied to the optimization of structured instances associated to a
non tree-like bipartite graph and the issue of devising new heuristic methods
of universal application, like CA and QA, remains still an open problem of
considerable practical relevance.

6 Summary and Conclusions

We have illustrated several applications of Quantum Annealing strategies to
a range of problems going from textbook toy-models (displaying in a clear
way the crucial differences between classical and quantum annealing), all
the way to challenging hard optimization problems (Random Ising model,
TSP, 3-SAT). The techniques used to implement QA are either deterministic
Schrodinger’s evolutions, for the toy models, or Path Integral Monte Carlo
(PIMC) approaches, for the hard optimization problems.

As a way of summary, we would like to stress some of the major points
touched upon:

1. Is Quantum really better? Although, in the examples illustrated, QA often
wins over CA, sometimes it doesn’t, and this results is a priori not guar-
anteed, the outcome of the battle being strongly related to the landscape
of the problem one deals with (the negative result for the 3-SAT case is
particularly instructive in this respect);

2. Limitations of PIMC. PIMC-QA suffers from several limitations (finite
temperature 7T, sampling problems for the action, difficulties with the
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Trotter break-up) which suggest investigating in the future other Quan-
tum Monte Carlo approaches to QA, like Green’s Function Monte Carlo.

. Role of kinetic energy. The choice of the kinetic energy is clearly all im-

portant in QA: Sect. 4.4, illustrating the improvements in annealing a
double-well potential upon using a relativistic kinetic energy, is particu-
larly instructive.

In conclusion, it is quite clear that quantum annealing, although poten-

tially useful and sometimes more convenient than classical annealing, is not
capable, in general, of finding solutions of NP-complete problems in polyno-
mial time. Nevertheless, understanding when and how quantum mechanics

ca

n quantitatively improve on the solution of hard optimization problems is

still an open and timely issue.
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1 Introduction

It has been revealed during the last few decades that approaches originating
from the physics succeeds in solving combinatorial optimization problems[1].
The simulated thermal annealing method created such a close relation be-
tween physics and optimization problems. The quantum annealing method
was born as an analogue of conventional thermal annealing[2, 3]. In spite of
its origin, the mechanism and formulation of quantum annealing are funda-
mentally different from those of simulated thermal annealing. The former is
based on the dynamics in quantum mechanics, while the latter is on the clas-
sical dynamics. Furthermore the quantum annealing is basically formulated
for zero temperature in contrast to finite temperature simulation of thermal
annealing. Because of these differences, the quantum annealing is expected
as a novel efficient method for optimization problems. In practice, an exper-
iment using spin-glass material has shown the superiority of the quantum
annealing over the thermal annealing [1]. Simulations by means of the path-
integral quantum Monte-Carlo have also shown that an optimization in the
spin-glass model is achieved in a less time by the quantum annealing than by
the thermal annealing [5]. However study on quantum annealing is insufficient
for establishing this method as an effective optimization method. We focus in
this paper on some basic features and a new method for implementation of
the simulated quantum annealing.

A combinatorial optimization problem is a big subject relating with a va-
riety of topics in sciences. It is classified mathematically into some classes
according to the hardness. The class of easy problems is called P class. The
problem in P class is a decision problem, whose solution is given by “Yes”
or “No”, and can be solved by deterministic processes in time of polyno-
mial order of the problem size. The decision problem which can be solved
by processes of the non-deterministic Turing machine in a polynomial time
constructs the class NP. The NP class contains the P class by definition.
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The class of hardest decision problems is referred to as N P-hard class. The
solution of an N P-hard problem derives the solution of any NP problem by a
polynomial time of deterministic processes. In principle, the number of combi-
nations in the combinatorial problem increases exponentially with increasing
the problem size. No deterministic algorithm, by which an N P-hard problem
is solved in a polynomial time of processes, has been discovered so far. Hence
it takes exponentially long time to obtain the solution of IV P-hard problems.
It is an important work to find efficient algorithms, including deterministic
polynomial-time algorithm if it exists, for N P-hard problems.

The combinatorial optimization problem can be formulated as the mini-
mization problem of a cost function. One can first consider that the descend-
ing method may be valid for the minimization. However one of remarkable
properties of the problem is that the cost function has a large number of lo-
cal minima. Hence the ordinary descending method is useless. The simulated
thermal annealing was proposed for the minimization of such complicated
cost functions from the statistical mechanical standpoint. In terms of physics,
the cost function is replaced by a classical Hamiltonian represented by ran-
domly coupled Ising spin variables. Usually the classical Hamiltonian of the
optimization problem is written as

Ho=—> JiS; = > JijSiS; = > JijnSiS;Si—-, (1)
i ij ijk
where S7 is the Ising spin variable, and J;, Jij, Jijk, - - are disordered cou-

pling constant. The minimization of the cost function corresponds to finding
the ground state of the Hamiltonian (1). In order to obtain the ground state,
the Boltzmann distribution at a finite temperature is considered in the sim-
ulated thermal annealing. It is supposed that the finite temperature distri-
bution of Ising spin configuration is generated by means of the Metropolis
Monte-Carlo algorithm[6]. If the temperature is fixed below the energy bar-
rier between local minima, the distribution of thermal equilibrium is hard to
obtain. This is because the distribution at a configuration corresponding to
a local minimum is overestimated. On the other hand large thermal fluctu-
ations overcome energy barriers if the temperature is sufficiently high. The
distribution of equilibrium is easy to obtain in this case. The thermal anneal-
ing method produces the correct distribution at a low temperature through a
dynamical process from high temperature to low temperature. A distribution
at high temperature is changed gradually toward that at low temperature
with lowering temperature. The annealing speed is crucial here. It has been
known that the optimum annealing schedule is 7" o< 1/1n¢[7]. Hence, if the
temperature is lowered slower than the inverse of logarithm of the time, the
ground state is obtained in the infinite time limit in principle.

In contrast to thermal fluctuations in the thermal annealing, quantum
fluctuations are exploited in the quantum annealing[3]. Quantum fluctuations
are induced by the transverse field for the Ising spin system. The transverse
field plays the role similar to the temperature. The ground state of random
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Ising models corresponding to the solution of optimization problems is typi-
cally characterized by the replica symmetry breaking[9]. Thermal fluctuations
causes the restoration of replica symmetry. Quantum fluctuations also drives
the state into a phase in which the replica symmetry is preserved. The temper-
ature and transverse field are both parameters which control strength of fluc-
tuations. It is remarkable here that the restoration of replica symmetry of the
infinite-range random Ising (Sherrington-Kirkpatric[10]) model takes place at
the infinitesimal transverse field, though it does at a finite temperature[l 1, 12].
Hence it is inferred that the random Ising system is more sensitive to quantum
fluctuations than thermal fluctuations.

In the quantum annealing method, a quantum spin system composed of a
random Ising Hamiltonian and the Zeeman energy accompanying transverse
field is considered. The system with zero transverse field is identical to the
classical system which is to be solved. If the transverse field is sufficiently large
compared to the typical value of coupling constants in Ising Hamiltonian, all
of the spins in the ground state are parallel with the transverse field. In the
procedure of quantum annealing, the transverse field is decreased gradually
toward zero field. The spin state changes dynamically with time according to
the Schrodinger equation. If the change in the total Hamiltonian is sufficiently
slow and the energy levels of ground and first excited states do not cross during
the process, the spin state goes to the ground state of the classical Hamiltonian
finally. It should be noted here that the dynamical process in the quantum
annealing is governed by the Schrodinger equation in principle, different from
the stochastic Markovian process in thermal annealing. Therefore we need not
to be bound by the schedule of the thermal annealing. W